/*
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
* Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "code/compiledIC.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_riscv.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
Register NativeInstruction::extract_rs1(address instr) {
assert_cond(instr != NULL);
return as_Register(Assembler::extract(((unsigned*)instr)[0], 19, 15));
}
Register NativeInstruction::extract_rs2(address instr) {
assert_cond(instr != NULL);
return as_Register(Assembler::extract(((unsigned*)instr)[0], 24, 20));
}
Register NativeInstruction::extract_rd(address instr) {
assert_cond(instr != NULL);
return as_Register(Assembler::extract(((unsigned*)instr)[0], 11, 7));
}
uint32_t NativeInstruction::extract_opcode(address instr) {
assert_cond(instr != NULL);
return Assembler::extract(((unsigned*)instr)[0], 6, 0);
}
uint32_t NativeInstruction::extract_funct3(address instr) {
assert_cond(instr != NULL);
return Assembler::extract(((unsigned*)instr)[0], 14, 12);
}
bool NativeInstruction::is_pc_relative_at(address instr) {
// auipc + jalr
// auipc + addi
// auipc + load
// auipc + fload_load
return (is_auipc_at(instr)) &&
(is_addi_at(instr + instruction_size) ||
is_jalr_at(instr + instruction_size) ||
is_load_at(instr + instruction_size) ||
is_float_load_at(instr + instruction_size)) &&
check_pc_relative_data_dependency(instr);
}
// ie:ld(Rd, Label)
bool NativeInstruction::is_load_pc_relative_at(address instr) {
return is_auipc_at(instr) && // auipc
is_ld_at(instr + instruction_size) && // ld
check_load_pc_relative_data_dependency(instr);
}
bool NativeInstruction::is_movptr_at(address instr) {
return is_lui_at(instr) && // Lui
is_addi_at(instr + instruction_size) && // Addi
is_slli_shift_at(instr + instruction_size * 2, 11) && // Slli Rd, Rs, 11
is_addi_at(instr + instruction_size * 3) && // Addi
is_slli_shift_at(instr + instruction_size * 4, 6) && // Slli Rd, Rs, 6
(is_addi_at(instr + instruction_size * 5) ||
is_jalr_at(instr + instruction_size * 5) ||
is_load_at(instr + instruction_size * 5)) && // Addi/Jalr/Load
check_movptr_data_dependency(instr);
}
bool NativeInstruction::is_li32_at(address instr) {
return is_lui_at(instr) && // lui
is_addiw_at(instr + instruction_size) && // addiw
check_li32_data_dependency(instr);
}
bool NativeInstruction::is_li64_at(address instr) {
return is_lui_at(instr) && // lui
is_addi_at(instr + instruction_size) && // addi
is_slli_shift_at(instr + instruction_size * 2, 12) && // Slli Rd, Rs, 12
is_addi_at(instr + instruction_size * 3) && // addi
is_slli_shift_at(instr + instruction_size * 4, 12) && // Slli Rd, Rs, 12
is_addi_at(instr + instruction_size * 5) && // addi
is_slli_shift_at(instr + instruction_size * 6, 8) && // Slli Rd, Rs, 8
is_addi_at(instr + instruction_size * 7) && // addi
check_li64_data_dependency(instr);
}
void NativeCall::verify() {
assert(NativeCall::is_call_at((address)this), "unexpected code at call site");
}
address NativeCall::destination() const {
address addr = (address)this;
assert(NativeInstruction::is_jal_at(instruction_address()), "inst must be jal.");
address destination = MacroAssembler::target_addr_for_insn(instruction_address());
// Do we use a trampoline stub for this call?
CodeBlob* cb = CodeCache::find_blob(addr);
assert(cb && cb->is_nmethod(), "sanity");
nmethod *nm = (nmethod *)cb;
if (nm != NULL && nm->stub_contains(destination) && is_NativeCallTrampolineStub_at(destination)) {
// Yes we do, so get the destination from the trampoline stub.
const address trampoline_stub_addr = destination;
destination = nativeCallTrampolineStub_at(trampoline_stub_addr)->destination();
}
return destination;
}
// Similar to replace_mt_safe, but just changes the destination. The
// important thing is that free-running threads are able to execute this
// call instruction at all times.
//
// Used in the runtime linkage of calls; see class CompiledIC.
//
// Add parameter assert_lock to switch off assertion
// during code generation, where no patching lock is needed.
void NativeCall::set_destination_mt_safe(address dest, bool assert_lock) {
assert(!assert_lock ||
(Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint()) ||
CompiledICLocker::is_safe(addr_at(0)),
"concurrent code patching");
ResourceMark rm;
address addr_call = addr_at(0);
assert(NativeCall::is_call_at(addr_call), "unexpected code at call site");
// Patch the constant in the call's trampoline stub.
address trampoline_stub_addr = get_trampoline();
if (trampoline_stub_addr != NULL) {
assert (!is_NativeCallTrampolineStub_at(dest), "chained trampolines");
nativeCallTrampolineStub_at(trampoline_stub_addr)->set_destination(dest);
}
// Patch the call.
if (Assembler::reachable_from_branch_at(addr_call, dest)) {
set_destination(dest);
} else {
assert (trampoline_stub_addr != NULL, "we need a trampoline");
set_destination(trampoline_stub_addr);
}
ICache::invalidate_range(addr_call, instruction_size);
}
address NativeCall::get_trampoline() {
address call_addr = addr_at(0);
CodeBlob *code = CodeCache::find_blob(call_addr);
assert(code != NULL, "Could not find the containing code blob");
address jal_destination = MacroAssembler::pd_call_destination(call_addr);
if (code != NULL && code->contains(jal_destination) && is_NativeCallTrampolineStub_at(jal_destination)) {
return jal_destination;
}
if (code != NULL && code->is_nmethod()) {
return trampoline_stub_Relocation::get_trampoline_for(call_addr, (nmethod*)code);
}
return NULL;
}
// Inserts a native call instruction at a given pc
void NativeCall::insert(address code_pos, address entry) { Unimplemented(); }
//-------------------------------------------------------------------
void NativeMovConstReg::verify() {
if (!(nativeInstruction_at(instruction_address())->is_movptr() ||
is_auipc_at(instruction_address()))) {
fatal("should be MOVPTR or AUIPC");
}
}
intptr_t NativeMovConstReg::data() const {
address addr = MacroAssembler::target_addr_for_insn(instruction_address());
if (maybe_cpool_ref(instruction_address())) {
return *(intptr_t*)addr;
} else {
return (intptr_t)addr;
}
}
void NativeMovConstReg::set_data(intptr_t x) {
if (maybe_cpool_ref(instruction_address())) {
address addr = MacroAssembler::target_addr_for_insn(instruction_address());
*(intptr_t*)addr = x;
} else {
// Store x into the instruction stream.
MacroAssembler::pd_patch_instruction_size(instruction_address(), (address)x);
ICache::invalidate_range(instruction_address(), movptr_instruction_size);
}
// Find and replace the oop/metadata corresponding to this
// instruction in oops section.
CodeBlob* cb = CodeCache::find_blob(instruction_address());
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
RelocIterator iter(nm, instruction_address(), next_instruction_address());
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop* oop_addr = iter.oop_reloc()->oop_addr();
*oop_addr = cast_to_oop(x);
break;
} else if (iter.type() == relocInfo::metadata_type) {
Metadata** metadata_addr = iter.metadata_reloc()->metadata_addr();
*metadata_addr = (Metadata*)x;
break;
}
}
}
}
void NativeMovConstReg::print() {
tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
p2i(instruction_address()), data());
}
//-------------------------------------------------------------------
int NativeMovRegMem::offset() const {
Unimplemented();
return 0;
}
void NativeMovRegMem::set_offset(int x) { Unimplemented(); }
void NativeMovRegMem::verify() {
Unimplemented();
}
//--------------------------------------------------------------------------------
void NativeJump::verify() { }
void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
// Patching to not_entrant can happen while activations of the method are
// in use. The patching in that instance must happen only when certain
// alignment restrictions are true. These guarantees check those
// conditions.
// Must be 4 bytes aligned
MacroAssembler::assert_alignment(verified_entry);
}
address NativeJump::jump_destination() const {
address dest = MacroAssembler::target_addr_for_insn(instruction_address());
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
// As a special case we also use sequence movptr(r,0), jalr(r,0)
// i.e. jump to 0 when we need leave space for a wide immediate
// load
// return -1 if jump to self or to 0
if ((dest == (address) this) || dest == 0) {
dest = (address) -1;
}
return dest;
};
void NativeJump::set_jump_destination(address dest) {
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
if (dest == (address) -1)
dest = instruction_address();
MacroAssembler::pd_patch_instruction(instruction_address(), dest);
ICache::invalidate_range(instruction_address(), instruction_size);
}
//-------------------------------------------------------------------
address NativeGeneralJump::jump_destination() const {
NativeMovConstReg* move = nativeMovConstReg_at(instruction_address());
address dest = (address) move->data();
// We use jump to self as the unresolved address which the inline
// cache code (and relocs) know about
// As a special case we also use jump to 0 when first generating
// a general jump
// return -1 if jump to self or to 0
if ((dest == (address) this) || dest == 0) {
dest = (address) -1;
}
return dest;
}
//-------------------------------------------------------------------
bool NativeInstruction::is_safepoint_poll() {
return is_lwu_to_zr(address(this));
}
bool NativeInstruction::is_lwu_to_zr(address instr) {
assert_cond(instr != NULL);
return (extract_opcode(instr) == 0b0000011 &&
extract_funct3(instr) == 0b110 &&
extract_rd(instr) == zr); // zr
}
// A 16-bit instruction with all bits ones is permanently reserved as an illegal instruction.
bool NativeInstruction::is_sigill_not_entrant() {
// jvmci
return uint_at(0) == 0xffffffff;
}
void NativeIllegalInstruction::insert(address code_pos) {
assert_cond(code_pos != NULL);
*(juint*)code_pos = 0xffffffff; // all bits ones is permanently reserved as an illegal instruction
}
bool NativeInstruction::is_stop() {
return uint_at(0) == 0xc0101073; // an illegal instruction, 'csrrw x0, time, x0'
}
//-------------------------------------------------------------------
// MT-safe inserting of a jump over a jump or a nop (used by
// nmethod::make_not_entrant)
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
assert(dest == SharedRuntime::get_handle_wrong_method_stub(), "expected fixed destination of patch");
assert(nativeInstruction_at(verified_entry)->is_jump_or_nop() ||
nativeInstruction_at(verified_entry)->is_sigill_not_entrant(),
"riscv cannot replace non-jump with jump");
check_verified_entry_alignment(entry, verified_entry);
// Patch this nmethod atomically.
if (Assembler::reachable_from_branch_at(verified_entry, dest)) {
ptrdiff_t offset = dest - verified_entry;
guarantee(is_imm_in_range(offset, 20, 1), "offset is too large to be patched in one jal insrusction."); // 1M
uint32_t insn = 0;
address pInsn = (address)&insn;
Assembler::patch(pInsn, 31, 31, (offset >> 20) & 0x1);
Assembler::patch(pInsn, 30, 21, (offset >> 1) & 0x3ff);
Assembler::patch(pInsn, 20, 20, (offset >> 11) & 0x1);
Assembler::patch(pInsn, 19, 12, (offset >> 12) & 0xff);
Assembler::patch(pInsn, 11, 7, 0); // zero, no link jump
Assembler::patch(pInsn, 6, 0, 0b1101111); // j, (jal x0 offset)
*(unsigned int*)verified_entry = insn;
} else {
// We use an illegal instruction for marking a method as
// not_entrant.
NativeIllegalInstruction::insert(verified_entry);
}
ICache::invalidate_range(verified_entry, instruction_size);
}
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
CodeBuffer cb(code_pos, instruction_size);
MacroAssembler a(&cb);
Assembler::IncompressibleRegion ir(&a); // Fixed length: see NativeGeneralJump::get_instruction_size()
int32_t offset = 0;
a.movptr(t0, entry, offset); // lui, addi, slli, addi, slli
a.jalr(x0, t0, offset); // jalr
ICache::invalidate_range(code_pos, instruction_size);
}
// MT-safe patching of a long jump instruction.
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
ShouldNotCallThis();
}
address NativeCallTrampolineStub::destination(nmethod *nm) const {
return ptr_at(data_offset);
}
void NativeCallTrampolineStub::set_destination(address new_destination) {
set_ptr_at(data_offset, new_destination);
OrderAccess::release();
}
uint32_t NativeMembar::get_kind() {
uint32_t insn = uint_at(0);
uint32_t predecessor = Assembler::extract(insn, 27, 24);
uint32_t successor = Assembler::extract(insn, 23, 20);
return MacroAssembler::pred_succ_to_membar_mask(predecessor, successor);
}
void NativeMembar::set_kind(uint32_t order_kind) {
uint32_t predecessor = 0;
uint32_t successor = 0;
MacroAssembler::membar_mask_to_pred_succ(order_kind, predecessor, successor);
uint32_t insn = uint_at(0);
address pInsn = (address) &insn;
Assembler::patch(pInsn, 27, 24, predecessor);
Assembler::patch(pInsn, 23, 20, successor);
address membar = addr_at(0);
*(unsigned int*) membar = insn;
}
void NativePostCallNop::make_deopt() {
MacroAssembler::assert_alignment(addr_at(0));
NativeDeoptInstruction::insert(addr_at(0));
}
int NativePostCallNop::displacement() const {
// Discard the high 32 bits
return (int)(intptr_t)MacroAssembler::get_target_of_li32(addr_at(4));
}
void NativePostCallNop::patch(jint diff) {
assert(diff != 0, "must be");
assert(is_lui_to_zr_at(addr_at(4)) && is_addiw_to_zr_at(addr_at(8)), "must be");
MacroAssembler::patch_imm_in_li32(addr_at(4), diff);
}
void NativeDeoptInstruction::verify() {
}
// Inserts an undefined instruction at a given pc
void NativeDeoptInstruction::insert(address code_pos) {
// 0xc0201073 encodes CSRRW x0, instret, x0
uint32_t insn = 0xc0201073;
uint32_t *pos = (uint32_t *) code_pos;
*pos = insn;
ICache::invalidate_range(code_pos, 4);
}
¤ Dauer der Verarbeitung: 0.28 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|