products/Sources/formale Sprachen/JAVA/openjdk-20-36_src/test/jdk/java/lang/Double image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: ToHexString.java   Sprache: JAVA

/*
 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


/*
 * @test
 * @bug 4826774 4926547
 * @summary Tests for {Float, Double}.toHexString methods
 * @library ../Math
 * @build DoubleConsts
 * @run main ToHexString
 * @author Joseph D. Darcy
 */


import java.util.regex.*;

public class ToHexString {
    private ToHexString() {}

    /*
     * Given a double value, create a hexadecimal floating-point
     * string via an intermediate long hex string.
     */

    static String doubleToHexString(double d) {
        return hexLongStringtoHexDoubleString(Long.toHexString(Double.doubleToLongBits(d)));
    }

    /*
     * Transform the hexadecimal long output into the equivalent
     * hexadecimal double value.
     */

    static String hexLongStringtoHexDoubleString(String transString) {
        transString = transString.toLowerCase();

        String zeros = "";
        StringBuffer result = new StringBuffer(24);

        for(int i = 0; i < (16 - transString.length()); i++, zeros += "0");
        transString = zeros + transString;

        // assert transString.length == 16;

            char topChar;
            // Extract sign
            if((topChar=transString.charAt(0)) >= '8' ) {// 8, 9, a, A, b, B, ...
                result.append("-");
                // clear sign bit
                transString =
                    Character.toString(Character.forDigit(Character.digit(topChar, 16) - 8, 16)) +
                    transString.substring(1,16);
            }

            // check for NaN and infinity
            String signifString = transString.substring(3,16);

            if( transString.substring(0,3).equals("7ff") ) {
                if(signifString.equals("0000000000000")) {
                    result.append("Infinity");
                }
                else
                    result.append("NaN");
            }
            else { // finite value
                // Extract exponent
                int exponent = Integer.parseInt(transString.substring(0,3), 16) -
                    DoubleConsts.EXP_BIAS;
                result.append("0x");

                if (exponent == Double.MIN_EXPONENT - 1) { // zero or subnormal
                    if(signifString.equals("0000000000000")) {
                        result.append("0.0p0");
                    }
                    else {
                        result.append("0." + signifString.replaceFirst("0+$""").replaceFirst("^$""0") +
                                      "p-1022");
                    }
                }
                else {  // normal value
                    result.append("1." + signifString.replaceFirst("0+$""").replaceFirst("^$""0") +
                                  "p" + exponent);
                }
            }
            return result.toString();
    }

    public static int toHexStringTests() {
        int failures = 0;
        String [][] testCases1 = {
            {"Infinity",                "Infinity"},
            {"-Infinity",               "-Infinity"},
            {"NaN",                     "NaN"},
            {"-NaN",                    "NaN"},
            {"0.0",                     "0x0.0p0"},
            {"-0.0",                    "-0x0.0p0"},
            {"1.0",                     "0x1.0p0"},
            {"-1.0",                    "-0x1.0p0"},
            {"2.0",                     "0x1.0p1"},
            {"3.0",                     "0x1.8p1"},
            {"0.5",                     "0x1.0p-1"},
            {"0.25",                    "0x1.0p-2"},
            {"1.7976931348623157e+308""0x1.fffffffffffffp1023"},      // MAX_VALUE
            {"2.2250738585072014E-308""0x1.0p-1022"},                 // MIN_NORMAL
            {"2.225073858507201E-308",  "0x0.fffffffffffffp-1022"},     // MAX_SUBNORMAL
            {"4.9e-324",                "0x0.0000000000001p-1022"}      // MIN_VALUE
        };

        // Compare decimal string -> double -> hex string to hex string
        for (int i = 0; i < testCases1.length; i++) {
            String result;
            if(! (result=Double.toHexString(Double.parseDouble(testCases1[i][0]))).
               equals(testCases1[i][1])) {
                failures ++;
                System.err.println("For floating-point string " + testCases1[i][0] +
                                   ", expected hex output " + testCases1[i][1] + ", got " + result +".");
            }
        }


        // Except for float subnormals, the output for numerically
        // equal float and double values should be the same.
        // Therefore, we will explicitly test float subnormal values.
        String [][] floatTestCases = {
            {"Infinity",                "Infinity"},
            {"-Infinity",               "-Infinity"},
            {"NaN",                     "NaN"},
            {"-NaN",                    "NaN"},
            {"0.0",                     "0x0.0p0"},
            {"-0.0",                    "-0x0.0p0"},
            {"1.0",                     "0x1.0p0"},
            {"-1.0",                    "-0x1.0p0"},
            {"2.0",                     "0x1.0p1"},
            {"3.0",                     "0x1.8p1"},
            {"0.5",                     "0x1.0p-1"},
            {"0.25",                    "0x1.0p-2"},
            {"3.4028235e+38f",          "0x1.fffffep127"},      // MAX_VALUE
            {"1.17549435E-38f",         "0x1.0p-126"},          // MIN_NORMAL
            {"1.1754942E-38",           "0x0.fffffep-126"},     // MAX_SUBNORMAL
            {"1.4e-45f",                "0x0.000002p-126"}      // MIN_VALUE
        };
        // Compare decimal string -> double -> hex string to hex string
        for (int i = 0; i < floatTestCases.length; i++) {
            String result;
            if(! (result=Float.toHexString(Float.parseFloat(floatTestCases[i][0]))).
               equals(floatTestCases[i][1])) {
                failures++;
                System.err.println("For floating-point string " + floatTestCases[i][0] +
                                   ", expected hex output\n" + floatTestCases[i][1] + ", got\n" + result +".");
            }
        }

        // Particular floating-point values and hex equivalents, mostly
        // taken from fdlibm source.
        String [][] testCases2 = {
            {"+0.0",                                    "0000000000000000"},
            {"-0.0",                                    "8000000000000000"},
            {"+4.9e-324",                               "0000000000000001"},
            {"-4.9e-324",                               "8000000000000001"},

            // fdlibm k_sin.c
            {"+5.00000000000000000000e-01",             "3FE0000000000000"},
            {"-1.66666666666666324348e-01",             "BFC5555555555549"},
            {"+8.33333333332248946124e-03",             "3F8111111110F8A6"},
            {"-1.98412698298579493134e-04",             "BF2A01A019C161D5"},
            {"+2.75573137070700676789e-06",             "3EC71DE357B1FE7D"},
            {"-2.50507602534068634195e-08",             "BE5AE5E68A2B9CEB"},
            {"+1.58969099521155010221e-10",             "3DE5D93A5ACFD57C"},

            // fdlibm k_cos.c
            {"+4.16666666666666019037e-02",             "3FA555555555554C"},
            {"-1.38888888888741095749e-03",             "BF56C16C16C15177"},
            {"+2.48015872894767294178e-05",             "3EFA01A019CB1590"},
            {"-2.75573143513906633035e-07",             "BE927E4F809C52AD"},
            {"+2.08757232129817482790e-09",             "3E21EE9EBDB4B1C4"},
            {"-1.13596475577881948265e-11",             "BDA8FAE9BE8838D4"},

            // fdlibm e_rempio.c
            {"1.67772160000000000000e+07",              "4170000000000000"},
            {"6.36619772367581382433e-01",              "3FE45F306DC9C883"},
            {"1.57079632673412561417e+00",              "3FF921FB54400000"},
            {"6.07710050650619224932e-11",              "3DD0B4611A626331"},
            {"6.07710050630396597660e-11",              "3DD0B4611A600000"},
            {"2.02226624879595063154e-21",              "3BA3198A2E037073"},
            {"2.02226624871116645580e-21",              "3BA3198A2E000000"},
            {"8.47842766036889956997e-32",              "397B839A252049C1"},


            // fdlibm s_cbrt.c
            {"+5.42857142857142815906e-01",             "3FE15F15F15F15F1"},
            {"-7.05306122448979611050e-01",             "BFE691DE2532C834"},
            {"+1.41428571428571436819e+00",             "3FF6A0EA0EA0EA0F"},
            {"+1.60714285714285720630e+00",             "3FF9B6DB6DB6DB6E"},
            {"+3.57142857142857150787e-01",             "3FD6DB6DB6DB6DB7"},
        };

        // Compare decimal string -> double -> hex string to
        // long hex string -> double hex string
        for (int i = 0; i < testCases2.length; i++) {
            String result;
            String expected;
            if(! (result=Double.toHexString(Double.parseDouble(testCases2[i][0]))).
               equals( expected=hexLongStringtoHexDoubleString(testCases2[i][1]) )) {
                failures ++;
                System.err.println("For floating-point string " + testCases2[i][0] +
                                   ", expected hex output " + expected + ", got " + result +".");
            }
        }

        // Test random double values;
        // compare double -> Double.toHexString with local doubleToHexString
        java.util.Random rand = new java.util.Random(0);
        for (int i = 0; i < 1000; i++) {
            String result;
            String expected;
            double d = rand.nextDouble();
            if(! (expected=doubleToHexString(d)).equals(result=Double.toHexString(d)) ) {
                failures ++;
                System.err.println("For floating-point value " + d +
                                   ", expected hex output " + expected + ", got " + result +".");
            }
        }

        return failures;
    }

    public static void main(String argv[]) {
        int failures = 0;

        failures = toHexStringTests();

        if (failures != 0) {
            throw new RuntimeException("" + failures + " failures while testing Double.toHexString");
        }
    }
}

¤ Dauer der Verarbeitung: 0.22 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff