/*
* Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// ADLPARSE.CPP - Architecture Description Language Parser
// Authors: Chris Vick and Mike Paleczny
#include "adlc.hpp"
//----------------------------ADLParser----------------------------------------
// Create a new ADL parser
ADLParser::ADLParser(FileBuff& buffer, ArchDesc& archDesc)
: _buf(buffer), _AD(archDesc),
_globalNames(archDesc.globalNames()) {
_AD._syntax_errs = _AD._semantic_errs = 0; // No errors so far this file
_AD._warnings = 0; // No warnings either
_curline = _ptr = NULL; // No pointers into buffer yet
_preproc_depth = 0;
_preproc_not_taken = 0;
// Delimit command-line definitions from in-file definitions:
_AD._preproc_list.add_signal();
}
//------------------------------~ADLParser-------------------------------------
// Delete an ADL parser.
ADLParser::~ADLParser() {
if (!_AD._quiet_mode)
fprintf(stderr,"---------------------------- Errors and Warnings ----------------------------\n");
#ifndef ASSERT
if (!_AD._quiet_mode) {
fprintf(stderr, "**************************************************************\n");
fprintf(stderr, "***** WARNING: ASSERT is undefined, assertions disabled. *****\n");
fprintf(stderr, "**************************************************************\n");
}
#endif
if( _AD._syntax_errs + _AD._semantic_errs + _AD._warnings == 0 ) {
if (!_AD._quiet_mode)
fprintf(stderr,"No errors or warnings to report from phase-1 parse.\n" );
}
else {
if( _AD._syntax_errs ) { // Any syntax errors?
fprintf(stderr,"%s: Found %d syntax error", _buf._fp->_name, _AD._syntax_errs);
if( _AD._syntax_errs > 1 ) fprintf(stderr,"s.\n\n");
else fprintf(stderr,".\n\n");
}
if( _AD._semantic_errs ) { // Any semantic errors?
fprintf(stderr,"%s: Found %d semantic error", _buf._fp->_name, _AD._semantic_errs);
if( _AD._semantic_errs > 1 ) fprintf(stderr,"s.\n\n");
else fprintf(stderr,".\n\n");
}
if( _AD._warnings ) { // Any warnings?
fprintf(stderr,"%s: Found %d warning", _buf._fp->_name, _AD._warnings);
if( _AD._warnings > 1 ) fprintf(stderr,"s.\n\n");
else fprintf(stderr,".\n\n");
}
}
if (!_AD._quiet_mode)
fprintf(stderr,"-----------------------------------------------------------------------------\n");
_AD._TotalLines += linenum()-1; // -1 for overshoot in "nextline" routine
// Write out information we have stored
// // UNIXism == fsync(stderr);
}
//------------------------------parse------------------------------------------
// Each top-level keyword should appear as the first non-whitespace on a line.
//
void ADLParser::parse() {
char *ident;
// Iterate over the lines in the file buffer parsing Level 1 objects
for( next_line(); _curline != NULL; next_line()) {
_ptr = _curline; // Reset ptr to start of new line
skipws(); // Skip any leading whitespace
ident = get_ident(); // Get first token
if (ident == NULL) { // Empty line
continue; // Get the next line
}
if (!strcmp(ident, "instruct")) instr_parse();
else if (!strcmp(ident, "operand")) oper_parse();
else if (!strcmp(ident, "opclass")) opclass_parse();
else if (!strcmp(ident, "ins_attrib")) ins_attr_parse();
else if (!strcmp(ident, "op_attrib")) op_attr_parse();
else if (!strcmp(ident, "source")) source_parse();
else if (!strcmp(ident, "source_hpp")) source_hpp_parse();
else if (!strcmp(ident, "register")) reg_parse();
else if (!strcmp(ident, "frame")) frame_parse();
else if (!strcmp(ident, "encode")) encode_parse();
else if (!strcmp(ident, "pipeline")) pipe_parse();
else if (!strcmp(ident, "definitions")) definitions_parse();
else if (!strcmp(ident, "peephole")) peep_parse();
else if (!strcmp(ident, "#line")) preproc_line();
else if (!strcmp(ident, "#define")) preproc_define();
else if (!strcmp(ident, "#undef")) preproc_undef();
else {
parse_err(SYNERR, "expected one of - instruct, operand, ins_attrib, op_attrib, source, register, pipeline, encode\n Found %s",ident);
}
}
// Add reg_class spill_regs after parsing.
RegisterForm *regBlock = _AD.get_registers();
if (regBlock == NULL) {
parse_err(SEMERR, "Did not declare 'register' definitions");
}
regBlock->addSpillRegClass();
regBlock->addDynamicRegClass();
// Done with parsing, check consistency.
if (_preproc_depth != 0) {
parse_err(SYNERR, "End of file inside #ifdef");
}
// AttributeForms ins_cost and op_cost must be defined for default behaviour
if (_globalNames[AttributeForm::_ins_cost] == NULL) {
parse_err(SEMERR, "Did not declare 'ins_cost' attribute");
}
if (_globalNames[AttributeForm::_op_cost] == NULL) {
parse_err(SEMERR, "Did not declare 'op_cost' attribute");
}
}
// ******************** Private Level 1 Parse Functions ********************
//------------------------------instr_parse------------------------------------
// Parse the contents of an instruction definition, build the InstructForm to
// represent that instruction, and add it to the InstructForm list.
void ADLParser::instr_parse(void) {
char *ident;
InstructForm *instr;
MatchRule *rule;
int match_rules_cnt = 0;
// First get the name of the instruction
if( (ident = get_unique_ident(_globalNames,"instruction")) == NULL )
return;
instr = new InstructForm(ident); // Create new instruction form
instr->_linenum = linenum();
_globalNames.Insert(ident, instr); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1)
fprintf(stderr,"Parsing Instruction Form %s\n", ident);
// Then get the operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in instruct definition\n");
}
// Parse the operand list
else get_oplist(instr->_parameters, instr->_localNames);
skipws(); // Skip leading whitespace
// Check for block delimiter
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "missing '%%{' in instruction definition\n");
return;
}
next_char(); // Maintain the invariant
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
if (!strcmp(ident, "predicate")) instr->_predicate = pred_parse();
else if (!strcmp(ident, "match")) {
// Allow one instruction have several match rules.
rule = instr->_matrule;
if (rule == NULL) {
// This is first match rule encountered
rule = match_parse(instr->_localNames);
if (rule) {
instr->_matrule = rule;
// Special case the treatment of Control instructions.
if( instr->is_ideal_control() ) {
// Control instructions return a special result, 'Universe'
rule->_result = "Universe";
}
// Check for commutative operations with tree operands.
matchrule_clone_and_swap(rule, instr->_ident, match_rules_cnt);
}
} else {
// Find the end of the match rule list
while (rule->_next != NULL)
rule = rule->_next;
// Add the new match rule to the list
rule->_next = match_parse(instr->_localNames);
if (rule->_next) {
rule = rule->_next;
if( instr->is_ideal_control() ) {
parse_err(SYNERR, "unique match rule expected for %s\n", rule->_name);
return;
}
assert(match_rules_cnt < 100," too many match rule clones");
char* buf = (char*) AdlAllocateHeap(strlen(instr->_ident) + 4);
sprintf(buf, "%s_%d", instr->_ident, match_rules_cnt++);
rule->_result = buf;
// Check for commutative operations with tree operands.
matchrule_clone_and_swap(rule, instr->_ident, match_rules_cnt);
}
}
}
else if (!strcmp(ident, "encode")) {
parse_err(SYNERR, "Instructions specify ins_encode, not encode\n");
}
else if (!strcmp(ident, "ins_encode")) ins_encode_parse(*instr);
// Parse late expand keyword.
else if (!strcmp(ident, "postalloc_expand")) postalloc_expand_parse(*instr);
else if (!strcmp(ident, "opcode")) instr->_opcode = opcode_parse(instr);
else if (!strcmp(ident, "size")) instr->_size = size_parse(instr);
else if (!strcmp(ident, "effect")) effect_parse(instr);
else if (!strcmp(ident, "expand")) instr->_exprule = expand_parse(instr);
else if (!strcmp(ident, "rewrite")) instr->_rewrule = rewrite_parse();
else if (!strcmp(ident, "constraint")) {
parse_err(SYNERR, "Instructions do not specify a constraint\n");
}
else if (!strcmp(ident, "construct")) {
parse_err(SYNERR, "Instructions do not specify a construct\n");
}
else if (!strcmp(ident, "format")) instr->_format = format_parse();
else if (!strcmp(ident, "interface")) {
parse_err(SYNERR, "Instructions do not specify an interface\n");
}
else if (!strcmp(ident, "ins_pipe")) ins_pipe_parse(*instr);
else { // Done with statically defined parts of instruction definition
// Check identifier to see if it is the name of an attribute
const Form *form = _globalNames[ident];
AttributeForm *attr = form ? form->is_attribute() : NULL;
if (attr && (attr->_atype == INS_ATTR)) {
// Insert the new attribute into the linked list.
Attribute *temp = attr_parse(ident);
temp->_next = instr->_attribs;
instr->_attribs = temp;
} else {
parse_err(SYNERR, "expected one of:\n predicate, match, encode, or the name of"
" an instruction attribute at %s\n", ident);
}
}
skipws();
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing '%%}' in instruction definition\n");
return;
}
// Check for "Set" form of chain rule
adjust_set_rule(instr);
if (_AD._pipeline) {
// No pipe required for late expand.
if (instr->expands() || instr->postalloc_expands()) {
if (instr->_ins_pipe) {
parse_err(WARN, "ins_pipe and expand rule both specified for instruction \"%s\";"
" ins_pipe will be unused\n", instr->_ident);
}
} else {
if (!instr->_ins_pipe) {
parse_err(WARN, "No ins_pipe specified for instruction \"%s\"\n", instr->_ident);
}
}
}
// Add instruction to tail of instruction list
_AD.addForm(instr);
// Create instruction form for each additional match rule
rule = instr->_matrule;
if (rule != NULL) {
rule = rule->_next;
while (rule != NULL) {
ident = (char*)rule->_result;
InstructForm *clone = new InstructForm(ident, instr, rule); // Create new instruction form
_globalNames.Insert(ident, clone); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1)
fprintf(stderr,"Parsing Instruction Form %s\n", ident);
// Check for "Set" form of chain rule
adjust_set_rule(clone);
// Add instruction to tail of instruction list
_AD.addForm(clone);
rule = rule->_next;
clone->_matrule->_next = NULL; // One match rule per clone
}
}
}
//------------------------------matchrule_clone_and_swap-----------------------
// Check for commutative operations with subtree operands,
// create clones and swap operands.
void ADLParser::matchrule_clone_and_swap(MatchRule* rule, const char* instr_ident, int& match_rules_cnt) {
// Check for commutative operations with tree operands.
int count = 0;
rule->count_commutative_op(count);
if (count > 0) {
// Clone match rule and swap commutative operation's operands.
rule->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
}
}
//------------------------------adjust_set_rule--------------------------------
// Check for "Set" form of chain rule
void ADLParser::adjust_set_rule(InstructForm *instr) {
if (instr->_matrule == NULL || instr->_matrule->_rChild == NULL) return;
const char *rch = instr->_matrule->_rChild->_opType;
const Form *frm = _globalNames[rch];
if( (! strcmp(instr->_matrule->_opType,"Set")) &&
frm && frm->is_operand() && (! frm->ideal_only()) ) {
// Previous implementation, which missed leaP*, but worked for loadCon*
unsigned position = 0;
const char *result = NULL;
const char *name = NULL;
const char *optype = NULL;
MatchNode *right = instr->_matrule->_rChild;
if (right->base_operand(position, _globalNames, result, name, optype)) {
position = 1;
const char *result2 = NULL;
const char *name2 = NULL;
const char *optype2 = NULL;
// Can not have additional base operands in right side of match!
if ( ! right->base_operand( position, _globalNames, result2, name2, optype2) ) {
if (instr->_predicate != NULL)
parse_err(SYNERR, "ADLC does not support instruction chain rules with predicates");
// Chain from input _ideal_operand_type_,
// Needed for shared roots of match-trees
ChainList *lst = (ChainList *)_AD._chainRules[optype];
if (lst == NULL) {
lst = new ChainList();
_AD._chainRules.Insert(optype, lst);
}
if (!lst->search(instr->_matrule->_lChild->_opType)) {
const char *cost = instr->cost();
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
}
// The ADLC does not support chaining from the ideal operand type
// of a predicated user-defined operand
if( frm->is_operand() == NULL || frm->is_operand()->_predicate == NULL ) {
lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident);
}
}
// Chain from input _user_defined_operand_type_,
lst = (ChainList *)_AD._chainRules[result];
if (lst == NULL) {
lst = new ChainList();
_AD._chainRules.Insert(result, lst);
}
if (!lst->search(instr->_matrule->_lChild->_opType)) {
const char *cost = instr->cost();
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
}
// It is safe to chain from the top-level user-defined operand even
// if it has a predicate, since the predicate is checked before
// the user-defined type is available.
lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident);
}
} else {
// May have instruction chain rule if root of right-tree is an ideal
OperandForm *rightOp = _globalNames[right->_opType]->is_operand();
if( rightOp ) {
const Form *rightRoot = _globalNames[rightOp->_matrule->_opType];
if( rightRoot && rightRoot->ideal_only() ) {
const char *chain_op = NULL;
if( rightRoot->is_instruction() )
chain_op = rightOp->_ident;
if( chain_op ) {
// Look-up the operation in chain rule table
ChainList *lst = (ChainList *)_AD._chainRules[chain_op];
if (lst == NULL) {
lst = new ChainList();
_AD._chainRules.Insert(chain_op, lst);
}
// if (!lst->search(instr->_matrule->_lChild->_opType)) {
const char *cost = instr->cost();
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
}
// This chains from a top-level operand whose predicate, if any,
// has been checked.
lst->insert(instr->_matrule->_lChild->_opType,cost,instr->_ident);
// }
}
}
}
} // end chain rule from right-tree's ideal root
}
}
}
//------------------------------oper_parse-------------------------------------
void ADLParser::oper_parse(void) {
char *ident;
OperandForm *oper;
AttributeForm *attr;
MatchRule *rule;
// First get the name of the operand
skipws();
if( (ident = get_unique_ident(_globalNames,"operand")) == NULL )
return;
oper = new OperandForm(ident); // Create new operand form
oper->_linenum = linenum();
_globalNames.Insert(ident, oper); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Operand Form %s\n", ident);
// Get the component operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in operand definition\n");
return;
}
else get_oplist(oper->_parameters, oper->_localNames); // Parse the component operand list
skipws();
// Check for block delimiter
if ((_curchar != '%') || (*(_ptr+1) != '{')) { // If not open block
parse_err(SYNERR, "missing '%%{' in operand definition\n");
return;
}
next_char(); next_char(); // Skip over "%{" symbol
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
if (!strcmp(ident, "predicate")) oper->_predicate = pred_parse();
else if (!strcmp(ident, "match")) {
// Find the end of the match rule list
rule = oper->_matrule;
if (rule) {
while (rule->_next) rule = rule->_next;
// Add the new match rule to the list
rule->_next = match_parse(oper->_localNames);
if (rule->_next) {
rule->_next->_result = oper->_ident;
}
}
else {
// This is first match rule encountered
oper->_matrule = match_parse(oper->_localNames);
if (oper->_matrule) {
oper->_matrule->_result = oper->_ident;
}
}
}
else if (!strcmp(ident, "encode")) oper->_interface = interface_parse();
else if (!strcmp(ident, "ins_encode")) {
parse_err(SYNERR, "Operands specify 'encode', not 'ins_encode'\n");
}
else if (!strcmp(ident, "opcode")) {
parse_err(SYNERR, "Operands do not specify an opcode\n");
}
else if (!strcmp(ident, "effect")) {
parse_err(SYNERR, "Operands do not specify an effect\n");
}
else if (!strcmp(ident, "expand")) {
parse_err(SYNERR, "Operands do not specify an expand\n");
}
else if (!strcmp(ident, "rewrite")) {
parse_err(SYNERR, "Operands do not specify a rewrite\n");
}
else if (!strcmp(ident, "constraint"))oper->_constraint= constraint_parse();
else if (!strcmp(ident, "construct")) oper->_construct = construct_parse();
else if (!strcmp(ident, "format")) oper->_format = format_parse();
else if (!strcmp(ident, "interface")) oper->_interface = interface_parse();
// Check identifier to see if it is the name of an attribute
else if (((attr = _globalNames[ident]->is_attribute()) != NULL) &&
(attr->_atype == OP_ATTR)) oper->_attribs = attr_parse(ident);
else {
parse_err(SYNERR, "expected one of - constraint, predicate, match, encode, format, construct, or the name of a defined operand attribute at %s\n", ident);
}
skipws();
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing '%%}' in operand definition\n");
return;
}
// Add operand to tail of operand list
_AD.addForm(oper);
}
//------------------------------opclass_parse----------------------------------
// Operand Classes are a block with a comma delimited list of operand names
void ADLParser::opclass_parse(void) {
char *ident;
OpClassForm *opc;
OperandForm *opForm;
// First get the name of the operand class
skipws();
if( (ident = get_unique_ident(_globalNames,"opclass")) == NULL )
return;
opc = new OpClassForm(ident); // Create new operand class form
_globalNames.Insert(ident, opc); // Add name to the name table
// Debugging Stuff
if (_AD._adl_debug > 1)
fprintf(stderr,"Parsing Operand Class Form %s\n", ident);
// Get the list of operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing '(' in operand definition\n");
return;
}
do {
next_char(); // Skip past open paren or comma
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
// Check identifier to see if it is the name of an operand
const Form *form = _globalNames[ident];
opForm = form ? form->is_operand() : NULL;
if ( opForm ) {
opc->_oplst.addName(ident); // Add operand to opclass list
opForm->_classes.addName(opc->_ident);// Add opclass to operand list
}
else {
parse_err(SYNERR, "expected name of a defined operand at %s\n", ident);
}
skipws(); // skip trailing whitespace
} while (_curchar == ','); // Check for the comma
// Check for closing ')'
if (_curchar != ')') {
parse_err(SYNERR, "missing ')' or ',' in opclass definition\n");
return;
}
next_char(); // Consume the ')'
skipws();
// Check for closing ';'
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in opclass definition\n");
return;
}
next_char(); // Consume the ';'
// Add operand to tail of operand list
_AD.addForm(opc);
}
//------------------------------ins_attr_parse---------------------------------
void ADLParser::ins_attr_parse(void) {
char *ident;
char *aexpr;
AttributeForm *attrib;
// get name for the instruction attribute
skipws(); // Skip leading whitespace
if( (ident = get_unique_ident(_globalNames,"inst_attrib")) == NULL )
return;
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Ins_Attribute Form %s\n", ident);
// Get default value of the instruction attribute
skipws(); // Skip whitespace
if ((aexpr = get_paren_expr("attribute default expression string")) == NULL) {
parse_err(SYNERR, "missing '(' in ins_attrib definition\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Attribute Expression: %s\n", aexpr);
// Check for terminator
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in ins_attrib definition\n");
return;
}
next_char(); // Advance past the ';'
// Construct the attribute, record global name, and store in ArchDesc
attrib = new AttributeForm(ident, INS_ATTR, aexpr);
_globalNames.Insert(ident, attrib); // Add name to the name table
_AD.addForm(attrib);
}
//------------------------------op_attr_parse----------------------------------
void ADLParser::op_attr_parse(void) {
char *ident;
char *aexpr;
AttributeForm *attrib;
// get name for the operand attribute
skipws(); // Skip leading whitespace
if( (ident = get_unique_ident(_globalNames,"op_attrib")) == NULL )
return;
// Debugging Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Parsing Op_Attribute Form %s\n", ident);
// Get default value of the instruction attribute
skipws(); // Skip whitespace
if ((aexpr = get_paren_expr("attribute default expression string")) == NULL) {
parse_err(SYNERR, "missing '(' in op_attrib definition\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Attribute Expression: %s\n", aexpr);
// Check for terminator
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' in op_attrib definition\n");
return;
}
next_char(); // Advance past the ';'
// Construct the attribute, record global name, and store in ArchDesc
attrib = new AttributeForm(ident, OP_ATTR, aexpr);
_globalNames.Insert(ident, attrib);
_AD.addForm(attrib);
}
//------------------------------definitions_parse-----------------------------------
void ADLParser::definitions_parse(void) {
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
// Process each definition until finding closing string "%}"
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside definitions block.\n");
return;
}
if (strcmp(token,"int_def")==0) { int_def_parse(); }
// if (strcmp(token,"str_def")==0) { str_def_parse(); }
skipws();
}
}
else {
parse_err(SYNERR, "Missing %%{ ... %%} block after definitions keyword.\n");
return;
}
}
//------------------------------int_def_parse----------------------------------
// Parse Example:
// int_def MEMORY_REF_COST ( 200, DEFAULT_COST * 2);
// <keyword> <name> ( <int_value>, <description> );
//
void ADLParser::int_def_parse(void) {
char *name = NULL; // Name of definition
char *value = NULL; // its value,
int int_value = -1; // positive values only
char *description = NULL; // textual description
// Get definition name
skipws(); // Skip whitespace
name = get_ident();
if (name == NULL) {
parse_err(SYNERR, "missing definition name after int_def\n");
return;
}
// Check for value of int_def dname( integer_value [, string_expression ] )
skipws();
if (_curchar == '(') {
// Parse the integer value.
next_char();
value = get_ident();
if (value == NULL) {
parse_err(SYNERR, "missing value in int_def\n");
return;
}
if( !is_int_token(value, int_value) ) {
parse_err(SYNERR, "value in int_def is not recognized as integer\n");
return;
}
skipws();
// Check for description
if (_curchar == ',') {
next_char(); // skip ','
description = get_expr("int_def description", ")");
if (description == NULL) {
parse_err(SYNERR, "invalid or missing description in int_def\n");
return;
}
trim(description);
}
if (_curchar != ')') {
parse_err(SYNERR, "missing ')' in register definition statement\n");
return;
}
next_char();
}
// Check for closing ';'
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing ';' after int_def\n");
return;
}
next_char(); // move past ';'
// Debug Stuff
if (_AD._adl_debug > 1) {
fprintf(stderr,"int_def: %s ( %s, %s )\n", name,
(value), (description ? description : ""));
}
// Record new definition.
Expr *expr = new Expr(name, description, int_value, int_value);
const Expr *old_expr = _AD.globalDefs().define(name, expr);
if (old_expr != NULL) {
parse_err(SYNERR, "Duplicate definition\n");
return;
}
return;
}
//------------------------------source_parse-----------------------------------
void ADLParser::source_parse(void) {
SourceForm *source; // Encode class for instruction/operand
char *rule = NULL; // String representation of encode rule
skipws(); // Skip leading whitespace
if ( (rule = find_cpp_block("source block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'source'.\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Source Form: %s\n", rule);
source = new SourceForm(rule); // Build new Source object
_AD.addForm(source);
// skipws();
}
//------------------------------source_hpp_parse-------------------------------
// Parse a source_hpp %{ ... %} block.
// The code gets stuck into the ad_<arch>.hpp file.
// If the source_hpp block appears before the register block in the AD
// file, it goes up at the very top of the ad_<arch>.hpp file, so that
// it can be used by register encodings, etc. Otherwise, it goes towards
// the bottom, where it's useful as a global definition to *.cpp files.
void ADLParser::source_hpp_parse(void) {
char *rule = NULL; // String representation of encode rule
skipws(); // Skip leading whitespace
if ( (rule = find_cpp_block("source_hpp block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'source_hpp'.\n");
return;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Header Form: %s\n", rule);
if (_AD.get_registers() == NULL) {
// Very early in the file, before reg_defs, we collect pre-headers.
PreHeaderForm* pre_header = new PreHeaderForm(rule);
_AD.addForm(pre_header);
} else {
// Normally, we collect header info, placed at the bottom of the hpp file.
HeaderForm* header = new HeaderForm(rule);
_AD.addForm(header);
}
}
//------------------------------reg_parse--------------------------------------
void ADLParser::reg_parse(void) {
RegisterForm *regBlock = _AD.get_registers(); // Information about registers encoding
if (regBlock == NULL) {
// Create the RegisterForm for the architecture description.
regBlock = new RegisterForm(); // Build new Source object
_AD.addForm(regBlock);
}
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside register block.\n");
return;
}
if (strcmp(token,"reg_def")==0) { reg_def_parse(); }
else if (strcmp(token,"reg_class")==0) { reg_class_parse(); }
else if (strcmp(token, "reg_class_dynamic") == 0) { reg_class_dynamic_parse(); }
else if (strcmp(token,"alloc_class")==0) { alloc_class_parse(); }
else if (strcmp(token,"#define")==0) { preproc_define(); }
else { parse_err(SYNERR, "bad token %s inside register block.\n", token); break; }
skipws();
}
}
else {
parse_err(SYNERR, "Missing %c{ ... %c} block after register keyword.\n",'%','%');
return;
}
}
//------------------------------encode_parse-----------------------------------
void ADLParser::encode_parse(void) {
EncodeForm *encBlock; // Information about instruction/operand encoding
_AD.getForm(&encBlock);
if ( encBlock == NULL) {
// Create the EncodeForm for the architecture description.
encBlock = new EncodeForm(); // Build new Source object
_AD.addForm(encBlock);
}
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside encoding block.\n");
return;
}
if (strcmp(token,"enc_class")==0) { enc_class_parse(); }
skipws();
}
}
else {
parse_err(SYNERR, "Missing %c{ ... %c} block after encode keyword.\n",'%','%');
return;
}
}
//------------------------------enc_class_parse--------------------------------
void ADLParser::enc_class_parse(void) {
char *ec_name; // Name of encoding class being defined
// Get encoding class name
skipws(); // Skip whitespace
ec_name = get_ident();
if (ec_name == NULL) {
parse_err(SYNERR, "missing encoding class name after encode.\n");
return;
}
EncClass *encoding = _AD._encode->add_EncClass(ec_name);
encoding->_linenum = linenum();
skipws(); // Skip leading whitespace
// Check for optional parameter list
if (_curchar == '(') {
do {
char *pType = NULL; // parameter type
char *pName = NULL; // parameter name
next_char(); // skip open paren & comma characters
skipws();
if (_curchar == ')') break;
// Get parameter type
pType = get_ident();
if (pType == NULL) {
parse_err(SYNERR, "parameter type expected at %c\n", _curchar);
return;
}
skipws();
// Get parameter name
pName = get_ident();
if (pName == NULL) {
parse_err(SYNERR, "parameter name expected at %c\n", _curchar);
return;
}
// Record parameter type and name
encoding->add_parameter( pType, pName );
skipws();
} while(_curchar == ',');
if (_curchar != ')') parse_err(SYNERR, "missing ')'\n");
else {
next_char(); // Skip ')'
}
} // Done with parameter list
skipws();
// Check for block starting delimiters
if ((_curchar != '%') || (*(_ptr+1) != '{')) { // If not open block
parse_err(SYNERR, "missing '%c{' in enc_class definition\n", '%');
return;
}
next_char(); // Skip '%'
next_char(); // Skip '{'
enc_class_parse_block(encoding, ec_name);
}
void ADLParser::enc_class_parse_block(EncClass* encoding, char* ec_name) {
skipws_no_preproc(); // Skip leading whitespace
// Prepend location descriptor, for debugging; cf. ADLParser::find_cpp_block
if (_AD._adlocation_debug) {
encoding->add_code(get_line_string());
}
// Collect the parts of the encode description
// (1) strings that are passed through to output
// (2) replacement/substitution variable, preceded by a '$'
while ( (_curchar != '%') && (*(_ptr+1) != '}') ) {
// (1)
// Check if there is a string to pass through to output
char *start = _ptr; // Record start of the next string
while ((_curchar != '$') && ((_curchar != '%') || (*(_ptr+1) != '}')) ) {
// If at the start of a comment, skip past it
if( (_curchar == '/') && ((*(_ptr+1) == '/') || (*(_ptr+1) == '*')) ) {
skipws_no_preproc();
} else {
// ELSE advance to the next character, or start of the next line
next_char_or_line();
}
}
// If a string was found, terminate it and record in EncClass
if ( start != _ptr ) {
*_ptr = '\0'; // Terminate the string
encoding->add_code(start);
}
// (2)
// If we are at a replacement variable,
// copy it and record in EncClass
if (_curchar == '$') {
// Found replacement Variable
char* rep_var = get_rep_var_ident_dup();
// Add flag to _strings list indicating we should check _rep_vars
encoding->add_rep_var(rep_var);
}
} // end while part of format description
next_char(); // Skip '%'
next_char(); // Skip '}'
skipws();
if (_AD._adlocation_debug) {
encoding->add_code(end_line_marker());
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"EncodingClass Form: %s\n", ec_name);
}
//------------------------------frame_parse-----------------------------------
void ADLParser::frame_parse(void) {
FrameForm *frame; // Information about stack-frame layout
char *desc = NULL; // String representation of frame
skipws(); // Skip leading whitespace
frame = new FrameForm(); // Build new Frame object
// Check for open block sequence
skipws(); // Skip leading whitespace
if (_curchar == '%' && *(_ptr+1) == '{') {
next_char(); next_char(); // Skip "%{"
skipws();
while (_curchar != '%' && *(_ptr+1) != '}') {
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing identifier inside frame block.\n");
return;
}
if (strcmp(token,"sync_stack_slots")==0) {
sync_stack_slots_parse(frame);
}
if (strcmp(token,"frame_pointer")==0) {
frame_pointer_parse(frame, false);
}
if (strcmp(token,"interpreter_frame_pointer")==0) {
interpreter_frame_pointer_parse(frame, false);
}
if (strcmp(token,"inline_cache_reg")==0) {
inline_cache_parse(frame, false);
}
if (strcmp(token,"compiler_method_oop_reg")==0) {
parse_err(WARN, "Using obsolete Token, compiler_method_oop_reg");
skipws();
}
if (strcmp(token,"interpreter_method_oop_reg")==0) {
parse_err(WARN, "Using obsolete Token, interpreter_method_oop_reg");
skipws();
}
if (strcmp(token,"interpreter_method_reg")==0) {
parse_err(WARN, "Using obsolete Token, interpreter_method_reg");
skipws();
}
if (strcmp(token,"cisc_spilling_operand_name")==0) {
cisc_spilling_operand_name_parse(frame, false);
}
if (strcmp(token,"stack_alignment")==0) {
stack_alignment_parse(frame);
}
if (strcmp(token,"return_addr")==0) {
return_addr_parse(frame, false);
}
if (strcmp(token,"in_preserve_stack_slots")==0) {
parse_err(WARN, "Using obsolete token, in_preserve_stack_slots");
skipws();
}
if (strcmp(token,"out_preserve_stack_slots")==0) {
parse_err(WARN, "Using obsolete token, out_preserve_stack_slots");
skipws();
}
if (strcmp(token,"varargs_C_out_slots_killed")==0) {
frame->_varargs_C_out_slots_killed = parse_one_arg("varargs C out slots killed");
}
if (strcmp(token,"calling_convention")==0) {
parse_err(WARN, "Using obsolete token, calling_convention");
skipws();
}
if (strcmp(token,"return_value")==0) {
frame->_return_value = return_value_parse();
}
if (strcmp(token,"c_frame_pointer")==0) {
frame_pointer_parse(frame, true);
}
if (strcmp(token,"c_return_addr")==0) {
return_addr_parse(frame, true);
}
if (strcmp(token,"c_calling_convention")==0) {
parse_err(WARN, "Using obsolete token, c_calling_convention");
skipws();
}
if (strcmp(token,"c_return_value")==0) {
frame->_c_return_value = return_value_parse();
}
skipws();
}
}
else {
parse_err(SYNERR, "Missing %c{ ... %c} block after encode keyword.\n",'%','%');
return;
}
// All Java versions are required, native versions are optional
if(frame->_frame_pointer == NULL) {
parse_err(SYNERR, "missing frame pointer definition in frame section.\n");
return;
}
// !!!!! !!!!!
// if(frame->_interpreter_frame_ptr_reg == NULL) {
// parse_err(SYNERR, "missing interpreter frame pointer definition in frame section.\n");
// return;
// }
if(frame->_alignment == NULL) {
parse_err(SYNERR, "missing alignment definition in frame section.\n");
return;
}
if(frame->_return_addr == NULL) {
parse_err(SYNERR, "missing return address location in frame section.\n");
return;
}
if(frame->_varargs_C_out_slots_killed == NULL) {
parse_err(SYNERR, "missing varargs C out slots killed definition in frame section.\n");
return;
}
if(frame->_return_value == NULL) {
parse_err(SYNERR, "missing return value definition in frame section.\n");
return;
}
// Fill natives in identically with the Java versions if not present.
if(frame->_c_frame_pointer == NULL) {
frame->_c_frame_pointer = frame->_frame_pointer;
}
if(frame->_c_return_addr == NULL) {
frame->_c_return_addr = frame->_return_addr;
frame->_c_return_addr_loc = frame->_return_addr_loc;
}
if(frame->_c_return_value == NULL) {
frame->_c_return_value = frame->_return_value;
}
// Debug Stuff
if (_AD._adl_debug > 1) fprintf(stderr,"Frame Form: %s\n", desc);
// Create the EncodeForm for the architecture description.
_AD.addForm(frame);
// skipws();
}
//------------------------------sync_stack_slots_parse-------------------------
void ADLParser::sync_stack_slots_parse(FrameForm *frame) {
// Assign value into frame form
frame->_sync_stack_slots = parse_one_arg("sync stack slots entry");
}
//------------------------------frame_pointer_parse----------------------------
void ADLParser::frame_pointer_parse(FrameForm *frame, bool native) {
char *frame_pointer = parse_one_arg("frame pointer entry");
// Assign value into frame form
if (native) { frame->_c_frame_pointer = frame_pointer; }
else { frame->_frame_pointer = frame_pointer; }
}
//------------------------------interpreter_frame_pointer_parse----------------------------
void ADLParser::interpreter_frame_pointer_parse(FrameForm *frame, bool native) {
frame->_interpreter_frame_pointer_reg = parse_one_arg("interpreter frame pointer entry");
}
//------------------------------inline_cache_parse-----------------------------
void ADLParser::inline_cache_parse(FrameForm *frame, bool native) {
frame->_inline_cache_reg = parse_one_arg("inline cache reg entry");
}
//------------------------------cisc_spilling_operand_parse---------------------
void ADLParser::cisc_spilling_operand_name_parse(FrameForm *frame, bool native) {
frame->_cisc_spilling_operand_name = parse_one_arg("cisc spilling operand name");
}
//------------------------------stack_alignment_parse--------------------------
void ADLParser::stack_alignment_parse(FrameForm *frame) {
char *alignment = parse_one_arg("stack alignment entry");
// Assign value into frame
frame->_alignment = alignment;
}
//------------------------------parse_one_arg-------------------------------
char *ADLParser::parse_one_arg(const char *description) {
char *token = NULL;
if(_curchar == '(') {
next_char();
skipws();
token = get_expr(description, ")");
if (token == NULL) {
parse_err(SYNERR, "missing value inside %s.\n", description);
return NULL;
}
next_char(); // skip the close paren
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in.\n", ';', description);
return NULL;
}
next_char(); // skip the semi-colon
}
else {
parse_err(SYNERR, "Missing %c in.\n", '(', description);
return NULL;
}
trim(token);
return token;
}
//------------------------------return_addr_parse------------------------------
void ADLParser::return_addr_parse(FrameForm *frame, bool native) {
bool in_register = true;
if(_curchar == '(') {
next_char();
skipws();
char *token = get_ident();
if (token == NULL) {
parse_err(SYNERR, "missing value inside return address entry.\n");
return;
}
// check for valid values for stack/register
if (strcmp(token, "REG") == 0) {
in_register = true;
}
else if (strcmp(token, "STACK") == 0) {
in_register = false;
}
else {
parse_err(SYNERR, "invalid value inside return_address entry.\n");
return;
}
if (native) { frame->_c_return_addr_loc = in_register; }
else { frame->_return_addr_loc = in_register; }
// Parse expression that specifies register or stack position
skipws();
char *token2 = get_expr("return address entry", ")");
if (token2 == NULL) {
parse_err(SYNERR, "missing value inside return address entry.\n");
return;
}
next_char(); // skip the close paren
if (native) { frame->_c_return_addr = token2; }
else { frame->_return_addr = token2; }
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in return address entry.\n", ';');
return;
}
next_char(); // skip the semi-colon
}
else {
parse_err(SYNERR, "Missing %c in return_address entry.\n", '(');
}
}
//------------------------------return_value_parse-----------------------------
char *ADLParser::return_value_parse() {
char *desc = NULL; // String representation of return_value
skipws(); // Skip leading whitespace
if ( (desc = find_cpp_block("return value block")) == NULL ) {
parse_err(SYNERR, "incorrect or missing block for 'return_value'.\n");
}
return desc;
}
//------------------------------ins_pipe_parse---------------------------------
void ADLParser::ins_pipe_parse(InstructForm &instr) {
char * ident;
skipws();
if ( _curchar != '(' ) { // Check for delimiter
parse_err(SYNERR, "missing \"(\" in ins_pipe definition\n");
return;
}
next_char();
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
return;
}
skipws();
if ( _curchar != ')' ) { // Check for delimiter
parse_err(SYNERR, "missing \")\" in ins_pipe definition\n");
return;
}
next_char(); // skip the close paren
if(_curchar != ';') { // check for semi-colon
parse_err(SYNERR, "missing %c in return value entry.\n", ';');
return;
}
next_char(); // skip the semi-colon
// Check ident for validity
if (_AD._pipeline && !_AD._pipeline->_classlist.search(ident)) {
parse_err(SYNERR, "\"%s\" is not a valid pipeline class\n", ident);
return;
}
// Add this instruction to the list in the pipeline class
_AD._pipeline->_classdict[ident]->is_pipeclass()->_instructs.addName(instr._ident);
// Set the name of the pipeline class in the instruction
instr._ins_pipe = ident;
return;
}
//------------------------------pipe_parse-------------------------------------
void ADLParser::pipe_parse(void) {
PipelineForm *pipeline; // Encode class for instruction/operand
char * ident;
pipeline = new PipelineForm(); // Build new Source object
_AD.addForm(pipeline);
skipws(); // Skip leading whitespace
// Check for block delimiter
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "missing '%%{' in pipeline definition\n");
return;
}
next_char(); // Maintain the invariant
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at %c\n", _curchar);
continue;
}
if (!strcmp(ident, "resources" )) resource_parse(*pipeline);
else if (!strcmp(ident, "pipe_desc" )) pipe_desc_parse(*pipeline);
else if (!strcmp(ident, "pipe_class")) pipe_class_parse(*pipeline);
else if (!strcmp(ident, "define")) {
skipws();
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "expected '%%{'\n");
return;
}
next_char(); skipws();
char *node_class = get_ident();
if (node_class == NULL) {
parse_err(SYNERR, "expected identifier, found \"%c\"\n", _curchar);
return;
}
skipws();
if (_curchar != ',' && _curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
char *pipe_class = get_ident();
if (pipe_class == NULL) {
parse_err(SYNERR, "expected identifier, found \"%c\"\n", _curchar);
return;
}
if (_curchar != ';' ) {
parse_err(SYNERR, "expected `;`, found '%c'\n", _curchar);
break;
}
next_char(); // Skip over semi-colon
skipws();
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '}')) ) {
parse_err(SYNERR, "expected '%%}', found \"%c\"\n", _curchar);
}
next_char();
// Check ident for validity
if (_AD._pipeline && !_AD._pipeline->_classlist.search(pipe_class)) {
parse_err(SYNERR, "\"%s\" is not a valid pipeline class\n", pipe_class);
return;
}
// Add this machine node to the list in the pipeline class
_AD._pipeline->_classdict[pipe_class]->is_pipeclass()->_instructs.addName(node_class);
MachNodeForm *machnode = new MachNodeForm(node_class); // Create new machnode form
machnode->_machnode_pipe = pipe_class;
_AD.addForm(machnode);
}
else if (!strcmp(ident, "attributes")) {
bool vsi_seen = false;
skipws();
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "expected '%%{'\n");
return;
}
next_char(); skipws();
while (_curchar != '%') {
ident = get_ident();
if (ident == NULL)
break;
if (!strcmp(ident, "variable_size_instructions")) {
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
pipeline->_variableSizeInstrs = true;
vsi_seen = true;
continue;
}
if (!strcmp(ident, "fixed_size_instructions")) {
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
pipeline->_variableSizeInstrs = false;
vsi_seen = true;
continue;
}
if (!strcmp(ident, "branch_has_delay_slot")) {
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
pipeline->_branchHasDelaySlot = true;
continue;
}
if (!strcmp(ident, "max_instructions_per_bundle")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`\n");
break;
}
next_char(); skipws();
pipeline->_maxInstrsPerBundle = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "max_bundles_per_cycle")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`\n");
break;
}
next_char(); skipws();
pipeline->_maxBundlesPerCycle = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "instruction_unit_size")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_instrUnitSize = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "bundle_unit_size")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_bundleUnitSize = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "instruction_fetch_unit_size")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_instrFetchUnitSize = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "instruction_fetch_units")) {
skipws();
if (_curchar != '=') {
parse_err(SYNERR, "expected `=`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
pipeline->_instrFetchUnits = get_int();
skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
if (!strcmp(ident, "nops")) {
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "expected `(`, found '%c'\n", _curchar);
break;
}
next_char(); skipws();
while (_curchar != ')') {
ident = get_ident();
if (ident == NULL) {
parse_err(SYNERR, "expected identifier for nop instruction, found '%c'\n", _curchar);
break;
}
pipeline->_noplist.addName(ident);
pipeline->_nopcnt++;
skipws();
if (_curchar == ',') {
next_char(); skipws();
}
}
next_char(); skipws();
if (_curchar == ';') {
next_char(); skipws();
}
continue;
}
parse_err(SYNERR, "unknown specifier \"%s\"\n", ident);
}
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '}')) ) {
parse_err(SYNERR, "expected '%%}', found \"%c\"\n", _curchar);
}
next_char(); skipws();
if (pipeline->_maxInstrsPerBundle == 0)
parse_err(SYNERR, "\"max_instructions_per_bundle\" unspecified\n");
if (pipeline->_instrUnitSize == 0 && pipeline->_bundleUnitSize == 0)
parse_err(SYNERR, "\"instruction_unit_size\" and \"bundle_unit_size\" unspecified\n");
if (pipeline->_instrFetchUnitSize == 0)
parse_err(SYNERR, "\"instruction_fetch_unit_size\" unspecified\n");
if (pipeline->_instrFetchUnits == 0)
parse_err(SYNERR, "\"instruction_fetch_units\" unspecified\n");
if (!vsi_seen)
parse_err(SYNERR, "\"variable_size_instruction\" or \"fixed_size_instruction\" unspecified\n");
}
else { // Done with statically defined parts of instruction definition
parse_err(SYNERR, "expected one of \"resources\", \"pipe_desc\", \"pipe_class\", found \"%s\"\n", ident);
return;
}
skipws();
if (_curchar == ';')
skipws();
} while(_curchar != '%');
next_char();
if (_curchar != '}') {
parse_err(SYNERR, "missing \"%%}\" in pipeline definition\n");
return;
}
next_char();
}
//------------------------------resource_parse----------------------------
void ADLParser::resource_parse(PipelineForm &pipeline) {
ResourceForm *resource;
char * ident;
char * expr;
unsigned mask;
pipeline._rescount = 0;
skipws(); // Skip leading whitespace
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in resource definition\n");
return;
}
do {
next_char(); // Skip "(" or ","
ident = get_ident(); // Grab next identifier
if (_AD._adl_debug > 1) {
if (ident != NULL) {
fprintf(stderr, "resource_parse: identifier: %s\n", ident);
}
}
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
skipws();
if (_curchar != '=') {
mask = (1 << pipeline._rescount++);
}
else {
next_char(); skipws();
expr = get_ident(); // Grab next identifier
if (expr == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
resource = (ResourceForm *) pipeline._resdict[expr];
if (resource == NULL) {
parse_err(SYNERR, "resource \"%s\" is not defined\n", expr);
return;
}
mask = resource->mask();
skipws();
while (_curchar == '|') {
next_char(); skipws();
expr = get_ident(); // Grab next identifier
if (expr == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
resource = (ResourceForm *) pipeline._resdict[expr]; // Look up the value
if (resource == NULL) {
parse_err(SYNERR, "resource \"%s\" is not defined\n", expr);
return;
}
mask |= resource->mask();
skipws();
}
}
resource = new ResourceForm(mask);
pipeline._resdict.Insert(ident, resource);
pipeline._reslist.addName(ident);
} while (_curchar == ',');
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
return;
}
next_char(); // Skip ")"
if (_curchar == ';')
next_char(); // Skip ";"
}
//------------------------------resource_parse----------------------------
void ADLParser::pipe_desc_parse(PipelineForm &pipeline) {
char * ident;
skipws(); // Skip leading whitespace
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in pipe_desc definition\n");
return;
}
do {
next_char(); // Skip "(" or ","
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
// Add the name to the list
pipeline._stages.addName(ident);
pipeline._stagecnt++;
skipws();
} while (_curchar == ',');
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
return;
}
next_char(); // Skip ")"
if (_curchar == ';')
next_char(); // Skip ";"
}
//------------------------------pipe_class_parse--------------------------
void ADLParser::pipe_class_parse(PipelineForm &pipeline) {
PipeClassForm *pipe_class;
char * ident;
char * stage;
char * read_or_write;
int is_write;
int is_read;
OperandForm *oper;
skipws(); // Skip leading whitespace
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
return;
}
// Create a record for the pipe_class
pipe_class = new PipeClassForm(ident, ++pipeline._classcnt);
pipeline._classdict.Insert(ident, pipe_class);
pipeline._classlist.addName(ident);
// Then get the operands
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in pipe_class definition\n");
}
// Parse the operand list
else get_oplist(pipe_class->_parameters, pipe_class->_localNames);
skipws(); // Skip leading whitespace
// Check for block delimiter
if ( (_curchar != '%')
|| ( next_char(), (_curchar != '{')) ) {
parse_err(SYNERR, "missing \"%%{\" in pipe_class definition\n");
return;
}
next_char();
do {
ident = get_ident(); // Grab next identifier
if (ident == NULL) {
parse_err(SYNERR, "keyword identifier expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (!strcmp(ident, "fixed_latency")) {
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "missing \"(\" in latency definition\n");
return;
}
next_char(); skipws();
if( !isdigit(_curchar) ) {
parse_err(SYNERR, "number expected for \"%c\" in latency definition\n", _curchar);
return;
}
int fixed_latency = get_int();
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "missing \")\" in latency definition\n");
return;
}
next_char(); skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setFixedLatency(fixed_latency);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "zero_instructions") ||
!strcmp(ident, "no_instructions")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(0);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "one_instruction_with_delay_slot") ||
!strcmp(ident, "single_instruction_with_delay_slot")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(1);
pipe_class->setBranchDelay(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "one_instruction") ||
!strcmp(ident, "single_instruction")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(1);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "instructions_in_first_bundle") ||
!strcmp(ident, "instruction_count")) {
skipws();
int number_of_instructions = 1;
if (_curchar != '(') {
parse_err(SYNERR, "\"(\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
number_of_instructions = get_int();
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" in latency definition\n");
return;
}
pipe_class->setInstructionCount(number_of_instructions);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "multiple_bundles")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after multiple bundles\n");
return;
}
pipe_class->setMultipleBundles(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "has_delay_slot")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after \"has_delay_slot\"\n");
return;
}
pipe_class->setBranchDelay(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "force_serialization")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after \"force_serialization\"\n");
return;
}
pipe_class->setForceSerialization(true);
next_char(); skipws();
continue;
}
if (!strcmp(ident, "may_have_no_code")) {
skipws();
if (_curchar != ';') {
parse_err(SYNERR, "missing \";\" after \"may_have_no_code\"\n");
return;
}
pipe_class->setMayHaveNoCode(true);
next_char(); skipws();
continue;
}
const Form *parm = pipe_class->_localNames[ident];
if (parm != NULL) {
oper = parm->is_operand();
if (oper == NULL && !parm->is_opclass()) {
parse_err(SYNERR, "operand name expected at %s\n", ident);
continue;
}
if (_curchar != ':') {
parse_err(SYNERR, "\":\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
stage = get_ident();
if (stage == NULL) {
parse_err(SYNERR, "pipeline stage identifier expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (_curchar != '(') {
parse_err(SYNERR, "\"(\" expected at \"%c\"\n", _curchar);
continue;
}
next_char();
read_or_write = get_ident();
if (read_or_write == NULL) {
parse_err(SYNERR, "\"read\" or \"write\" expected at \"%c\"\n", _curchar);
continue;
}
is_read = strcmp(read_or_write, "read") == 0;
is_write = strcmp(read_or_write, "write") == 0;
if (!is_read && !is_write) {
parse_err(SYNERR, "\"read\" or \"write\" expected at \"%c\"\n", _curchar);
continue;
}
skipws();
if (_curchar != ')') {
parse_err(SYNERR, "\")\" expected at \"%c\"\n", _curchar);
continue;
}
next_char(); skipws();
int more_instrs = 0;
if (_curchar == '+') {
next_char(); skipws();
if (_curchar < '0' || _curchar > '9') {
parse_err(SYNERR, " expected at \"%c\"\n", _curchar);
continue;
}
while (_curchar >= '0' && _curchar <= '9') {
more_instrs *= 10;
more_instrs += _curchar - '0';
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.377 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|