/*
* Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2017, 2020 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "cds/metaspaceShared.hpp"
#include "code/codeCache.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/gcConfig.hpp"
#include "gc/shared/gcLogPrecious.hpp"
#include "jvm.h"
#include "logging/logConfiguration.hpp"
#include "memory/metaspace.hpp"
#include "memory/metaspaceUtils.hpp"
#include "memory/resourceArea.inline.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.hpp"
#include "prims/whitebox.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/flags/jvmFlag.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/javaThread.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/osThread.hpp"
#include "runtime/safefetch.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/stackFrameStream.inline.hpp"
#include "runtime/threads.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/vmThread.hpp"
#include "runtime/vmOperations.hpp"
#include "runtime/vm_version.hpp"
#include "services/memTracker.hpp"
#include "utilities/debug.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_JFR
#include "jfr/jfr.hpp"
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmci.hpp"
#endif
#ifndef PRODUCT
#include <signal.h>
#endif // PRODUCT
bool VMError::coredump_status;
char VMError::coredump_message[O_BUFLEN];
int VMError::_current_step;
const char* VMError::_current_step_info;
volatile jlong VMError::_reporting_start_time = -1;
volatile bool VMError::_reporting_did_timeout = false;
volatile jlong VMError::_step_start_time = -1;
volatile bool VMError::_step_did_timeout = false;
volatile intptr_t VMError::_first_error_tid = -1;
int VMError::_id;
const char* VMError::_message;
char VMError::_detail_msg[1024];
Thread* VMError::_thread;
address VMError::_pc;
void* VMError::_siginfo;
void* VMError::_context;
bool VMError::_print_native_stack_used = false;
const char* VMError::_filename;
int VMError::_lineno;
size_t VMError::_size;
// List of environment variables that should be reported in error log file.
static const char* env_list[] = {
// All platforms
"JAVA_HOME", "JAVA_TOOL_OPTIONS", "_JAVA_OPTIONS", "CLASSPATH",
"PATH", "USERNAME",
// Env variables that are defined on Linux/BSD
"LD_LIBRARY_PATH", "LD_PRELOAD", "SHELL", "DISPLAY",
"HOSTTYPE", "OSTYPE", "ARCH", "MACHTYPE",
"LANG", "LC_ALL", "LC_CTYPE", "LC_NUMERIC", "LC_TIME",
"TERM", "TMPDIR", "TZ",
// defined on AIX
"LIBPATH", "LDR_PRELOAD", "LDR_PRELOAD64",
// defined on Linux/AIX/BSD
"_JAVA_SR_SIGNUM",
// defined on Darwin
"DYLD_LIBRARY_PATH", "DYLD_FALLBACK_LIBRARY_PATH",
"DYLD_FRAMEWORK_PATH", "DYLD_FALLBACK_FRAMEWORK_PATH",
"DYLD_INSERT_LIBRARIES",
// defined on Windows
"OS", "PROCESSOR_IDENTIFIER", "_ALT_JAVA_HOME_DIR", "TMP", "TEMP",
(const char *)0
};
// A simple parser for -XX:OnError, usage:
// ptr = OnError;
// while ((cmd = next_OnError_command(buffer, sizeof(buffer), &ptr) != NULL)
// ... ...
static char* next_OnError_command(char* buf, int buflen, const char** ptr) {
if (ptr == NULL || *ptr == NULL) return NULL;
const char* cmd = *ptr;
// skip leading blanks or ';'
while (*cmd == ' ' || *cmd == ';') cmd++;
if (*cmd == '\0') return NULL;
const char * cmdend = cmd;
while (*cmdend != '\0' && *cmdend != ';') cmdend++;
Arguments::copy_expand_pid(cmd, cmdend - cmd, buf, buflen);
*ptr = (*cmdend == '\0' ? cmdend : cmdend + 1);
return buf;
}
static void print_bug_submit_message(outputStream *out, Thread *thread) {
if (out == NULL) return;
const char *url = Arguments::java_vendor_url_bug();
if (url == NULL || *url == '\0')
url = JDK_Version::runtime_vendor_vm_bug_url();
if (url != NULL && *url != '\0') {
out->print_raw_cr("# If you would like to submit a bug report, please visit:");
out->print_raw ("# ");
out->print_raw_cr(url);
}
// If the crash is in native code, encourage user to submit a bug to the
// provider of that code.
if (thread && thread->is_Java_thread() &&
!thread->is_hidden_from_external_view()) {
if (JavaThread::cast(thread)->thread_state() == _thread_in_native) {
out->print_cr("# The crash happened outside the Java Virtual Machine in native code.\n# See problematic frame for where to report the bug.");
}
}
out->print_raw_cr("#");
}
void VMError::record_coredump_status(const char* message, bool status) {
coredump_status = status;
strncpy(coredump_message, message, sizeof(coredump_message));
coredump_message[sizeof(coredump_message)-1] = 0;
}
// Return a string to describe the error
char* VMError::error_string(char* buf, int buflen) {
char signame_buf[64];
const char *signame = os::exception_name(_id, signame_buf, sizeof(signame_buf));
if (signame) {
jio_snprintf(buf, buflen,
"%s (0x%x) at pc=" PTR_FORMAT ", pid=%d, tid=" UINTX_FORMAT,
signame, _id, _pc,
os::current_process_id(), os::current_thread_id());
} else if (_filename != NULL && _lineno > 0) {
// skip directory names
int n = jio_snprintf(buf, buflen,
"Internal Error at %s:%d, pid=%d, tid=" UINTX_FORMAT,
get_filename_only(), _lineno,
os::current_process_id(), os::current_thread_id());
if (n >= 0 && n < buflen && _message) {
if (strlen(_detail_msg) > 0) {
jio_snprintf(buf + n, buflen - n, "%s%s: %s",
os::line_separator(), _message, _detail_msg);
} else {
jio_snprintf(buf + n, buflen - n, "%sError: %s",
os::line_separator(), _message);
}
}
} else {
jio_snprintf(buf, buflen,
"Internal Error (0x%x), pid=%d, tid=" UINTX_FORMAT,
_id, os::current_process_id(), os::current_thread_id());
}
return buf;
}
void VMError::print_stack_trace(outputStream* st, JavaThread* jt,
char* buf, int buflen, bool verbose) {
#ifdef ZERO
if (jt->zero_stack()->sp() && jt->top_zero_frame()) {
// StackFrameStream uses the frame anchor, which may not have
// been set up. This can be done at any time in Zero, however,
// so if it hasn't been set up then we just set it up now and
// clear it again when we're done.
bool has_last_Java_frame = jt->has_last_Java_frame();
if (!has_last_Java_frame)
jt->set_last_Java_frame();
st->print("Java frames:");
st->cr();
// Print the frames
StackFrameStream sfs(jt, true /* update */, true /* process_frames */);
for(int i = 0; !sfs.is_done(); sfs.next(), i++) {
sfs.current()->zero_print_on_error(i, st, buf, buflen);
st->cr();
}
// Reset the frame anchor if necessary
if (!has_last_Java_frame)
jt->reset_last_Java_frame();
}
#else
if (jt->has_last_Java_frame()) {
st->print_cr("Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)");
for (StackFrameStream sfs(jt, true /* update */, true /* process_frames */); !sfs.is_done(); sfs.next()) {
sfs.current()->print_on_error(st, buf, buflen, verbose);
st->cr();
}
}
#endif // ZERO
}
/**
* Adds `value` to `list` iff it's not already present and there is sufficient
* capacity (i.e. length(list) < `list_capacity`). The length of the list
* is the index of the first nullptr entry or `list_capacity` if there are
* no nullptr entries.
*
* @ return true if the value was added, false otherwise
*/
static bool add_if_absent(address value, address* list, int list_capacity) {
for (int i = 0; i < list_capacity; i++) {
if (list[i] == value) {
return false;
}
if (list[i] == nullptr) {
list[i] = value;
if (i + 1 < list_capacity) {
list[i + 1] = nullptr;
}
return true;
}
}
return false;
}
/**
* Prints the VM generated code unit, if any, containing `pc` if it has not already
* been printed. If the code unit is an InterpreterCodelet or StubCodeDesc, it is
* only printed if `is_crash_pc` is true.
*
* @param printed array of code units that have already been printed (delimited by NULL entry)
* @param printed_capacity the capacity of `printed`
* @return true if the code unit was printed, false otherwise
*/
static bool print_code(outputStream* st, Thread* thread, address pc, bool is_crash_pc,
address* printed, int printed_capacity) {
if (Interpreter::contains(pc)) {
if (is_crash_pc) {
// The interpreter CodeBlob is very large so try to print the codelet instead.
InterpreterCodelet* codelet = Interpreter::codelet_containing(pc);
if (codelet != nullptr) {
if (add_if_absent((address) codelet, printed, printed_capacity)) {
codelet->print_on(st);
Disassembler::decode(codelet->code_begin(), codelet->code_end(), st);
return true;
}
}
}
} else {
StubCodeDesc* desc = StubCodeDesc::desc_for(pc);
if (desc != nullptr) {
if (is_crash_pc) {
if (add_if_absent((address) desc, printed, printed_capacity)) {
desc->print_on(st);
Disassembler::decode(desc->begin(), desc->end(), st);
return true;
}
}
} else if (thread != nullptr) {
CodeBlob* cb = CodeCache::find_blob(pc);
if (cb != nullptr && add_if_absent((address) cb, printed, printed_capacity)) {
// Disassembling nmethod will incur resource memory allocation,
// only do so when thread is valid.
ResourceMark rm(thread);
Disassembler::decode(cb, st);
st->cr();
return true;
}
}
}
return false;
}
/**
* Gets the caller frame of `fr`.
*
* @returns an invalid frame (i.e. fr.pc() === 0) if the caller cannot be obtained
*/
static frame next_frame(frame fr, Thread* t) {
// Compiled code may use EBP register on x86 so it looks like
// non-walkable C frame. Use frame.sender() for java frames.
frame invalid;
if (t != nullptr && t->is_Java_thread()) {
// Catch very first native frame by using stack address.
// For JavaThread stack_base and stack_size should be set.
if (!t->is_in_full_stack((address)(fr.real_fp() + 1))) {
return invalid;
}
if (fr.is_java_frame() || fr.is_native_frame() || fr.is_runtime_frame()) {
RegisterMap map(JavaThread::cast(t),
RegisterMap::UpdateMap::skip,
RegisterMap::ProcessFrames::include,
RegisterMap::WalkContinuation::skip); // No update
return fr.sender(&map);
} else {
// is_first_C_frame() does only simple checks for frame pointer,
// it will pass if java compiled code has a pointer in EBP.
if (os::is_first_C_frame(&fr)) return invalid;
return os::get_sender_for_C_frame(&fr);
}
} else {
if (os::is_first_C_frame(&fr)) return invalid;
return os::get_sender_for_C_frame(&fr);
}
}
void VMError::print_native_stack(outputStream* st, frame fr, Thread* t, bool print_source_info, int max_frames, char* buf, int buf_size) {
// see if it's a valid frame
if (fr.pc()) {
st->print_cr("Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)");
const int limit = max_frames == -1 ? StackPrintLimit : MIN2(max_frames, (int)StackPrintLimit);
int count = 0;
while (count++ < limit) {
fr.print_on_error(st, buf, buf_size);
if (fr.pc()) { // print source file and line, if available
char filename[128];
int line_no;
if (count == 1 && _lineno != 0) {
// We have source information of the first frame for internal errors. There is no need to parse it from the symbols.
st->print(" (%s:%d)", get_filename_only(), _lineno);
} else if (print_source_info &&
Decoder::get_source_info(fr.pc(), filename, sizeof(filename), &line_no, count != 1)) {
st->print(" (%s:%d)", filename, line_no);
}
}
st->cr();
fr = next_frame(fr, t);
if (fr.pc() == nullptr) {
break;
}
}
if (count > limit) {
st->print_cr("......");
}
}
}
static void print_oom_reasons(outputStream* st) {
st->print_cr("# Possible reasons:");
st->print_cr("# The system is out of physical RAM or swap space");
if (UseCompressedOops) {
st->print_cr("# The process is running with CompressedOops enabled, and the Java Heap may be blocking the growth of the native heap");
}
if (LogBytesPerWord == 2) {
st->print_cr("# In 32 bit mode, the process size limit was hit");
}
st->print_cr("# Possible solutions:");
st->print_cr("# Reduce memory load on the system");
st->print_cr("# Increase physical memory or swap space");
st->print_cr("# Check if swap backing store is full");
if (LogBytesPerWord == 2) {
st->print_cr("# Use 64 bit Java on a 64 bit OS");
}
st->print_cr("# Decrease Java heap size (-Xmx/-Xms)");
st->print_cr("# Decrease number of Java threads");
st->print_cr("# Decrease Java thread stack sizes (-Xss)");
st->print_cr("# Set larger code cache with -XX:ReservedCodeCacheSize=");
if (UseCompressedOops) {
switch (CompressedOops::mode()) {
case CompressedOops::UnscaledNarrowOop:
st->print_cr("# JVM is running with Unscaled Compressed Oops mode in which the Java heap is");
st->print_cr("# placed in the first 4GB address space. The Java Heap base address is the");
st->print_cr("# maximum limit for the native heap growth. Please use -XX:HeapBaseMinAddress");
st->print_cr("# to set the Java Heap base and to place the Java Heap above 4GB virtual address.");
break;
case CompressedOops::ZeroBasedNarrowOop:
st->print_cr("# JVM is running with Zero Based Compressed Oops mode in which the Java heap is");
st->print_cr("# placed in the first 32GB address space. The Java Heap base address is the");
st->print_cr("# maximum limit for the native heap growth. Please use -XX:HeapBaseMinAddress");
st->print_cr("# to set the Java Heap base and to place the Java Heap above 32GB virtual address.");
break;
default:
break;
}
}
st->print_cr("# This output file may be truncated or incomplete.");
}
static void report_vm_version(outputStream* st, char* buf, int buflen) {
// VM version
st->print_cr("#");
JDK_Version::current().to_string(buf, buflen);
const char* runtime_name = JDK_Version::runtime_name() != NULL ?
JDK_Version::runtime_name() : "";
const char* runtime_version = JDK_Version::runtime_version() != NULL ?
JDK_Version::runtime_version() : "";
const char* vendor_version = JDK_Version::runtime_vendor_version() != NULL ?
JDK_Version::runtime_vendor_version() : "";
const char* jdk_debug_level = VM_Version::printable_jdk_debug_level() != NULL ?
VM_Version::printable_jdk_debug_level() : "";
st->print_cr("# JRE version: %s%s%s (%s) (%sbuild %s)", runtime_name,
(*vendor_version != '\0') ? " " : "", vendor_version,
buf, jdk_debug_level, runtime_version);
// This is the long version with some default settings added
st->print_cr("# Java VM: %s%s%s (%s%s, %s%s%s%s%s%s, %s, %s)",
VM_Version::vm_name(),
(*vendor_version != '\0') ? " " : "", vendor_version,
jdk_debug_level,
VM_Version::vm_release(),
VM_Version::vm_info_string(),
TieredCompilation ? ", tiered" : "",
#if INCLUDE_JVMCI
EnableJVMCI ? ", jvmci" : "",
UseJVMCICompiler ? ", jvmci compiler" : "",
#else
"", "",
#endif
UseCompressedOops ? ", compressed oops" : "",
UseCompressedClassPointers ? ", compressed class ptrs" : "",
GCConfig::hs_err_name(),
VM_Version::vm_platform_string()
);
}
// Returns true if at least one thread reported a fatal error and fatal error handling is in process.
bool VMError::is_error_reported() {
return _first_error_tid != -1;
}
// Returns true if the current thread reported a fatal error.
bool VMError::is_error_reported_in_current_thread() {
return _first_error_tid == os::current_thread_id();
}
// Helper, return current timestamp for timeout handling.
jlong VMError::get_current_timestamp() {
return os::javaTimeNanos();
}
// Factor to translate the timestamp to seconds.
#define TIMESTAMP_TO_SECONDS_FACTOR (1000 * 1000 * 1000)
void VMError::record_reporting_start_time() {
const jlong now = get_current_timestamp();
Atomic::store(&_reporting_start_time, now);
}
jlong VMError::get_reporting_start_time() {
return Atomic::load(&_reporting_start_time);
}
void VMError::record_step_start_time() {
const jlong now = get_current_timestamp();
Atomic::store(&_step_start_time, now);
}
jlong VMError::get_step_start_time() {
return Atomic::load(&_step_start_time);
}
void VMError::clear_step_start_time() {
return Atomic::store(&_step_start_time, (jlong)0);
}
// This is the main function to report a fatal error. Only one thread can
// call this function, so we don't need to worry about MT-safety. But it's
// possible that the error handler itself may crash or die on an internal
// error, for example, when the stack/heap is badly damaged. We must be
// able to handle recursive errors that happen inside error handler.
//
// Error reporting is done in several steps. If a crash or internal error
// occurred when reporting an error, the nested signal/exception handler
// can skip steps that are already (or partially) done. Error reporting will
// continue from the next step. This allows us to retrieve and print
// information that may be unsafe to get after a fatal error. If it happens,
// you may find nested report_and_die() frames when you look at the stack
// in a debugger.
//
// In general, a hang in error handler is much worse than a crash or internal
// error, as it's harder to recover from a hang. Deadlock can happen if we
// try to grab a lock that is already owned by current thread, or if the
// owner is blocked forever (e.g. in os::infinite_sleep()). If possible, the
// error handler and all the functions it called should avoid grabbing any
// lock. An important thing to notice is that memory allocation needs a lock.
//
// We should avoid using large stack allocated buffers. Many errors happen
// when stack space is already low. Making things even worse is that there
// could be nested report_and_die() calls on stack (see above). Only one
// thread can report error, so large buffers are statically allocated in data
// segment.
void VMError::report(outputStream* st, bool _verbose) {
# define BEGIN \
if (_current_step == 0) { \
_current_step = __LINE__; \
{
// [Begin logic]
# define STEP_IF(s,cond) \
} \
} \
if (_current_step < __LINE__) { \
_current_step = __LINE__; \
_current_step_info = s; \
record_step_start_time(); \
_step_did_timeout = false; \
if ((cond)) {
// [Step logic]
# define STEP(s) STEP_IF(s, true)
# define END \
} \
clear_step_start_time(); \
}
// don't allocate large buffer on stack
static char buf[O_BUFLEN];
static bool print_native_stack_succeeded = false;
BEGIN
STEP("printing fatal error message")
st->print_cr("#");
if (should_report_bug(_id)) {
st->print_cr("# A fatal error has been detected by the Java Runtime Environment:");
} else {
st->print_cr("# There is insufficient memory for the Java "
"Runtime Environment to continue.");
}
#ifdef ASSERT
// Error handler self tests
// Meaning of codes passed through in the tests.
#define TEST_SECONDARY_CRASH 14
#define TEST_RESOURCE_MARK_CRASH 2
// test secondary error handling. Test it twice, to test that resetting
// error handler after a secondary crash works.
STEP_IF("test secondary crash 1", _verbose && TestCrashInErrorHandler == TEST_SECONDARY_CRASH)
st->print_cr("Will crash now (TestCrashInErrorHandler=%u)...",
TestCrashInErrorHandler);
controlled_crash(TestCrashInErrorHandler);
STEP_IF("test secondary crash 2", _verbose && TestCrashInErrorHandler == TEST_SECONDARY_CRASH)
st->print_cr("Will crash now (TestCrashInErrorHandler=%u)...",
TestCrashInErrorHandler);
controlled_crash(TestCrashInErrorHandler);
STEP_IF("test missing ResourceMark does not crash",
_verbose && TestCrashInErrorHandler == TEST_RESOURCE_MARK_CRASH)
stringStream message;
message.print("This is a message with no ResourceMark");
tty->print_cr("%s", message.as_string());
// TestUnresponsiveErrorHandler: We want to test both step timeouts and global timeout.
// Step to global timeout ratio is 4:1, so in order to be absolutely sure we hit the
// global timeout, let's execute the timeout step five times.
// See corresponding test in test/runtime/ErrorHandling/TimeoutInErrorHandlingTest.java
STEP_IF("setup for test unresponsive error reporting step",
_verbose && TestUnresponsiveErrorHandler)
// We record reporting_start_time for this test here because we
// care about the time spent executing TIMEOUT_TEST_STEP and not
// about the time it took us to get here.
tty->print_cr("Recording reporting_start_time for TestUnresponsiveErrorHandler.");
record_reporting_start_time();
#define TIMEOUT_TEST_STEP STEP_IF("test unresponsive error reporting step", \
_verbose && TestUnresponsiveErrorHandler) \
os::infinite_sleep();
TIMEOUT_TEST_STEP
TIMEOUT_TEST_STEP
TIMEOUT_TEST_STEP
TIMEOUT_TEST_STEP
TIMEOUT_TEST_STEP
STEP_IF("test safefetch in error handler", _verbose && TestSafeFetchInErrorHandler)
// test whether it is safe to use SafeFetch32 in Crash Handler. Test twice
// to test that resetting the signal handler works correctly.
st->print_cr("Will test SafeFetch...");
int* const invalid_pointer = (int*)segfault_address;
const int x = 0x76543210;
int i1 = SafeFetch32(invalid_pointer, x);
int i2 = SafeFetch32(invalid_pointer, x);
if (i1 == x && i2 == x) {
st->print_cr("SafeFetch OK."); // Correctly deflected and returned default pattern
} else {
st->print_cr("??");
}
#endif // ASSERT
STEP("printing type of error")
switch(static_cast<unsigned int>(_id)) {
case OOM_MALLOC_ERROR:
case OOM_MMAP_ERROR:
case OOM_MPROTECT_ERROR:
if (_size) {
st->print("# Native memory allocation ");
st->print((_id == (int)OOM_MALLOC_ERROR) ? "(malloc) failed to allocate " :
(_id == (int)OOM_MMAP_ERROR) ? "(mmap) failed to map " :
"(mprotect) failed to protect ");
jio_snprintf(buf, sizeof(buf), SIZE_FORMAT, _size);
st->print("%s", buf);
st->print(" bytes");
if (strlen(_detail_msg) > 0) {
st->print(" for ");
st->print("%s", _detail_msg);
}
st->cr();
} else {
if (strlen(_detail_msg) > 0) {
st->print("# ");
st->print_cr("%s", _detail_msg);
}
}
// In error file give some solutions
if (_verbose) {
print_oom_reasons(st);
} else {
return; // that's enough for the screen
}
break;
case INTERNAL_ERROR:
default:
break;
}
STEP("printing exception/signal name")
st->print_cr("#");
st->print("# ");
// Is it an OS exception/signal?
if (os::exception_name(_id, buf, sizeof(buf))) {
st->print("%s", buf);
st->print(" (0x%x)", _id); // signal number
st->print(" at pc=" PTR_FORMAT, p2i(_pc));
if (_siginfo != NULL && os::signal_sent_by_kill(_siginfo)) {
st->print(" (sent by kill)");
}
} else {
if (should_report_bug(_id)) {
st->print("Internal Error");
} else {
st->print("Out of Memory Error");
}
if (_filename != NULL && _lineno > 0) {
#ifdef PRODUCT
// In product mode chop off pathname
const char *file = get_filename_only();
#else
const char *file = _filename;
#endif
st->print(" (%s:%d)", file, _lineno);
} else {
st->print(" (0x%x)", _id);
}
}
STEP("printing current thread and pid")
// process id, thread id
st->print(", pid=%d", os::current_process_id());
st->print(", tid=" UINTX_FORMAT, os::current_thread_id());
st->cr();
STEP_IF("printing error message", should_report_bug(_id)) // already printed the message.
// error message
if (strlen(_detail_msg) > 0) {
st->print_cr("# %s: %s", _message ? _message : "Error", _detail_msg);
} else if (_message) {
st->print_cr("# Error: %s", _message);
}
STEP("printing Java version string")
report_vm_version(st, buf, sizeof(buf));
STEP_IF("printing problematic frame", _context != nullptr)
// Print current frame if we have a context (i.e. it's a crash)
st->print_cr("# Problematic frame:");
st->print("# ");
frame fr = os::fetch_frame_from_context(_context);
fr.print_on_error(st, buf, sizeof(buf));
st->cr();
st->print_cr("#");
STEP("printing core file information")
st->print("# ");
if (CreateCoredumpOnCrash) {
if (coredump_status) {
st->print("Core dump will be written. Default location: %s", coredump_message);
} else {
st->print("No core dump will be written. %s", coredump_message);
}
} else {
st->print("CreateCoredumpOnCrash turned off, no core file dumped");
}
st->cr();
st->print_cr("#");
JFR_ONLY(STEP("printing jfr information"))
JFR_ONLY(Jfr::on_vm_error_report(st);)
STEP_IF("printing bug submit message", should_submit_bug_report(_id) && _verbose)
print_bug_submit_message(st, _thread);
STEP_IF("printing summary", _verbose)
st->cr();
st->print_cr("--------------- S U M M A R Y ------------");
st->cr();
STEP_IF("printing VM option summary", _verbose)
// VM options
Arguments::print_summary_on(st);
st->cr();
STEP_IF("printing summary machine and OS info", _verbose)
os::print_summary_info(st, buf, sizeof(buf));
STEP_IF("printing date and time", _verbose)
os::print_date_and_time(st, buf, sizeof(buf));
STEP_IF("printing thread", _verbose)
st->cr();
st->print_cr("--------------- T H R E A D ---------------");
st->cr();
STEP_IF("printing current thread", _verbose)
// current thread
if (_thread) {
st->print("Current thread (" PTR_FORMAT "): ", p2i(_thread));
_thread->print_on_error(st, buf, sizeof(buf));
st->cr();
} else {
st->print_cr("Current thread is native thread");
}
st->cr();
STEP_IF("printing current compile task",
_verbose && _thread != nullptr && _thread->is_Compiler_thread())
CompilerThread* t = (CompilerThread*)_thread;
if (t->task()) {
st->cr();
st->print_cr("Current CompileTask:");
t->task()->print_line_on_error(st, buf, sizeof(buf));
st->cr();
}
STEP_IF("printing stack bounds", _verbose)
st->print("Stack: ");
address stack_top;
size_t stack_size;
if (_thread) {
stack_top = _thread->stack_base();
stack_size = _thread->stack_size();
} else {
stack_top = os::current_stack_base();
stack_size = os::current_stack_size();
}
address stack_bottom = stack_top - stack_size;
st->print("[" PTR_FORMAT "," PTR_FORMAT "]", p2i(stack_bottom), p2i(stack_top));
frame fr = _context ? os::fetch_frame_from_context(_context)
: os::current_frame();
if (fr.sp()) {
st->print(", sp=" PTR_FORMAT, p2i(fr.sp()));
size_t free_stack_size = pointer_delta(fr.sp(), stack_bottom, 1024);
st->print(", free space=" SIZE_FORMAT "k", free_stack_size);
}
st->cr();
STEP_IF("printing native stack (with source info)", _verbose)
if (os::platform_print_native_stack(st, _context, buf, sizeof(buf))) {
// We have printed the native stack in platform-specific code
// Windows/x64 needs special handling.
} else {
frame fr = _context ? os::fetch_frame_from_context(_context)
: os::current_frame();
print_native_stack(st, fr, _thread, true, -1, buf, sizeof(buf));
_print_native_stack_used = true;
}
print_native_stack_succeeded = true;
STEP_IF("retry printing native stack (no source info)", _verbose && !print_native_stack_succeeded)
st->cr();
st->print_cr("Retrying call stack printing without source information...");
frame fr = _context ? os::fetch_frame_from_context(_context) : os::current_frame();
print_native_stack(st, fr, _thread, false, -1, buf, sizeof(buf));
_print_native_stack_used = true;
STEP_IF("printing Java stack", _verbose && _thread && _thread->is_Java_thread())
if (_verbose && _thread && _thread->is_Java_thread()) {
print_stack_trace(st, JavaThread::cast(_thread), buf, sizeof(buf));
}
STEP_IF("printing target Java thread stack",
_verbose && _thread != nullptr && (_thread->is_Named_thread()))
// printing Java thread stack trace if it is involved in GC crash
Thread* thread = ((NamedThread *)_thread)->processed_thread();
if (thread != NULL && thread->is_Java_thread()) {
JavaThread* jt = JavaThread::cast(thread);
st->print_cr("JavaThread " PTR_FORMAT " (nid = %d) was being processed", p2i(jt), jt->osthread()->thread_id());
print_stack_trace(st, jt, buf, sizeof(buf), true);
}
STEP_IF("printing siginfo", _verbose && _siginfo != nullptr)
// signal no, signal code, address that caused the fault
st->cr();
os::print_siginfo(st, _siginfo);
st->cr();
STEP_IF("CDS archive access warning", _verbose && _siginfo != nullptr)
// Print an explicit hint if we crashed on access to the CDS archive.
check_failing_cds_access(st, _siginfo);
st->cr();
STEP_IF("printing registers", _verbose && _context != nullptr)
// printing registers
os::print_context(st, _context);
st->cr();
STEP_IF("printing register info",
_verbose && _context != nullptr && _thread != nullptr && Universe::is_fully_initialized())
// decode register contents if possible
ResourceMark rm(_thread);
os::print_register_info(st, _context);
st->cr();
STEP("printing top of stack, instructions near pc")
STEP_IF("printing top of stack, instructions near pc", _verbose && _context)
// printing top of stack, instructions near pc
os::print_tos_pc(st, _context);
st->cr();
STEP_IF("inspecting top of stack",
_verbose && _context != nullptr && _thread != nullptr && Universe::is_fully_initialized())
// decode stack contents if possible
frame fr = os::fetch_frame_from_context(_context);
const int slots = 8;
const intptr_t *start = fr.sp();
const intptr_t *end = start + slots;
if (is_aligned(start, sizeof(intptr_t)) && os::is_readable_range(start, end)) {
st->print_cr("Stack slot to memory mapping:");
for (int i = 0; i < slots; ++i) {
st->print("stack at sp + %d slots: ", i);
ResourceMark rm(_thread);
os::print_location(st, *(start + i));
}
}
st->cr();
STEP("printing code blobs if possible")
STEP_IF("printing code blobs if possible", _verbose)
const int printed_capacity = max_error_log_print_code;
address printed[printed_capacity];
printed[0] = nullptr;
int printed_len = 0;
// Even though ErrorLogPrintCodeLimit is ranged checked
// during argument parsing, there's no way to prevent it
// subsequently (i.e., after parsing) being set to a
// value outside the range.
int limit = MIN2(ErrorLogPrintCodeLimit, printed_capacity);
if (limit > 0) {
// Scan the native stack
if (!_print_native_stack_used) {
// Only try to print code of the crashing frame since
// the native stack cannot be walked with next_frame.
if (print_code(st, _thread, _pc, true, printed, printed_capacity)) {
printed_len++;
}
} else {
frame fr = _context ? os::fetch_frame_from_context(_context)
: os::current_frame();
while (printed_len < limit && fr.pc() != nullptr) {
if (print_code(st, _thread, fr.pc(), fr.pc() == _pc, printed, printed_capacity)) {
printed_len++;
}
fr = next_frame(fr, _thread);
}
}
// Scan the Java stack
if (_thread != nullptr && _thread->is_Java_thread()) {
JavaThread* jt = JavaThread::cast(_thread);
if (jt->has_last_Java_frame()) {
for (StackFrameStream sfs(jt, true /* update */, true /* process_frames */); printed_len < limit && !sfs.is_done(); sfs.next()) {
address pc = sfs.current()->pc();
if (print_code(st, _thread, pc, pc == _pc, printed, printed_capacity)) {
printed_len++;
}
}
}
}
}
STEP_IF("printing VM operation", _verbose && _thread != nullptr && _thread->is_VM_thread())
VMThread* t = (VMThread*)_thread;
VM_Operation* op = t->vm_operation();
if (op) {
op->print_on_error(st);
st->cr();
st->cr();
}
STEP("printing process")
STEP_IF("printing process", _verbose)
st->cr();
st->print_cr("--------------- P R O C E S S ---------------");
st->cr();
STEP_IF("printing user info", ExtensiveErrorReports && _verbose)
os::print_user_info(st);
STEP_IF("printing all threads", _verbose && _thread)
// all threads
Threads::print_on_error(st, _thread, buf, sizeof(buf));
st->cr();
STEP_IF("printing VM state", _verbose)
// Safepoint state
st->print("VM state: ");
if (SafepointSynchronize::is_synchronizing()) st->print("synchronizing");
else if (SafepointSynchronize::is_at_safepoint()) st->print("at safepoint");
else st->print("not at safepoint");
// Also see if error occurred during initialization or shutdown
if (!Universe::is_fully_initialized()) {
st->print(" (not fully initialized)");
} else if (VM_Exit::vm_exited()) {
st->print(" (shutting down)");
} else {
st->print(" (normal execution)");
}
st->cr();
st->cr();
STEP_IF("printing owned locks on error", _verbose)
// mutexes/monitors that currently have an owner
print_owned_locks_on_error(st);
st->cr();
STEP_IF("printing number of OutOfMemoryError and StackOverflow exceptions",
_verbose && Exceptions::has_exception_counts())
st->print_cr("OutOfMemory and StackOverflow Exception counts:");
Exceptions::print_exception_counts_on_error(st);
st->cr();
#ifdef _LP64
STEP_IF("printing compressed oops mode", _verbose && UseCompressedOops)
CompressedOops::print_mode(st);
st->cr();
STEP_IF("printing compressed klass pointers mode", _verbose && UseCompressedClassPointers)
CDS_ONLY(MetaspaceShared::print_on(st);)
Metaspace::print_compressed_class_space(st);
CompressedKlassPointers::print_mode(st);
st->cr();
#endif
STEP_IF("printing heap information", _verbose)
GCLogPrecious::print_on_error(st);
if (Universe::heap() != NULL) {
Universe::heap()->print_on_error(st);
st->cr();
}
if (Universe::is_fully_initialized()) {
st->print_cr("Polling page: " PTR_FORMAT, p2i(SafepointMechanism::get_polling_page()));
st->cr();
}
STEP_IF("printing metaspace information", _verbose && Universe::is_fully_initialized())
st->print_cr("Metaspace:");
MetaspaceUtils::print_basic_report(st, 0);
STEP_IF("printing code cache information", _verbose && Universe::is_fully_initialized())
// print code cache information before vm abort
CodeCache::print_summary(st);
st->cr();
STEP_IF("printing ring buffers", _verbose)
Events::print_all(st);
st->cr();
STEP_IF("printing dynamic libraries", _verbose)
// dynamic libraries, or memory map
os::print_dll_info(st);
st->cr();
STEP_IF("printing native decoder state", _verbose)
Decoder::print_state_on(st);
st->cr();
STEP_IF("printing VM options", _verbose)
// VM options
Arguments::print_on(st);
st->cr();
STEP_IF("printing flags", _verbose)
JVMFlag::printFlags(
st,
true, // with comments
false, // no ranges
true); // skip defaults
st->cr();
STEP_IF("printing warning if internal testing API used", WhiteBox::used())
st->print_cr("Unsupported internal testing APIs have been used.");
st->cr();
STEP_IF("printing log configuration", _verbose)
st->print_cr("Logging:");
LogConfiguration::describe_current_configuration(st);
st->cr();
STEP_IF("printing all environment variables", _verbose)
os::print_environment_variables(st, env_list);
st->cr();
STEP_IF("printing locale settings", _verbose)
os::print_active_locale(st);
st->cr();
STEP_IF("printing signal handlers", _verbose)
os::print_signal_handlers(st, buf, sizeof(buf));
st->cr();
STEP_IF("Native Memory Tracking", _verbose)
MemTracker::error_report(st);
STEP_IF("printing system", _verbose)
st->cr();
st->print_cr("--------------- S Y S T E M ---------------");
st->cr();
STEP_IF("printing OS information", _verbose)
os::print_os_info(st);
st->cr();
STEP_IF("printing CPU info", _verbose)
os::print_cpu_info(st, buf, sizeof(buf));
st->cr();
STEP_IF("printing memory info", _verbose)
os::print_memory_info(st);
st->cr();
STEP_IF("printing internal vm info", _verbose)
st->print_cr("vm_info: %s", VM_Version::internal_vm_info_string());
st->cr();
// print a defined marker to show that error handling finished correctly.
STEP_IF("printing end marker", _verbose)
st->print_cr("END.");
END
# undef BEGIN
# undef STEP_IF
# undef STEP
# undef END
}
// Report for the vm_info_cmd. This prints out the information above omitting
// crash and thread specific information. If output is added above, it should be added
// here also, if it is safe to call during a running process.
void VMError::print_vm_info(outputStream* st) {
char buf[O_BUFLEN];
report_vm_version(st, buf, sizeof(buf));
// STEP("printing summary")
st->cr();
st->print_cr("--------------- S U M M A R Y ------------");
st->cr();
// STEP("printing VM option summary")
// VM options
Arguments::print_summary_on(st);
st->cr();
// STEP("printing summary machine and OS info")
os::print_summary_info(st, buf, sizeof(buf));
// STEP("printing date and time")
os::print_date_and_time(st, buf, sizeof(buf));
// Skip: STEP("printing thread")
// STEP("printing process")
st->cr();
st->print_cr("--------------- P R O C E S S ---------------");
st->cr();
// STEP("printing number of OutOfMemoryError and StackOverflow exceptions")
if (Exceptions::has_exception_counts()) {
st->print_cr("OutOfMemory and StackOverflow Exception counts:");
Exceptions::print_exception_counts_on_error(st);
st->cr();
}
#ifdef _LP64
// STEP("printing compressed oops mode")
if (UseCompressedOops) {
CompressedOops::print_mode(st);
st->cr();
}
// STEP("printing compressed class ptrs mode")
if (UseCompressedClassPointers) {
CDS_ONLY(MetaspaceShared::print_on(st);)
Metaspace::print_compressed_class_space(st);
CompressedKlassPointers::print_mode(st);
st->cr();
}
#endif
// STEP("printing heap information")
if (Universe::is_fully_initialized()) {
MutexLocker hl(Heap_lock);
GCLogPrecious::print_on_error(st);
Universe::heap()->print_on_error(st);
st->cr();
st->print_cr("Polling page: " PTR_FORMAT, p2i(SafepointMechanism::get_polling_page()));
st->cr();
}
// STEP("printing metaspace information")
if (Universe::is_fully_initialized()) {
st->print_cr("Metaspace:");
MetaspaceUtils::print_basic_report(st, 0);
}
// STEP("printing code cache information")
if (Universe::is_fully_initialized()) {
// print code cache information before vm abort
CodeCache::print_summary(st);
st->cr();
}
// STEP("printing ring buffers")
Events::print_all(st);
st->cr();
// STEP("printing dynamic libraries")
// dynamic libraries, or memory map
os::print_dll_info(st);
st->cr();
// STEP("printing VM options")
// VM options
Arguments::print_on(st);
st->cr();
// STEP("printing warning if internal testing API used")
if (WhiteBox::used()) {
st->print_cr("Unsupported internal testing APIs have been used.");
st->cr();
}
// STEP("printing log configuration")
st->print_cr("Logging:");
LogConfiguration::describe(st);
st->cr();
// STEP("printing all environment variables")
os::print_environment_variables(st, env_list);
st->cr();
// STEP("printing locale settings")
os::print_active_locale(st);
st->cr();
// STEP("printing signal handlers")
os::print_signal_handlers(st, buf, sizeof(buf));
st->cr();
// STEP("Native Memory Tracking")
MemTracker::error_report(st);
// STEP("printing system")
st->cr();
st->print_cr("--------------- S Y S T E M ---------------");
st->cr();
// STEP("printing OS information")
os::print_os_info(st);
st->cr();
// STEP("printing CPU info")
os::print_cpu_info(st, buf, sizeof(buf));
st->cr();
// STEP("printing memory info")
os::print_memory_info(st);
st->cr();
// STEP("printing internal vm info")
st->print_cr("vm_info: %s", VM_Version::internal_vm_info_string());
st->cr();
// print a defined marker to show that error handling finished correctly.
// STEP("printing end marker")
st->print_cr("END.");
}
/** Expand a pattern into a buffer starting at pos and open a file using constructed path */
static int expand_and_open(const char* pattern, bool overwrite_existing, char* buf, size_t buflen, size_t pos) {
int fd = -1;
int mode = O_RDWR | O_CREAT;
if (overwrite_existing) {
mode |= O_TRUNC;
} else {
mode |= O_EXCL;
}
if (Arguments::copy_expand_pid(pattern, strlen(pattern), &buf[pos], buflen - pos)) {
fd = open(buf, mode, 0666);
}
return fd;
}
/**
* Construct file name for a log file and return it's file descriptor.
* Name and location depends on pattern, default_pattern params and access
* permissions.
*/
int VMError::prepare_log_file(const char* pattern, const char* default_pattern, bool overwrite_existing, char* buf, size_t buflen) {
int fd = -1;
// If possible, use specified pattern to construct log file name
if (pattern != NULL) {
fd = expand_and_open(pattern, overwrite_existing, buf, buflen, 0);
}
// Either user didn't specify, or the user's location failed,
// so use the default name in the current directory
if (fd == -1) {
const char* cwd = os::get_current_directory(buf, buflen);
if (cwd != NULL) {
size_t pos = strlen(cwd);
int fsep_len = jio_snprintf(&buf[pos], buflen-pos, "%s", os::file_separator());
pos += fsep_len;
if (fsep_len > 0) {
fd = expand_and_open(default_pattern, overwrite_existing, buf, buflen, pos);
}
}
}
// try temp directory if it exists.
if (fd == -1) {
const char* tmpdir = os::get_temp_directory();
if (tmpdir != NULL && strlen(tmpdir) > 0) {
int pos = jio_snprintf(buf, buflen, "%s%s", tmpdir, os::file_separator());
if (pos > 0) {
fd = expand_and_open(default_pattern, overwrite_existing, buf, buflen, pos);
}
}
}
return fd;
}
void VMError::report_and_die(Thread* thread, unsigned int sig, address pc, void* siginfo,
void* context, const char* detail_fmt, ...)
{
va_list detail_args;
va_start(detail_args, detail_fmt);
report_and_die(sig, NULL, detail_fmt, detail_args, thread, pc, siginfo, context, NULL, 0, 0);
va_end(detail_args);
}
void VMError::report_and_die(Thread* thread, unsigned int sig, address pc, void* siginfo, void* context)
{
report_and_die(thread, sig, pc, siginfo, context, "%s", "");
}
void VMError::report_and_die(Thread* thread, void* context, const char* filename, int lineno, const char* message,
const char* detail_fmt, va_list detail_args)
{
report_and_die(INTERNAL_ERROR, message, detail_fmt, detail_args, thread, NULL, NULL, context, filename, lineno, 0);
}
void VMError::report_and_die(Thread* thread, const char* filename, int lineno, size_t size,
VMErrorType vm_err_type, const char* detail_fmt, va_list detail_args) {
report_and_die(vm_err_type, NULL, detail_fmt, detail_args, thread, NULL, NULL, NULL, filename, lineno, size);
}
void VMError::report_and_die(int id, const char* message, const char* detail_fmt, va_list detail_args,
Thread* thread, address pc, void* siginfo, void* context, const char* filename,
int lineno, size_t size)
{
// A single scratch buffer to be used from here on.
// Do not rely on it being preserved across function calls.
static char buffer[O_BUFLEN];
// File descriptor to tty to print an error summary to.
// Hard wired to stdout; see JDK-8215004 (compatibility concerns).
static const int fd_out = 1; // stdout
// File descriptor to the error log file.
static int fd_log = -1;
#ifdef CAN_SHOW_REGISTERS_ON_ASSERT
// Disarm assertion poison page, since from this point on we do not need this mechanism anymore and it may
// cause problems in error handling during native OOM, see JDK-8227275.
disarm_assert_poison();
#endif
// Use local fdStream objects only. Do not use global instances whose initialization
// relies on dynamic initialization (see JDK-8214975). Do not rely on these instances
// to carry over into recursions or invocations from other threads.
fdStream out(fd_out);
out.set_scratch_buffer(buffer, sizeof(buffer));
// Depending on the re-entrance depth at this point, fd_log may be -1 or point to an open hs-err file.
fdStream log(fd_log);
log.set_scratch_buffer(buffer, sizeof(buffer));
// How many errors occurred in error handler when reporting first_error.
static int recursive_error_count;
// We will first print a brief message to standard out (verbose = false),
// then save detailed information in log file (verbose = true).
static bool out_done = false; // done printing to standard out
static bool log_done = false; // done saving error log
intptr_t mytid = os::current_thread_id();
if (_first_error_tid == -1 &&
Atomic::cmpxchg(&_first_error_tid, (intptr_t)-1, mytid) == -1) {
if (SuppressFatalErrorMessage) {
os::abort(CreateCoredumpOnCrash);
}
// Initialize time stamps to use the same base.
out.time_stamp().update_to(1);
log.time_stamp().update_to(1);
_id = id;
_message = message;
_thread = thread;
_pc = pc;
_siginfo = siginfo;
_context = context;
_filename = filename;
_lineno = lineno;
_size = size;
jio_vsnprintf(_detail_msg, sizeof(_detail_msg), detail_fmt, detail_args);
reporting_started();
if (!TestUnresponsiveErrorHandler) {
// Record reporting_start_time unless we're running the
// TestUnresponsiveErrorHandler test. For that test we record
// reporting_start_time at the beginning of the test.
record_reporting_start_time();
} else {
out.print_raw_cr("Delaying recording reporting_start_time for TestUnresponsiveErrorHandler.");
}
if (ShowMessageBoxOnError || PauseAtExit) {
show_message_box(buffer, sizeof(buffer));
// User has asked JVM to abort. Reset ShowMessageBoxOnError so the
// WatcherThread can kill JVM if the error handler hangs.
ShowMessageBoxOnError = false;
}
os::check_dump_limit(buffer, sizeof(buffer));
// reset signal handlers or exception filter; make sure recursive crashes
// are handled properly.
install_secondary_signal_handler();
} else {
#if defined(_WINDOWS)
// If UseOSErrorReporting we call this for each level of the call stack
// while searching for the exception handler. Only the first level needs
// to be reported.
if (UseOSErrorReporting && log_done) return;
#endif
// This is not the first error, see if it happened in a different thread
// or in the same thread during error reporting.
if (_first_error_tid != mytid) {
if (!SuppressFatalErrorMessage) {
char msgbuf[64];
jio_snprintf(msgbuf, sizeof(msgbuf),
"[thread " INTX_FORMAT " also had an error]",
mytid);
out.print_raw_cr(msgbuf);
}
// Error reporting is not MT-safe, nor can we let the current thread
// proceed, so we block it.
os::infinite_sleep();
} else {
if (recursive_error_count++ > 30) {
if (!SuppressFatalErrorMessage) {
out.print_raw_cr("[Too many errors, abort]");
}
os::die();
}
if (SuppressFatalErrorMessage) {
// If we already hit a secondary error during abort, then calling
// it again is likely to hit another one. But eventually, if we
// don't deadlock somewhere, we will call os::die() above.
os::abort(CreateCoredumpOnCrash);
}
outputStream* const st = log.is_open() ? &log : &out;
st->cr();
// Timeout handling.
if (_step_did_timeout) {
// The current step had a timeout. Lets continue reporting with the next step.
st->print_raw("[timeout occurred during error reporting in step \"");
st->print_raw(_current_step_info);
st->print_cr("\"] after " INT64_FORMAT " s.",
(int64_t)
((get_current_timestamp() - _step_start_time) / TIMESTAMP_TO_SECONDS_FACTOR));
} else if (_reporting_did_timeout) {
// We hit ErrorLogTimeout. Reporting will stop altogether. Let's wrap things
// up, the process is about to be stopped by the WatcherThread.
st->print_cr("------ Timeout during error reporting after " INT64_FORMAT " s. ------",
(int64_t)
((get_current_timestamp() - _reporting_start_time) / TIMESTAMP_TO_SECONDS_FACTOR));
st->flush();
// Watcherthread is about to call os::die. Lets just wait.
os::infinite_sleep();
} else {
// A secondary error happened. Print brief information, but take care, since crashing
// here would just recurse endlessly.
// Any information (signal, context, siginfo etc) printed here should use the function
// arguments, not the information stored in *this, since those describe the primary crash.
static char tmp[256]; // cannot use global scratch buffer
// Note: this string does get parsed by a number of jtreg tests,
// see hotspot/jtreg/runtime/ErrorHandling.
st->print("[error occurred during error reporting (%s), id 0x%x",
_current_step_info, id);
if (os::exception_name(id, tmp, sizeof(tmp))) {
st->print(", %s (0x%x) at pc=" PTR_FORMAT, tmp, id, p2i(pc));
} else {
if (should_report_bug(id)) {
st->print(", Internal Error (%s:%d)",
filename == NULL ? "??" : filename, lineno);
} else {
st->print(", Out of Memory Error (%s:%d)",
filename == NULL ? "??" : filename, lineno);
}
}
st->print_cr("]");
if (ErrorLogSecondaryErrorDetails) {
static bool recursed = false;
if (!recursed) {
recursed = true;
// Print even more information for secondary errors. This may generate a lot of output
// and possibly disturb error reporting, therefore its optional and only available in debug builds.
if (siginfo != nullptr) {
st->print("[");
os::print_siginfo(st, siginfo);
st->print_cr("]");
}
st->print("[stack: ");
frame fr = context ? os::fetch_frame_from_context(context) : os::current_frame();
// Subsequent secondary errors build up stack; to avoid flooding the hs-err file with irrelevant
// call stacks, limit the stack we print here (we are only interested in what happened before the
// last assert/fault).
const int max_stack_size = 15;
print_native_stack(st, fr, _thread, true, max_stack_size, tmp, sizeof(tmp));
st->print_cr("]");
} // !recursed
recursed = false; // Note: reset outside !recursed
}
}
}
}
// Part 1: print an abbreviated version (the '#' section) to stdout.
if (!out_done) {
// Suppress this output if we plan to print Part 2 to stdout too.
// No need to have the "#" section twice.
if (!(ErrorFileToStdout && out.fd() == 1)) {
report(&out, false);
}
out_done = true;
_current_step = 0;
_current_step_info = "";
}
// Part 2: print a full error log file (optionally to stdout or stderr).
// print to error log file
if (!log_done) {
// see if log file is already open
if (!log.is_open()) {
// open log file
if (ErrorFileToStdout) {
fd_log = 1;
} else if (ErrorFileToStderr) {
fd_log = 2;
} else {
fd_log = prepare_log_file(ErrorFile, "hs_err_pid%p.log", true,
buffer, sizeof(buffer));
if (fd_log != -1) {
out.print_raw("# An error report file with more information is saved as:\n# ");
out.print_raw_cr(buffer);
} else {
out.print_raw_cr("# Can not save log file, dump to screen..");
fd_log = 1;
}
}
log.set_fd(fd_log);
}
report(&log, true);
log_done = true;
_current_step = 0;
_current_step_info = "";
if (fd_log > 3) {
::close(fd_log);
fd_log = -1;
}
log.set_fd(-1);
}
JFR_ONLY(Jfr::on_vm_shutdown(true);)
if (PrintNMTStatistics) {
fdStream fds(fd_out);
MemTracker::final_report(&fds);
}
static bool skip_replay = ReplayCompiles && !ReplayReduce; // Do not overwrite file during replay
if (DumpReplayDataOnError && _thread && _thread->is_Compiler_thread() && !skip_replay) {
skip_replay = true;
ciEnv* env = ciEnv::current();
if (env != NULL) {
const bool overwrite = false; // We do not overwrite an existing replay file.
int fd = prepare_log_file(ReplayDataFile, "replay_pid%p.log", overwrite, buffer, sizeof(buffer));
if (fd != -1) {
FILE* replay_data_file = os::fdopen(fd, "w");
if (replay_data_file != NULL) {
fileStream replay_data_stream(replay_data_file, /*need_close=*/true);
env->dump_replay_data_unsafe(&replay_data_stream);
out.print_raw("#\n# Compiler replay data is saved as:\n# ");
out.print_raw_cr(buffer);
} else {
int e = errno;
out.print_raw("#\n# Can't open file to dump replay data. Error: ");
out.print_raw_cr(os::strerror(e));
}
}
}
}
#if INCLUDE_JVMCI
if (JVMCI::fatal_log_filename() != NULL) {
out.print_raw("#\n# The JVMCI shared library error report file is saved as:\n# ");
out.print_raw_cr(JVMCI::fatal_log_filename());
}
#endif
static bool skip_bug_url = !should_submit_bug_report(_id);
if (!skip_bug_url) {
skip_bug_url = true;
out.print_raw_cr("#");
print_bug_submit_message(&out, _thread);
}
static bool skip_OnError = false;
if (!skip_OnError && OnError && OnError[0]) {
skip_OnError = true;
// Flush output and finish logs before running OnError commands.
ostream_abort();
out.print_raw_cr("#");
out.print_raw ("# -XX:OnError=\"");
out.print_raw (OnError);
out.print_raw_cr("\"");
char* cmd;
const char* ptr = OnError;
while ((cmd = next_OnError_command(buffer, sizeof(buffer), &ptr)) != NULL){
out.print_raw ("# Executing ");
#if defined(LINUX) || defined(_ALLBSD_SOURCE)
out.print_raw ("/bin/sh -c ");
#elif defined(_WINDOWS)
out.print_raw ("cmd /C ");
#endif
out.print_raw ("\"");
out.print_raw (cmd);
out.print_raw_cr("\" ...");
if (os::fork_and_exec(cmd) < 0) {
out.print_cr("os::fork_and_exec failed: %s (%s=%d)",
os::strerror(errno), os::errno_name(errno), errno);
}
}
// done with OnError
OnError = NULL;
}
if (WINDOWS_ONLY(!UseOSErrorReporting) NOT_WINDOWS(true)) {
// os::abort() will call abort hooks, try it first.
static bool skip_os_abort = false;
if (!skip_os_abort) {
skip_os_abort = true;
bool dump_core = should_report_bug(_id);
os::abort(dump_core && CreateCoredumpOnCrash, _siginfo, _context);
}
// if os::abort() doesn't abort, try os::die();
os::die();
}
}
/*
* OnOutOfMemoryError scripts/commands executed while VM is a safepoint - this
* ensures utilities such as jmap can observe the process is a consistent state.
*/
class VM_ReportJavaOutOfMemory : public VM_Operation {
private:
const char* _message;
public:
VM_ReportJavaOutOfMemory(const char* message) { _message = message; }
VMOp_Type type() const { return VMOp_ReportJavaOutOfMemory; }
void doit();
};
void VM_ReportJavaOutOfMemory::doit() {
// Don't allocate large buffer on stack
static char buffer[O_BUFLEN];
tty->print_cr("#");
tty->print_cr("# java.lang.OutOfMemoryError: %s", _message);
tty->print_cr("# -XX:OnOutOfMemoryError=\"%s\"", OnOutOfMemoryError);
// make heap parsability
Universe::heap()->ensure_parsability(false); // no need to retire TLABs
char* cmd;
const char* ptr = OnOutOfMemoryError;
while ((cmd = next_OnError_command(buffer, sizeof(buffer), &ptr)) != NULL){
tty->print("# Executing ");
#if defined(LINUX)
tty->print ("/bin/sh -c ");
#endif
tty->print_cr("\"%s\"...", cmd);
if (os::fork_and_exec(cmd) < 0) {
tty->print_cr("os::fork_and_exec failed: %s (%s=%d)",
os::strerror(errno), os::errno_name(errno), errno);
}
}
}
void VMError::report_java_out_of_memory(const char* message) {
if (OnOutOfMemoryError && OnOutOfMemoryError[0]) {
MutexLocker ml(Heap_lock);
VM_ReportJavaOutOfMemory op(message);
VMThread::execute(&op);
}
}
void VMError::show_message_box(char *buf, int buflen) {
bool yes;
do {
error_string(buf, buflen);
yes = os::start_debugging(buf,buflen);
} while (yes);
}
// Timeout handling: check if a timeout happened (either a single step did
// timeout or the whole of error reporting hit ErrorLogTimeout). Interrupt
// the reporting thread if that is the case.
bool VMError::check_timeout() {
if (ErrorLogTimeout == 0) {
return false;
}
// Do not check for timeouts if we still have a message box to show to the
// user or if there are OnError handlers to be run.
if (ShowMessageBoxOnError
|| (OnError != NULL && OnError[0] != '\0')
|| Arguments::abort_hook() != NULL) {
return false;
}
const jlong reporting_start_time_l = get_reporting_start_time();
const jlong now = get_current_timestamp();
// Timestamp is stored in nanos.
if (reporting_start_time_l > 0) {
const jlong end = reporting_start_time_l + (jlong)ErrorLogTimeout * TIMESTAMP_TO_SECONDS_FACTOR;
if (end <= now && !_reporting_did_timeout) {
// We hit ErrorLogTimeout and we haven't interrupted the reporting
// thread yet.
_reporting_did_timeout = true;
interrupt_reporting_thread();
return true; // global timeout
}
}
const jlong step_start_time_l = get_step_start_time();
if (step_start_time_l > 0) {
// A step times out after a quarter of the total timeout. Steps are mostly fast unless they
// hang for some reason, so this simple rule allows for three hanging step and still
// hopefully leaves time enough for the rest of the steps to finish.
const jlong end = step_start_time_l + (jlong)ErrorLogTimeout * TIMESTAMP_TO_SECONDS_FACTOR / 4;
if (end <= now && !_step_did_timeout) {
// The step timed out and we haven't interrupted the reporting
// thread yet.
_step_did_timeout = true;
interrupt_reporting_thread();
return false; // (Not a global timeout)
}
}
return false;
}
#ifdef ASSERT
typedef void (*voidfun_t)();
// Crash with an authentic sigfpe
volatile int sigfpe_int = 0;
static void crash_with_sigfpe() {
// generate a native synchronous SIGFPE where possible;
sigfpe_int = sigfpe_int/sigfpe_int;
// if that did not cause a signal (e.g. on ppc), just
// raise the signal.
#ifndef _WIN32
// OSX implements raise(sig) incorrectly so we need to
// explicitly target the current thread
pthread_kill(pthread_self(), SIGFPE);
#endif
} // end: crash_with_sigfpe
// crash with sigsegv at non-null address.
static void crash_with_segfault() {
int* crash_addr = reinterpret_cast<int*>(VMError::segfault_address);
*crash_addr = 1;
} // end: crash_with_segfault
// crash in a controlled way:
// 1 - assert
// 2 - guarantee
// 14 - SIGSEGV
// 15 - SIGFPE
void VMError::controlled_crash(int how) {
// Case 14 is tested by test/hotspot/jtreg/runtime/ErrorHandling/SafeFetchInErrorHandlingTest.java.
// Case 15 is tested by test/hotspot/jtreg/runtime/ErrorHandling/SecondaryErrorTest.java.
// Case 16 is tested by test/hotspot/jtreg/runtime/ErrorHandling/ThreadsListHandleInErrorHandlingTest.java.
// Case 17 is tested by test/hotspot/jtreg/runtime/ErrorHandling/NestedThreadsListHandleInErrorHandlingTest.java.
// We try to grab Threads_lock to keep ThreadsSMRSupport::print_info_on()
// from racing with Threads::add() or Threads::remove() as we
// generate the hs_err_pid file. This makes our ErrorHandling tests
// more stable.
if (!Threads_lock->owned_by_self()) {
Threads_lock->try_lock();
// The VM is going to die so no need to unlock Thread_lock.
}
switch (how) {
case 1: assert(how == 0, "test assert"); break;
case 2: guarantee(how == 0, "test guarantee"); break;
// The other cases are unused.
case 14: crash_with_segfault(); break;
case 15: crash_with_sigfpe(); break;
case 16: {
ThreadsListHandle tlh;
fatal("Force crash with an active ThreadsListHandle.");
}
case 17: {
ThreadsListHandle tlh;
{
ThreadsListHandle tlh2;
fatal("Force crash with a nested ThreadsListHandle.");
}
}
default:
// If another number is given, give a generic crash.
fatal("Crashing with number %d", how);
}
tty->print_cr("controlled_crash: survived intentional crash. Did you suppress the assert?");
ShouldNotReachHere();
}
#endif // !ASSERT
¤ Dauer der Verarbeitung: 0.75 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|