products/sources/formale Sprachen/Java/openjdk-20-36_src/test/jdk/com/sun/net/httpserver image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Standardization.thy   Sprache: Unknown

(*  Title:      HOL/Proofs/Lambda/Standardization.thy
    Author:     Stefan Berghofer
    Copyright   2005 TU Muenchen
*)


section \<open>Standardization\<close>

theory Standardization
imports NormalForm
begin

text \<open>
Based on lecture notes by Ralph Matthes @{cite "Matthes-ESSLLI2000"},
original proof idea due to Ralph Loader @{cite Loader1998}.
\<close>


subsection \<open>Standard reduction relation\<close>

declare listrel_mono [mono_set]

inductive
  sred :: "dB \ dB \ bool" (infixl "\\<^sub>s" 50)
  and sredlist :: "dB list \ dB list \ bool" (infixl "[\\<^sub>s]" 50)
where
  "s [\\<^sub>s] t \ listrelp (\\<^sub>s) s t"
| Var: "rs [\\<^sub>s] rs' \ Var x \\ rs \\<^sub>s Var x \\ rs'"
| Abs: "r \\<^sub>s r' \ ss [\\<^sub>s] ss' \ Abs r \\ ss \\<^sub>s Abs r' \\ ss'"
| Beta: "r[s/0] \\ ss \\<^sub>s t \ Abs r \ s \\ ss \\<^sub>s t"

lemma refl_listrelp: "\x\set xs. R x x \ listrelp R xs xs"
  by (induct xs) (auto intro: listrelp.intros)

lemma refl_sred: "t \\<^sub>s t"
  by (induct t rule: Apps_dB_induct) (auto intro: refl_listrelp sred.intros)

lemma refl_sreds: "ts [\\<^sub>s] ts"
  by (simp add: refl_sred refl_listrelp)

lemma listrelp_conj1: "listrelp (\x y. R x y \ S x y) x y \ listrelp R x y"
  by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp_conj2: "listrelp (\x y. R x y \ S x y) x y \ listrelp S x y"
  by (erule listrelp.induct) (auto intro: listrelp.intros)

lemma listrelp_app:
  assumes xsys: "listrelp R xs ys"
  shows "listrelp R xs' ys' \ listrelp R (xs @ xs') (ys @ ys')" using xsys
  by (induct arbitrary: xs' ys') (auto intro: listrelp.intros)

lemma lemma1:
  assumes r: "r \\<^sub>s r'" and s: "s \\<^sub>s s'"
  shows "r \ s \\<^sub>s r' \ s'" using r
proof induct
  case (Var rs rs' x)
  then have "rs [\\<^sub>s] rs'" by (rule listrelp_conj1)
  moreover have "[s] [\\<^sub>s] [s']" by (iprover intro: s listrelp.intros)
  ultimately have "rs @ [s] [\\<^sub>s] rs' @ [s']" by (rule listrelp_app)
  hence "Var x \\ (rs @ [s]) \\<^sub>s Var x \\ (rs' @ [s'])" by (rule sred.Var)
  thus ?case by (simp only: app_last)
next
  case (Abs r r' ss ss')
  from Abs(3) have "ss [\\<^sub>s] ss'" by (rule listrelp_conj1)
  moreover have "[s] [\\<^sub>s] [s']" by (iprover intro: s listrelp.intros)
  ultimately have "ss @ [s] [\\<^sub>s] ss' @ [s']" by (rule listrelp_app)
  with \<open>r \<rightarrow>\<^sub>s r'\<close> have "Abs r \<degree>\<degree> (ss @ [s]) \<rightarrow>\<^sub>s Abs r' \<degree>\<degree> (ss' @ [s'])"
    by (rule sred.Abs)
  thus ?case by (simp only: app_last)
next
  case (Beta r u ss t)
  hence "r[u/0] \\ (ss @ [s]) \\<^sub>s t \ s'" by (simp only: app_last)
  hence "Abs r \ u \\ (ss @ [s]) \\<^sub>s t \ s'" by (rule sred.Beta)
  thus ?case by (simp only: app_last)
qed

lemma lemma1':
  assumes ts: "ts [\\<^sub>s] ts'"
  shows "r \\<^sub>s r' \ r \\ ts \\<^sub>s r' \\ ts'" using ts
  by (induct arbitrary: r r') (auto intro: lemma1)

lemma lemma2_1:
  assumes beta: "t \\<^sub>\ u"
  shows "t \\<^sub>s u" using beta
proof induct
  case (beta s t)
  have "Abs s \ t \\ [] \\<^sub>s s[t/0] \\ []" by (iprover intro: sred.Beta refl_sred)
  thus ?case by simp
next
  case (appL s t u)
  thus ?case by (iprover intro: lemma1 refl_sred)
next
  case (appR s t u)
  thus ?case by (iprover intro: lemma1 refl_sred)
next
  case (abs s t)
  hence "Abs s \\ [] \\<^sub>s Abs t \\ []" by (iprover intro: sred.Abs listrelp.Nil)
  thus ?case by simp
qed

lemma listrelp_betas:
  assumes ts: "listrelp (\\<^sub>\\<^sup>*) ts ts'"
  shows "\t t'. t \\<^sub>\\<^sup>* t' \ t \\ ts \\<^sub>\\<^sup>* t' \\ ts'" using ts
  by induct auto

lemma lemma2_2:
  assumes t: "t \\<^sub>s u"
  shows "t \\<^sub>\\<^sup>* u" using t
  by induct (auto dest: listrelp_conj2
    intro: listrelp_betas apps_preserves_beta converse_rtranclp_into_rtranclp)

lemma sred_lift:
  assumes s: "s \\<^sub>s t"
  shows "lift s i \\<^sub>s lift t i" using s
proof (induct arbitrary: i)
  case (Var rs rs' x)
  hence "map (\t. lift t i) rs [\\<^sub>s] map (\t. lift t i) rs'"
    by induct (auto intro: listrelp.intros)
  thus ?case by (cases "x < i") (auto intro: sred.Var)
next
  case (Abs r r' ss ss')
  from Abs(3) have "map (\t. lift t i) ss [\\<^sub>s] map (\t. lift t i) ss'"
    by induct (auto intro: listrelp.intros)
  thus ?case by (auto intro: sred.Abs Abs)
next
  case (Beta r s ss t)
  thus ?case by (auto intro: sred.Beta)
qed

lemma lemma3:
  assumes r: "r \\<^sub>s r'"
  shows "s \\<^sub>s s' \ r[s/x] \\<^sub>s r'[s'/x]" using r
proof (induct arbitrary: s s' x)
  case (Var rs rs' y)
  hence "map (\t. t[s/x]) rs [\\<^sub>s] map (\t. t[s'/x]) rs'"
    by induct (auto intro: listrelp.intros Var)
  moreover have "Var y[s/x] \\<^sub>s Var y[s'/x]"
  proof (cases "y < x")
    case True thus ?thesis by simp (rule refl_sred)
  next
    case False
    thus ?thesis
      by (cases "y = x") (auto simp add: Var intro: refl_sred)
  qed
  ultimately show ?case by simp (rule lemma1')
next
  case (Abs r r' ss ss')
  from Abs(4) have "lift s 0 \\<^sub>s lift s' 0" by (rule sred_lift)
  hence "r[lift s 0/Suc x] \\<^sub>s r'[lift s' 0/Suc x]" by (fast intro: Abs.hyps)
  moreover from Abs(3) have "map (\t. t[s/x]) ss [\\<^sub>s] map (\t. t[s'/x]) ss'"
    by induct (auto intro: listrelp.intros Abs)
  ultimately show ?case by simp (rule sred.Abs)
next
  case (Beta r u ss t)
  thus ?case by (auto simp add: subst_subst intro: sred.Beta)
qed

lemma lemma4_aux:
  assumes rs: "listrelp (\t u. t \\<^sub>s u \ (\r. u \\<^sub>\ r \ t \\<^sub>s r)) rs rs'"
  shows "rs' => ss \ rs [\\<^sub>s] ss" using rs
proof (induct arbitrary: ss)
  case Nil
  thus ?case by cases (auto intro: listrelp.Nil)
next
  case (Cons x y xs ys)
  note Cons' = Cons
  show ?case
  proof (cases ss)
    case Nil with Cons show ?thesis by simp
  next
    case (Cons y' ys')
    hence ss: "ss = y' # ys'" by simp
    from Cons Cons' have "y \\<^sub>\ y' \ ys' = ys \ y' = y \ ys => ys'" by simp
    hence "x # xs [\\<^sub>s] y' # ys'"
    proof
      assume H: "y \\<^sub>\ y' \ ys' = ys"
      with Cons' have "x \\<^sub>s y'" by blast
      moreover from Cons' have "xs [\\<^sub>s] ys" by (iprover dest: listrelp_conj1)
      ultimately have "x # xs [\\<^sub>s] y' # ys" by (rule listrelp.Cons)
      with H show ?thesis by simp
    next
      assume H: "y' = y \ ys => ys'"
      with Cons' have "x \\<^sub>s y'" by blast
      moreover from H have "xs [\\<^sub>s] ys'" by (blast intro: Cons')
      ultimately show ?thesis by (rule listrelp.Cons)
    qed
    with ss show ?thesis by simp
  qed
qed

lemma lemma4:
  assumes r: "r \\<^sub>s r'"
  shows "r' \\<^sub>\ r'' \ r \\<^sub>s r''" using r
proof (induct arbitrary: r'')
  case (Var rs rs' x)
  then obtain ss where rs: "rs' => ss" and r''"r'' = Var x \\ ss"
    by (blast dest: head_Var_reduction)
  from Var(1) rs have "rs [\\<^sub>s] ss" by (rule lemma4_aux)
  hence "Var x \\ rs \\<^sub>s Var x \\ ss" by (rule sred.Var)
  with r'' show ?case by simp
next
  case (Abs r r' ss ss')
  from \<open>Abs r' \<degree>\<degree> ss' \<rightarrow>\<^sub>\<beta> r''\<close> show ?case
  proof
    fix s
    assume r''"r'' = s \\ ss'"
    assume "Abs r' \\<^sub>\ s"
    then obtain r''' where s: "s = Abs r'''" and r''': "r' \\<^sub>\ r'''" by cases auto
    from r''' have "r \\<^sub>s r'''" by (blast intro: Abs)
    moreover from Abs have "ss [\\<^sub>s] ss'" by (iprover dest: listrelp_conj1)
    ultimately have "Abs r \\ ss \\<^sub>s Abs r''' \\ ss'" by (rule sred.Abs)
    with r'' s show "Abs r \\ ss \\<^sub>s r''" by simp
  next
    fix rs'
    assume "ss' => rs'"
    with Abs(3) have "ss [\\<^sub>s] rs'" by (rule lemma4_aux)
    with \<open>r \<rightarrow>\<^sub>s r'\<close> have "Abs r \<degree>\<degree> ss \<rightarrow>\<^sub>s Abs r' \<degree>\<degree> rs'" by (rule sred.Abs)
    moreover assume "r'' = Abs r' \\ rs'"
    ultimately show "Abs r \\ ss \\<^sub>s r''" by simp
  next
    fix t u' us'
    assume "ss' = u' # us'"
    with Abs(3) obtain u us where
      ss: "ss = u # us" and u: "u \\<^sub>s u'" and us: "us [\\<^sub>s] us'"
      by cases (auto dest!: listrelp_conj1)
    have "r[u/0] \\<^sub>s r'[u'/0]" using Abs(1) and u by (rule lemma3)
    with us have "r[u/0] \\ us \\<^sub>s r'[u'/0] \\ us'" by (rule lemma1')
    hence "Abs r \ u \\ us \\<^sub>s r'[u'/0] \\ us'" by (rule sred.Beta)
    moreover assume "Abs r' = Abs t" and "r'' = t[u'/0] \\ us'"
    ultimately show "Abs r \\ ss \\<^sub>s r''" using ss by simp
  qed
next
  case (Beta r s ss t)
  show ?case
    by (rule sred.Beta) (rule Beta)+
qed

lemma rtrancl_beta_sred:
  assumes r: "r \\<^sub>\\<^sup>* r'"
  shows "r \\<^sub>s r'" using r
  by induct (iprover intro: refl_sred lemma4)+


subsection \<open>Leftmost reduction and weakly normalizing terms\<close>

inductive
  lred :: "dB \ dB \ bool" (infixl "\\<^sub>l" 50)
  and lredlist :: "dB list \ dB list \ bool" (infixl "[\\<^sub>l]" 50)
where
  "s [\\<^sub>l] t \ listrelp (\\<^sub>l) s t"
| Var: "rs [\\<^sub>l] rs' \ Var x \\ rs \\<^sub>l Var x \\ rs'"
| Abs: "r \\<^sub>l r' \ Abs r \\<^sub>l Abs r'"
| Beta: "r[s/0] \\ ss \\<^sub>l t \ Abs r \ s \\ ss \\<^sub>l t"

lemma lred_imp_sred:
  assumes lred: "s \\<^sub>l t"
  shows "s \\<^sub>s t" using lred
proof induct
  case (Var rs rs' x)
  then have "rs [\\<^sub>s] rs'"
    by induct (iprover intro: listrelp.intros)+
  then show ?case by (rule sred.Var)
next
  case (Abs r r')
  from \<open>r \<rightarrow>\<^sub>s r'\<close>
  have "Abs r \\ [] \\<^sub>s Abs r' \\ []" using listrelp.Nil
    by (rule sred.Abs)
  then show ?case by simp
next
  case (Beta r s ss t)
  from \<open>r[s/0] \<degree>\<degree> ss \<rightarrow>\<^sub>s t\<close>
  show ?case by (rule sred.Beta)
qed

inductive WN :: "dB => bool"
  where
    Var: "listsp WN rs \ WN (Var n \\ rs)"
  | Lambda: "WN r \ WN (Abs r)"
  | Beta: "WN ((r[s/0]) \\ ss) \ WN ((Abs r \ s) \\ ss)"

lemma listrelp_imp_listsp1:
  assumes H: "listrelp (\x y. P x) xs ys"
  shows "listsp P xs" using H
  by induct auto

lemma listrelp_imp_listsp2:
  assumes H: "listrelp (\x y. P y) xs ys"
  shows "listsp P ys" using H
  by induct auto

lemma lemma5:
  assumes lred: "r \\<^sub>l r'"
  shows "WN r" and "NF r'" using lred
  by induct
    (iprover dest: listrelp_conj1 listrelp_conj2
     listrelp_imp_listsp1 listrelp_imp_listsp2 intro: WN.intros
     NF.intros [simplified listall_listsp_eq])+

lemma lemma6:
  assumes wn: "WN r"
  shows "\r'. r \\<^sub>l r'" using wn
proof induct
  case (Var rs n)
  then have "\rs'. rs [\\<^sub>l] rs'"
    by induct (iprover intro: listrelp.intros)+
  then show ?case by (iprover intro: lred.Var)
qed (iprover intro: lred.intros)+

lemma lemma7:
  assumes r: "r \\<^sub>s r'"
  shows "NF r' \ r \\<^sub>l r'" using r
proof induct
  case (Var rs rs' x)
  from \<open>NF (Var x \<degree>\<degree> rs')\<close> have "listall NF rs'"
    by cases simp_all
  with Var(1) have "rs [\\<^sub>l] rs'"
  proof induct
    case Nil
    show ?case by (rule listrelp.Nil)
  next
    case (Cons x y xs ys)
    hence "x \\<^sub>l y" and "xs [\\<^sub>l] ys" by simp_all
    thus ?case by (rule listrelp.Cons)
  qed
  thus ?case by (rule lred.Var)
next
  case (Abs r r' ss ss')
  from \<open>NF (Abs r' \<degree>\<degree> ss')\<close>
  have ss': "ss' = []" by (rule Abs_NF)
  from Abs(3) have ss: "ss = []" using ss'
    by cases simp_all
  from ss' Abs have "NF (Abs r')" by simp
  hence "NF r'" by cases simp_all
  with Abs have "r \\<^sub>l r'" by simp
  hence "Abs r \\<^sub>l Abs r'" by (rule lred.Abs)
  with ss ss' show ?case by simp
next
  case (Beta r s ss t)
  hence "r[s/0] \\ ss \\<^sub>l t" by simp
  thus ?case by (rule lred.Beta)
qed

lemma WN_eq: "WN t = (\t'. t \\<^sub>\\<^sup>* t' \ NF t')"
proof
  assume "WN t"
  then have "\t'. t \\<^sub>l t'" by (rule lemma6)
  then obtain t' where t'"t \\<^sub>l t'" ..
  then have NF: "NF t'" by (rule lemma5)
  from t' have "t \\<^sub>s t'" by (rule lred_imp_sred)
  then have "t \\<^sub>\\<^sup>* t'" by (rule lemma2_2)
  with NF show "\t'. t \\<^sub>\\<^sup>* t' \ NF t'" by iprover
next
  assume "\t'. t \\<^sub>\\<^sup>* t' \ NF t'"
  then obtain t' where t'"t \\<^sub>\\<^sup>* t'" and NF: "NF t'"
    by iprover
  from t' have "t \\<^sub>s t'" by (rule rtrancl_beta_sred)
  then have "t \\<^sub>l t'" using NF by (rule lemma7)
  then show "WN t" by (rule lemma5)
qed

end

[ Dauer der Verarbeitung: 0.3 Sekunden  (vorverarbeitet)  ]