(* Author: Tobias Nipkow, with contributions by Thomas Sewell *)
section "Arrays via Braun Trees"
theory Array_Braun
imports
Array_Specs
Braun_Tree
begin
subsection "Array"
fun lookup1 :: "'a tree \ nat \ 'a" where
"lookup1 (Node l x r) n = (if n=1 then x else lookup1 (if even n then l else r) (n div 2))"
fun update1 :: "nat \ 'a \ 'a tree \ 'a tree" where
"update1 n x Leaf = Node Leaf x Leaf" |
"update1 n x (Node l a r) =
(if n=1 then Node l x r else
if even n then Node (update1 (n div 2) x l) a r
else Node l a (update1 (n div 2) x r))"
fun adds :: "'a list \ nat \ 'a tree \ 'a tree" where
"adds [] n t = t" |
"adds (x#xs) n t = adds xs (n+1) (update1 (n+1) x t)"
fun list :: "'a tree \ 'a list" where
"list Leaf = []" |
"list (Node l x r) = x # splice (list l) (list r)"
subsubsection "Functional Correctness"
lemma size_list: "size(list t) = size t"
by(induction t)(auto)
lemma minus1_div2: "(n - Suc 0) div 2 = (if odd n then n div 2 else n div 2 - 1)"
by auto arith
lemma nth_splice: "\ n < size xs + size ys; size ys \ size xs; size xs \ size ys + 1 \
\<Longrightarrow> splice xs ys ! n = (if even n then xs else ys) ! (n div 2)"
apply(induction xs ys arbitrary: n rule: splice.induct)
apply (auto simp: nth_Cons' minus1_div2)
done
lemma div2_in_bounds:
"\ braun (Node l x r); n \ {1..size(Node l x r)}; n > 1 \ \
(odd n \<longrightarrow> n div 2 \<in> {1..size r}) \<and> (even n \<longrightarrow> n div 2 \<in> {1..size l})"
by auto arith
declare upt_Suc[simp del]
paragraph \<open>\<^const>\<open>lookup1\<close>\<close>
lemma nth_list_lookup1: "\braun t; i < size t\ \ list t ! i = lookup1 t (i+1)"
proof(induction t arbitrary: i)
case Leaf thus ?case by simp
next
case Node
thus ?case using div2_in_bounds[OF Node.prems(1), of "i+1"]
by (auto simp: nth_splice minus1_div2 size_list)
qed
lemma list_eq_map_lookup1: "braun t \ list t = map (lookup1 t) [1..
by(auto simp add: list_eq_iff_nth_eq size_list nth_list_lookup1)
paragraph \<open>\<^const>\<open>update1\<close>\<close>
lemma size_update1: "\ braun t; n \ {1.. size t} \ \ size(update1 n x t) = size t"
proof(induction t arbitrary: n)
case Leaf thus ?case by simp
next
case Node thus ?case using div2_in_bounds[OF Node.prems] by simp
qed
lemma braun_update1: "\braun t; n \ {1.. size t} \ \ braun(update1 n x t)"
proof(induction t arbitrary: n)
case Leaf thus ?case by simp
next
case Node thus ?case
using div2_in_bounds[OF Node.prems] by (simp add: size_update1)
qed
lemma lookup1_update1: "\ braun t; n \ {1.. size t} \ \
lookup1 (update1 n x t) m = (if n=m then x else lookup1 t m)"
proof(induction t arbitrary: m n)
case Leaf
then show ?case by simp
next
have aux: "\ odd n; odd m \ \ n div 2 = (m::nat) div 2 \ m=n" for m n
using odd_two_times_div_two_succ by fastforce
case Node
thus ?case using div2_in_bounds[OF Node.prems] by (auto simp: aux)
qed
lemma list_update1: "\ braun t; n \ {1.. size t} \ \ list(update1 n x t) = (list t)[n-1 := x]"
by(auto simp add: list_eq_map_lookup1 list_eq_iff_nth_eq lookup1_update1 size_update1 braun_update1)
text \<open>A second proof of @{thm list_update1}:\<close>
lemma diff1_eq_iff: "n > 0 \ n - Suc 0 = m \ n = m+1"
by arith
lemma list_update_splice:
"\ n < size xs + size ys; size ys \ size xs; size xs \ size ys + 1 \ \
(splice xs ys) [n := x] =
(if even n then splice (xs[n div 2 := x]) ys else splice xs (ys[n div 2 := x]))"
by(induction xs ys arbitrary: n rule: splice.induct) (auto split: nat.split)
lemma list_update2: "\ braun t; n \ {1.. size t} \ \ list(update1 n x t) = (list t)[n-1 := x]"
proof(induction t arbitrary: n)
case Leaf thus ?case by simp
next
case (Node l a r) thus ?case using div2_in_bounds[OF Node.prems]
by(auto simp: list_update_splice diff1_eq_iff size_list split: nat.split)
qed
paragraph \<open>\<^const>\<open>adds\<close>\<close>
lemma splice_last: shows
"size ys \ size xs \ splice (xs @ [x]) ys = splice xs ys @ [x]"
and "size ys+1 \ size xs \ splice xs (ys @ [y]) = splice xs ys @ [y]"
by(induction xs ys arbitrary: x y rule: splice.induct) (auto)
lemma list_add_hi: "braun t \ list(update1 (Suc(size t)) x t) = list t @ [x]"
by(induction t)(auto simp: splice_last size_list)
lemma size_add_hi: "braun t \ m = size t \ size(update1 (Suc m) x t) = size t + 1"
by(induction t arbitrary: m)(auto)
lemma braun_add_hi: "braun t \ braun(update1 (Suc(size t)) x t)"
by(induction t)(auto simp: size_add_hi)
lemma size_braun_adds:
"\ braun t; size t = n \ \ size(adds xs n t) = size t + length xs \ braun (adds xs n t)"
by(induction xs arbitrary: t n)(auto simp: braun_add_hi size_add_hi)
lemma list_adds: "\ braun t; size t = n \ \ list(adds xs n t) = list t @ xs"
by(induction xs arbitrary: t n)(auto simp: size_braun_adds list_add_hi size_add_hi braun_add_hi)
subsubsection "Array Implementation"
interpretation A: Array
where lookup = "\(t,l) n. lookup1 t (n+1)"
and update = "\n x (t,l). (update1 (n+1) x t, l)"
and len = "\(t,l). l"
and array = "\xs. (adds xs 0 Leaf, length xs)"
and invar = "\(t,l). braun t \ l = size t"
and list = "\(t,l). list t"
proof (standard, goal_cases)
case 1 thus ?case by (simp add: nth_list_lookup1 split: prod.splits)
next
case 2 thus ?case by (simp add: list_update1 split: prod.splits)
next
case 3 thus ?case by (simp add: size_list split: prod.splits)
next
case 4 thus ?case by (simp add: list_adds)
next
case 5 thus ?case by (simp add: braun_update1 size_update1 split: prod.splits)
next
case 6 thus ?case by (simp add: size_braun_adds split: prod.splits)
qed
subsection "Flexible Array"
fun add_lo where
"add_lo x Leaf = Node Leaf x Leaf" |
"add_lo x (Node l a r) = Node (add_lo a r) x l"
fun merge where
"merge Leaf r = r" |
"merge (Node l a r) rr = Node rr a (merge l r)"
fun del_lo where
"del_lo Leaf = Leaf" |
"del_lo (Node l a r) = merge l r"
fun del_hi :: "nat \ 'a tree \ 'a tree" where
"del_hi n Leaf = Leaf" |
"del_hi n (Node l x r) =
(if n = 1 then Leaf
else if even n
then Node (del_hi (n div 2) l) x r
else Node l x (del_hi (n div 2) r))"
subsubsection "Functional Correctness"
paragraph \<open>\<^const>\<open>add_lo\<close>\<close>
lemma list_add_lo: "braun t \ list (add_lo a t) = a # list t"
by(induction t arbitrary: a) auto
lemma braun_add_lo: "braun t \ braun(add_lo x t)"
by(induction t arbitrary: x) (auto simp add: list_add_lo simp flip: size_list)
paragraph \<open>\<^const>\<open>del_lo\<close>\<close>
lemma list_merge: "braun (Node l x r) \ list(merge l r) = splice (list l) (list r)"
by (induction l r rule: merge.induct) auto
lemma braun_merge: "braun (Node l x r) \ braun(merge l r)"
by (induction l r rule: merge.induct)(auto simp add: list_merge simp flip: size_list)
lemma list_del_lo: "braun t \ list(del_lo t) = tl (list t)"
by (cases t) (simp_all add: list_merge)
lemma braun_del_lo: "braun t \ braun(del_lo t)"
by (cases t) (simp_all add: braun_merge)
paragraph \<open>\<^const>\<open>del_hi\<close>\<close>
lemma list_Nil_iff: "list t = [] \ t = Leaf"
by(cases t) simp_all
lemma butlast_splice: "butlast (splice xs ys) =
(if size xs > size ys then splice (butlast xs) ys else splice xs (butlast ys))"
by(induction xs ys rule: splice.induct) (auto)
lemma list_del_hi: "braun t \ size t = st \ list(del_hi st t) = butlast(list t)"
apply(induction t arbitrary: st)
by(auto simp: list_Nil_iff size_list butlast_splice)
lemma braun_del_hi: "braun t \ size t = st \ braun(del_hi st t)"
apply(induction t arbitrary: st)
by(auto simp: list_del_hi simp flip: size_list)
subsubsection "Flexible Array Implementation"
interpretation AF: Array_Flex
where lookup = "\(t,l) n. lookup1 t (n+1)"
and update = "\n x (t,l). (update1 (n+1) x t, l)"
and len = "\(t,l). l"
and array = "\xs. (adds xs 0 Leaf, length xs)"
and invar = "\(t,l). braun t \ l = size t"
and list = "\(t,l). list t"
and add_lo = "\x (t,l). (add_lo x t, l+1)"
and del_lo = "\(t,l). (del_lo t, l-1)"
and add_hi = "\x (t,l). (update1 (Suc l) x t, l+1)"
and del_hi = "\(t,l). (del_hi l t, l-1)"
proof (standard, goal_cases)
case 1 thus ?case by (simp add: list_add_lo split: prod.splits)
next
case 2 thus ?case by (simp add: list_del_lo split: prod.splits)
next
case 3 thus ?case by (simp add: list_add_hi braun_add_hi split: prod.splits)
next
case 4 thus ?case by (simp add: list_del_hi split: prod.splits)
next
case 5 thus ?case by (simp add: braun_add_lo list_add_lo flip: size_list split: prod.splits)
next
case 6 thus ?case by (simp add: braun_del_lo list_del_lo flip: size_list split: prod.splits)
next
case 7 thus ?case by (simp add: size_add_hi braun_add_hi split: prod.splits)
next
case 8 thus ?case by (simp add: braun_del_hi list_del_hi flip: size_list split: prod.splits)
qed
subsection "Faster"
subsubsection \<open>Size\<close>
fun diff :: "'a tree \ nat \ nat" where
"diff Leaf _ = 0" |
"diff (Node l x r) n = (if n=0 then 1 else if even n then diff r (n div 2 - 1) else diff l (n div 2))"
fun size_fast :: "'a tree \ nat" where
"size_fast Leaf = 0" |
"size_fast (Node l x r) = (let n = size_fast r in 1 + 2*n + diff l n)"
declare Let_def[simp]
lemma diff: "braun t \ size t : {n, n + 1} \ diff t n = size t - n"
by(induction t arbitrary: n) auto
lemma size_fast: "braun t \ size_fast t = size t"
by(induction t) (auto simp add: diff)
subsubsection \<open>Initialization with 1 element\<close>
fun braun_of_naive :: "'a \ nat \ 'a tree" where
"braun_of_naive x n = (if n=0 then Leaf
else let m = (n-1) div 2
in if odd n then Node (braun_of_naive x m) x (braun_of_naive x m)
else Node (braun_of_naive x (m + 1)) x (braun_of_naive x m))"
fun braun2_of :: "'a \ nat \ 'a tree * 'a tree" where
"braun2_of x n = (if n = 0 then (Leaf, Node Leaf x Leaf)
else let (s,t) = braun2_of x ((n-1) div 2)
in if odd n then (Node s x s, Node t x s) else (Node t x s, Node t x t))"
definition braun_of :: "'a \ nat \ 'a tree" where
"braun_of x n = fst (braun2_of x n)"
declare braun2_of.simps [simp del]
lemma braun2_of_size_braun: "braun2_of x n = (s,t) \ size s = n \ size t = n+1 \ braun s \ braun t"
proof(induction x n arbitrary: s t rule: braun2_of.induct)
case (1 x n)
then show ?case
by (auto simp: braun2_of.simps[of x n] split: prod.splits if_splits) presburger+
qed
lemma braun2_of_replicate:
"braun2_of x n = (s,t) \ list s = replicate n x \ list t = replicate (n+1) x"
proof(induction x n arbitrary: s t rule: braun2_of.induct)
case (1 x n)
have "x # replicate m x = replicate (m+1) x" for m by simp
with 1 show ?case
apply (auto simp: braun2_of.simps[of x n] replicate.simps(2)[of 0 x]
simp del: replicate.simps(2) split: prod.splits if_splits)
by presburger+
qed
corollary braun_braun_of: "braun(braun_of x n)"
unfolding braun_of_def by (metis eq_fst_iff braun2_of_size_braun)
corollary list_braun_of: "list(braun_of x n) = replicate n x"
unfolding braun_of_def by (metis eq_fst_iff braun2_of_replicate)
subsubsection "Proof Infrastructure"
text \<open>Originally due to Thomas Sewell.\<close>
paragraph \<open>\<open>take_nths\<close>\<close>
fun take_nths :: "nat \ nat \ 'a list \ 'a list" where
"take_nths i k [] = []" |
"take_nths i k (x # xs) = (if i = 0 then x # take_nths (2^k - 1) k xs
else take_nths (i - 1) k xs)"
text \<open>This is the more concise definition but seems to complicate the proofs:\<close>
lemma take_nths_eq_nths: "take_nths i k xs = nths xs (\n. {n*2^k + i})"
proof(induction xs arbitrary: i)
case Nil
then show ?case by simp
next
case (Cons x xs)
show ?case
proof cases
assume [simp]: "i = 0"
have "(\n. {(n+1) * 2 ^ k - 1}) = {m. \n. Suc m = n * 2 ^ k}"
apply (auto simp del: mult_Suc)
by (metis diff_Suc_Suc diff_zero mult_eq_0_iff not0_implies_Suc)
thus ?thesis by (simp add: Cons.IH ac_simps nths_Cons)
next
assume [arith]: "i \ 0"
have "(\n. {n * 2 ^ k + i - 1}) = {m. \n. Suc m = n * 2 ^ k + i}"
apply auto
by (metis diff_Suc_Suc diff_zero)
thus ?thesis by (simp add: Cons.IH nths_Cons)
qed
qed
lemma take_nths_drop:
"take_nths i k (drop j xs) = take_nths (i + j) k xs"
by (induct xs arbitrary: i j; simp add: drop_Cons split: nat.split)
lemma take_nths_00:
"take_nths 0 0 xs = xs"
by (induct xs; simp)
lemma splice_take_nths:
"splice (take_nths 0 (Suc 0) xs) (take_nths (Suc 0) (Suc 0) xs) = xs"
by (induct xs; simp)
lemma take_nths_take_nths:
"take_nths i m (take_nths j n xs) = take_nths ((i * 2^n) + j) (m + n) xs"
by (induct xs arbitrary: i j; simp add: algebra_simps power_add)
lemma take_nths_empty:
"(take_nths i k xs = []) = (length xs \ i)"
by (induction xs arbitrary: i k) auto
lemma hd_take_nths:
"i < length xs \ hd(take_nths i k xs) = xs ! i"
by (induction xs arbitrary: i k) auto
lemma take_nths_01_splice:
"\ length xs = length ys \ length xs = length ys + 1 \ \
take_nths 0 (Suc 0) (splice xs ys) = xs \<and>
take_nths (Suc 0) (Suc 0) (splice xs ys) = ys"
by (induct xs arbitrary: ys; case_tac ys; simp)
lemma length_take_nths_00:
"length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs) \
length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs) + 1"
by (induct xs) auto
paragraph \<open>\<open>braun_list\<close>\<close>
fun braun_list :: "'a tree \ 'a list \ bool" where
"braun_list Leaf xs = (xs = [])" |
"braun_list (Node l x r) xs = (xs \ [] \ x = hd xs \
braun_list l (take_nths 1 1 xs) \<and>
braun_list r (take_nths 2 1 xs))"
lemma braun_list_eq:
"braun_list t xs = (braun t \ xs = list t)"
proof (induct t arbitrary: xs)
case Leaf
show ?case by simp
next
case Node
show ?case
using length_take_nths_00[of xs] splice_take_nths[of xs]
by (auto simp: neq_Nil_conv Node.hyps size_list[symmetric] take_nths_01_splice)
qed
subsubsection \<open>Converting a list of elements into a Braun tree\<close>
fun nodes :: "'a tree list \ 'a list \ 'a tree list \ 'a tree list" where
"nodes (l#ls) (x#xs) (r#rs) = Node l x r # nodes ls xs rs" |
"nodes (l#ls) (x#xs) [] = Node l x Leaf # nodes ls xs []" |
"nodes [] (x#xs) (r#rs) = Node Leaf x r # nodes [] xs rs" |
"nodes [] (x#xs) [] = Node Leaf x Leaf # nodes [] xs []" |
"nodes ls [] rs = []"
fun brauns :: "nat \ 'a list \ 'a tree list" where
"brauns k xs = (if xs = [] then [] else
let ys = take (2^k) xs;
zs = drop (2^k) xs;
ts = brauns (k+1) zs
in nodes ts ys (drop (2^k) ts))"
declare brauns.simps[simp del]
definition brauns1 :: "'a list \ 'a tree" where
"brauns1 xs = (if xs = [] then Leaf else brauns 0 xs ! 0)"
fun T_brauns :: "nat \ 'a list \ nat" where
"T_brauns k xs = (if xs = [] then 0 else
let ys = take (2^k) xs;
zs = drop (2^k) xs;
ts = brauns (k+1) zs
in 4 * min (2^k) (length xs) + T_brauns (k+1) zs)"
paragraph "Functional correctness"
text \<open>The proof is originally due to Thomas Sewell.\<close>
lemma length_nodes:
"length (nodes ls xs rs) = length xs"
by (induct ls xs rs rule: nodes.induct; simp)
lemma nth_nodes:
"i < length xs \ nodes ls xs rs ! i =
Node (if i < length ls then ls ! i else Leaf) (xs ! i)
(if i < length rs then rs ! i else Leaf)"
by (induct ls xs rs arbitrary: i rule: nodes.induct;
simp add: nth_Cons split: nat.split)
theorem length_brauns:
"length (brauns k xs) = min (length xs) (2 ^ k)"
proof (induct xs arbitrary: k rule: measure_induct_rule[where f=length])
case (less xs) thus ?case by (simp add: brauns.simps[of k xs] length_nodes)
qed
theorem brauns_correct:
"i < min (length xs) (2 ^ k) \ braun_list (brauns k xs ! i) (take_nths i k xs)"
proof (induct xs arbitrary: i k rule: measure_induct_rule[where f=length])
case (less xs)
have "xs \ []" using less.prems by auto
let ?zs = "drop (2^k) xs"
let ?ts = "brauns (Suc k) ?zs"
from less.hyps[of ?zs _ "Suc k"]
have IH: "\ j = i + 2 ^ k; i < min (length ?zs) (2 ^ (k+1)) \ \
braun_list (?ts ! i) (take_nths j (Suc k) xs)" for i j
using \<open>xs \<noteq> []\<close> by (simp add: take_nths_drop)
show ?case
using less.prems
by (auto simp: brauns.simps[of k xs] nth_nodes take_nths_take_nths
IH take_nths_empty hd_take_nths length_brauns)
qed
corollary brauns1_correct:
"braun (brauns1 xs) \ list (brauns1 xs) = xs"
using brauns_correct[of 0 xs 0]
by (simp add: brauns1_def braun_list_eq take_nths_00)
paragraph "Running Time Analysis"
theorem T_brauns:
"T_brauns k xs = 4 * length xs"
proof (induction xs arbitrary: k rule: measure_induct_rule[where f = length])
case (less xs)
show ?case
proof cases
assume "xs = []"
thus ?thesis by(simp)
next
assume "xs \ []"
let ?zs = "drop (2^k) xs"
have "T_brauns k xs = T_brauns (k+1) ?zs + 4 * min (2^k) (length xs)"
using \<open>xs \<noteq> []\<close> by(simp)
also have "\ = 4 * length ?zs + 4 * min (2^k) (length xs)"
using less[of ?zs "k+1"] \<open>xs \<noteq> []\<close>
by (simp)
also have "\ = 4 * length xs"
by(simp)
finally show ?case .
qed
qed
subsubsection \<open>Converting a Braun Tree into a List of Elements\<close>
text \<open>The code and the proof are originally due to Thomas Sewell (except running time).\<close>
function list_fast_rec :: "'a tree list \ 'a list" where
"list_fast_rec ts = (let us = filter (\t. t \ Leaf) ts in
if us = [] then [] else
map value us @ list_fast_rec (map left us @ map right us))"
by (pat_completeness, auto)
lemma list_fast_rec_term1: "ts \ [] \ Leaf \ set ts \
sum_list (map (size o left) ts) + sum_list (map (size o right) ts) < sum_list (map size ts)"
apply (clarsimp simp: sum_list_addf[symmetric] sum_list_map_filter')
apply (rule sum_list_strict_mono; clarsimp?)
apply (case_tac x; simp)
done
lemma list_fast_rec_term: "us \ [] \ us = filter (\t. t \ \\) ts \
sum_list (map (size o left) us) + sum_list (map (size o right) us) < sum_list (map size ts)"
apply (rule order_less_le_trans, rule list_fast_rec_term1, simp_all)
apply (rule sum_list_filter_le_nat)
done
termination
apply (relation "measure (sum_list o map size)")
apply simp
apply (simp add: list_fast_rec_term)
done
declare list_fast_rec.simps[simp del]
definition list_fast :: "'a tree \ 'a list" where
"list_fast t = list_fast_rec [t]"
function T_list_fast_rec :: "'a tree list \ nat" where
"T_list_fast_rec ts = (let us = filter (\t. t \ Leaf) ts
in length ts + (if us = [] then 0 else
5 * length us + T_list_fast_rec (map left us @ map right us)))"
by (pat_completeness, auto)
termination
apply (relation "measure (sum_list o map size)")
apply simp
apply (simp add: list_fast_rec_term)
done
declare T_list_fast_rec.simps[simp del]
paragraph "Functional Correctness"
lemma list_fast_rec_all_Leaf:
"\t \ set ts. t = Leaf \ list_fast_rec ts = []"
by (simp add: filter_empty_conv list_fast_rec.simps)
lemma take_nths_eq_single:
"length xs - i < 2^n \ take_nths i n xs = take 1 (drop i xs)"
by (induction xs arbitrary: i n; simp add: drop_Cons')
lemma braun_list_Nil:
"braun_list t [] = (t = Leaf)"
by (cases t; simp)
lemma braun_list_not_Nil: "xs \ [] \
braun_list t xs =
(\<exists>l x r. t = Node l x r \<and> x = hd xs \<and>
braun_list l (take_nths 1 1 xs) \<and>
braun_list r (take_nths 2 1 xs))"
by(cases t; simp)
theorem list_fast_rec_correct:
"\ length ts = 2 ^ k; \i < 2 ^ k. braun_list (ts ! i) (take_nths i k xs) \
\<Longrightarrow> list_fast_rec ts = xs"
proof (induct xs arbitrary: k ts rule: measure_induct_rule[where f=length])
case (less xs)
show ?case
proof (cases "length xs < 2 ^ k")
case True
from less.prems True have filter:
"\n. ts = map (\x. Node Leaf x Leaf) xs @ replicate n Leaf"
apply (rule_tac x="length ts - length xs" in exI)
apply (clarsimp simp: list_eq_iff_nth_eq)
apply(auto simp: nth_append braun_list_not_Nil take_nths_eq_single braun_list_Nil hd_drop_conv_nth)
done
thus ?thesis
by (clarsimp simp: list_fast_rec.simps[of ts] o_def list_fast_rec_all_Leaf)
next
case False
with less.prems(2) have *:
"\i < 2 ^ k. ts ! i \ Leaf
\<and> value (ts ! i) = xs ! i
\<and> braun_list (left (ts ! i)) (take_nths (i + 2 ^ k) (Suc k) xs)
\<and> (\<forall>ys. ys = take_nths (i + 2 * 2 ^ k) (Suc k) xs
\<longrightarrow> braun_list (right (ts ! i)) ys)"
by (auto simp: take_nths_empty hd_take_nths braun_list_not_Nil take_nths_take_nths
algebra_simps)
have 1: "map value ts = take (2 ^ k) xs"
using less.prems(1) False by (simp add: list_eq_iff_nth_eq *)
have 2: "list_fast_rec (map left ts @ map right ts) = drop (2 ^ k) xs"
using less.prems(1) False
by (auto intro!: Nat.diff_less less.hyps[where k= "Suc k"]
simp: nth_append * take_nths_drop algebra_simps)
from less.prems(1) False show ?thesis
by (auto simp: list_fast_rec.simps[of ts] 1 2 * all_set_conv_all_nth)
qed
qed
corollary list_fast_correct:
"braun t \ list_fast t = list t"
by (simp add: list_fast_def take_nths_00 braun_list_eq list_fast_rec_correct[where k=0])
paragraph "Running Time Analysis"
lemma sum_tree_list_children: "\t \ set ts. t \ Leaf \
(\<Sum>t\<leftarrow>ts. k * size t) = (\<Sum>t \<leftarrow> map left ts @ map right ts. k * size t) + k * length ts"
by(induction ts)(auto simp add: neq_Leaf_iff algebra_simps)
theorem T_list_fast_rec_ub:
"T_list_fast_rec ts \ sum_list (map (\t. 7*size t + 1) ts)"
proof (induction ts rule: measure_induct_rule[where f="sum_list o map size"])
case (less ts)
let ?us = "filter (\t. t \ Leaf) ts"
show ?case
proof cases
assume "?us = []"
thus ?thesis using T_list_fast_rec.simps[of ts]
by(simp add: sum_list_Suc)
next
assume "?us \ []"
let ?children = "map left ?us @ map right ?us"
have "T_list_fast_rec ts = T_list_fast_rec ?children + 5 * length ?us + length ts"
using \<open>?us \<noteq> []\<close> T_list_fast_rec.simps[of ts] by(simp)
also have "\ \ (\t\?children. 7 * size t + 1) + 5 * length ?us + length ts"
using less[of "?children"] list_fast_rec_term[of "?us"] \<open>?us \<noteq> []\<close>
by (simp)
also have "\ = (\t\?children. 7*size t) + 7 * length ?us + length ts"
by(simp add: sum_list_Suc o_def)
also have "\ = (\t\?us. 7*size t) + length ts"
by(simp add: sum_tree_list_children)
also have "\ \ (\t\ts. 7*size t) + length ts"
by(simp add: sum_list_filter_le_nat)
also have "\ = (\t\ts. 7 * size t + 1)"
by(simp add: sum_list_Suc)
finally show ?case .
qed
qed
end
¤ Dauer der Verarbeitung: 0.10 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|