(* Title: HOL/UNITY/Guar.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Author: Sidi Ehmety
From Chandy and Sanders, "Reasoning About Program Composition",
Technical Report 2000-003, University of Florida, 2000.
Compatibility, weakest guarantees, etc. and Weakest existential
property, from Charpentier and Chandy "Theorems about Composition",
Fifth International Conference on Mathematics of Program, 2000.
*)
section\<open>Guarantees Specifications\<close>
theory Guar
imports Comp
begin
instance program :: (type) order
by standard (auto simp add: program_less_le dest: component_antisym intro: component_trans)
text\<open>Existential and Universal properties. I formalize the two-program
case, proving equivalence with Chandy and Sanders's n-ary definitions\
definition ex_prop :: "'a program set => bool" where
"ex_prop X == \F G. F ok G -->F \ X | G \ X --> (F\G) \ X"
definition strict_ex_prop :: "'a program set => bool" where
"strict_ex_prop X == \F G. F ok G --> (F \ X | G \ X) = (F\G \ X)"
definition uv_prop :: "'a program set => bool" where
"uv_prop X == SKIP \ X & (\F G. F ok G --> F \ X & G \ X --> (F\G) \ X)"
definition strict_uv_prop :: "'a program set => bool" where
"strict_uv_prop X ==
SKIP \<in> X & (\<forall>F G. F ok G --> (F \<in> X & G \<in> X) = (F\<squnion>G \<in> X))"
text\<open>Guarantees properties\<close>
definition guar :: "['a program set, 'a program set] => 'a program set" (infixl "guarantees" 55) where
(*higher than membership, lower than Co*)
"X guarantees Y == {F. \G. F ok G --> F\G \ X --> F\G \ Y}"
(* Weakest guarantees *)
definition wg :: "['a program, 'a program set] => 'a program set" where
"wg F Y == \({X. F \ X guarantees Y})"
(* Weakest existential property stronger than X *)
definition wx :: "('a program) set => ('a program)set" where
"wx X == \({Y. Y \ X & ex_prop Y})"
(*Ill-defined programs can arise through "Join"*)
definition welldef :: "'a program set" where
"welldef == {F. Init F \ {}}"
definition refines :: "['a program, 'a program, 'a program set] => bool"
("(3_ refines _ wrt _)" [10,10,10] 10) where
"G refines F wrt X ==
\<forall>H. (F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X) -->
(G\<squnion>H \<in> welldef \<inter> X)"
definition iso_refines :: "['a program, 'a program, 'a program set] => bool"
("(3_ iso'_refines _ wrt _)" [10,10,10] 10) where
"G iso_refines F wrt X ==
F \<in> welldef \<inter> X --> G \<in> welldef \<inter> X"
lemma OK_insert_iff:
"(OK (insert i I) F) =
(if i \<in> I then OK I F else OK I F & (F i ok JOIN I F))"
by (auto intro: ok_sym simp add: OK_iff_ok)
subsection\<open>Existential Properties\<close>
lemma ex1:
assumes "ex_prop X" and "finite GG"
shows "GG \ X \ {} \ OK GG (%G. G) \ (\G \ GG. G) \ X"
apply (atomize (full))
using assms(2) apply induct
using assms(1) apply (unfold ex_prop_def)
apply (auto simp add: OK_insert_iff Int_insert_left)
done
lemma ex2:
"\GG. finite GG & GG \ X \ {} \ OK GG (\G. G) \ (\G \ GG. G) \ X
\<Longrightarrow> ex_prop X"
apply (unfold ex_prop_def, clarify)
apply (drule_tac x = "{F,G}" in spec)
apply (auto dest: ok_sym simp add: OK_iff_ok)
done
(*Chandy & Sanders take this as a definition*)
lemma ex_prop_finite:
"ex_prop X =
(\<forall>GG. finite GG & GG \<inter> X \<noteq> {} & OK GG (%G. G)--> (\<Squnion>G \<in> GG. G) \<in> X)"
by (blast intro: ex1 ex2)
(*Their "equivalent definition" given at the end of section 3*)
lemma ex_prop_equiv:
"ex_prop X = (\G. G \ X = (\H. (G component_of H) --> H \ X))"
apply auto
apply (unfold ex_prop_def component_of_def, safe, blast, blast)
apply (subst Join_commute)
apply (drule ok_sym, blast)
done
subsection\<open>Universal Properties\<close>
lemma uv1:
assumes "uv_prop X"
and "finite GG"
and "GG \ X"
and "OK GG (%G. G)"
shows "(\G \ GG. G) \ X"
using assms(2-)
apply induct
using assms(1)
apply (unfold uv_prop_def)
apply (auto simp add: Int_insert_left OK_insert_iff)
done
lemma uv2:
"\GG. finite GG & GG \ X & OK GG (%G. G) --> (\G \ GG. G) \ X
==> uv_prop X"
apply (unfold uv_prop_def)
apply (rule conjI)
apply (drule_tac x = "{}" in spec)
prefer 2
apply clarify
apply (drule_tac x = "{F,G}" in spec)
apply (auto dest: ok_sym simp add: OK_iff_ok)
done
(*Chandy & Sanders take this as a definition*)
lemma uv_prop_finite:
"uv_prop X =
(\<forall>GG. finite GG \<and> GG \<subseteq> X \<and> OK GG (\<lambda>G. G) \<longrightarrow> (\<Squnion>G \<in> GG. G) \<in> X)"
by (blast intro: uv1 uv2)
subsection\<open>Guarantees\<close>
lemma guaranteesI:
"(!!G. [| F ok G; F\G \ X |] ==> F\G \ Y) ==> F \ X guarantees Y"
by (simp add: guar_def component_def)
lemma guaranteesD:
"[| F \ X guarantees Y; F ok G; F\G \ X |] ==> F\G \ Y"
by (unfold guar_def component_def, blast)
(*This version of guaranteesD matches more easily in the conclusion
The major premise can no longer be F \<subseteq> H since we need to reason about G*)
lemma component_guaranteesD:
"[| F \ X guarantees Y; F\G = H; H \ X; F ok G |] ==> H \ Y"
by (unfold guar_def, blast)
lemma guarantees_weaken:
"[| F \ X guarantees X'; Y \ X; X' \ Y' |] ==> F \ Y guarantees Y'"
by (unfold guar_def, blast)
lemma subset_imp_guarantees_UNIV: "X \ Y ==> X guarantees Y = UNIV"
by (unfold guar_def, blast)
(*Equivalent to subset_imp_guarantees_UNIV but more intuitive*)
lemma subset_imp_guarantees: "X \ Y ==> F \ X guarantees Y"
by (unfold guar_def, blast)
(*Remark at end of section 4.1 *)
lemma ex_prop_imp: "ex_prop Y ==> (Y = UNIV guarantees Y)"
apply (simp (no_asm_use) add: guar_def ex_prop_equiv)
apply safe
apply (drule_tac x = x in spec)
apply (drule_tac [2] x = x in spec)
apply (drule_tac [2] sym)
apply (auto simp add: component_of_def)
done
lemma guarantees_imp: "(Y = UNIV guarantees Y) ==> ex_prop(Y)"
by (auto simp add: guar_def ex_prop_equiv component_of_def dest: sym)
lemma ex_prop_equiv2: "(ex_prop Y) = (Y = UNIV guarantees Y)"
apply (rule iffI)
apply (rule ex_prop_imp)
apply (auto simp add: guarantees_imp)
done
subsection\<open>Distributive Laws. Re-Orient to Perform Miniscoping\<close>
lemma guarantees_UN_left:
"(\i \ I. X i) guarantees Y = (\i \ I. X i guarantees Y)"
by (unfold guar_def, blast)
lemma guarantees_Un_left:
"(X \ Y) guarantees Z = (X guarantees Z) \ (Y guarantees Z)"
by (unfold guar_def, blast)
lemma guarantees_INT_right:
"X guarantees (\i \ I. Y i) = (\i \ I. X guarantees Y i)"
by (unfold guar_def, blast)
lemma guarantees_Int_right:
"Z guarantees (X \ Y) = (Z guarantees X) \ (Z guarantees Y)"
by (unfold guar_def, blast)
lemma guarantees_Int_right_I:
"[| F \ Z guarantees X; F \ Z guarantees Y |]
==> F \<in> Z guarantees (X \<inter> Y)"
by (simp add: guarantees_Int_right)
lemma guarantees_INT_right_iff:
"(F \ X guarantees (\(Y ` I))) = (\i\I. F \ X guarantees (Y i))"
by (simp add: guarantees_INT_right)
lemma shunting: "(X guarantees Y) = (UNIV guarantees (-X \ Y))"
by (unfold guar_def, blast)
lemma contrapositive: "(X guarantees Y) = -Y guarantees -X"
by (unfold guar_def, blast)
(** The following two can be expressed using intersection and subset, which
is more faithful to the text but looks cryptic.
**)
lemma combining1:
"[| F \ V guarantees X; F \ (X \ Y) guarantees Z |]
==> F \<in> (V \<inter> Y) guarantees Z"
by (unfold guar_def, blast)
lemma combining2:
"[| F \ V guarantees (X \ Y); F \ Y guarantees Z |]
==> F \<in> V guarantees (X \<union> Z)"
by (unfold guar_def, blast)
(** The following two follow Chandy-Sanders, but the use of object-quantifiers
does not suit Isabelle... **)
(*Premise should be (!!i. i \<in> I ==> F \<in> X guarantees Y i) *)
lemma all_guarantees:
"\i\I. F \ X guarantees (Y i) ==> F \ X guarantees (\i \ I. Y i)"
by (unfold guar_def, blast)
(*Premises should be [| F \<in> X guarantees Y i; i \<in> I |] *)
lemma ex_guarantees:
"\i\I. F \ X guarantees (Y i) ==> F \ X guarantees (\i \ I. Y i)"
by (unfold guar_def, blast)
subsection\<open>Guarantees: Additional Laws (by lcp)\<close>
lemma guarantees_Join_Int:
"[| F \ U guarantees V; G \ X guarantees Y; F ok G |]
==> F\<squnion>G \<in> (U \<inter> X) guarantees (V \<inter> Y)"
apply (simp add: guar_def, safe)
apply (simp add: Join_assoc)
apply (subgoal_tac "F\G\Ga = G\(F\Ga) ")
apply (simp add: ok_commute)
apply (simp add: Join_ac)
done
lemma guarantees_Join_Un:
"[| F \ U guarantees V; G \ X guarantees Y; F ok G |]
==> F\<squnion>G \<in> (U \<union> X) guarantees (V \<union> Y)"
apply (simp add: guar_def, safe)
apply (simp add: Join_assoc)
apply (subgoal_tac "F\G\Ga = G\(F\Ga) ")
apply (simp add: ok_commute)
apply (simp add: Join_ac)
done
lemma guarantees_JN_INT:
"[| \i\I. F i \ X i guarantees Y i; OK I F |]
==> (JOIN I F) \<in> (\<Inter>(X ` I)) guarantees (\<Inter>(Y ` I))"
apply (unfold guar_def, auto)
apply (drule bspec, assumption)
apply (rename_tac "i")
apply (drule_tac x = "JOIN (I-{i}) F\G" in spec)
apply (auto intro: OK_imp_ok
simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb)
done
lemma guarantees_JN_UN:
"[| \i\I. F i \ X i guarantees Y i; OK I F |]
==> (JOIN I F) \<in> (\<Union>(X ` I)) guarantees (\<Union>(Y ` I))"
apply (unfold guar_def, auto)
apply (drule bspec, assumption)
apply (rename_tac "i")
apply (drule_tac x = "JOIN (I-{i}) F\G" in spec)
apply (auto intro: OK_imp_ok
simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb)
done
subsection\<open>Guarantees Laws for Breaking Down the Program (by lcp)\<close>
lemma guarantees_Join_I1:
"[| F \ X guarantees Y; F ok G |] ==> F\G \ X guarantees Y"
by (simp add: guar_def Join_assoc)
lemma guarantees_Join_I2:
"[| G \ X guarantees Y; F ok G |] ==> F\G \ X guarantees Y"
apply (simp add: Join_commute [of _ G] ok_commute [of _ G])
apply (blast intro: guarantees_Join_I1)
done
lemma guarantees_JN_I:
"[| i \ I; F i \ X guarantees Y; OK I F |]
==> (\<Squnion>i \<in> I. (F i)) \<in> X guarantees Y"
apply (unfold guar_def, clarify)
apply (drule_tac x = "JOIN (I-{i}) F\G" in spec)
apply (auto intro: OK_imp_ok simp add: JN_Join_diff Join_assoc [symmetric])
done
(*** well-definedness ***)
lemma Join_welldef_D1: "F\G \ welldef ==> F \ welldef"
by (unfold welldef_def, auto)
lemma Join_welldef_D2: "F\G \ welldef ==> G \ welldef"
by (unfold welldef_def, auto)
(*** refinement ***)
lemma refines_refl: "F refines F wrt X"
by (unfold refines_def, blast)
(*We'd like transitivity, but how do we get it?*)
lemma refines_trans:
"[| H refines G wrt X; G refines F wrt X |] ==> H refines F wrt X"
apply (simp add: refines_def)
oops
lemma strict_ex_refine_lemma:
"strict_ex_prop X
==> (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> X --> G\<squnion>H \<in> X)
= (F \<in> X --> G \<in> X)"
by (unfold strict_ex_prop_def, auto)
lemma strict_ex_refine_lemma_v:
"strict_ex_prop X
==> (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) =
(F \<in> welldef \<inter> X --> G \<in> X)"
apply (unfold strict_ex_prop_def, safe)
apply (erule_tac x = SKIP and P = "%H. PP H --> RR H" for PP RR in allE)
apply (auto dest: Join_welldef_D1 Join_welldef_D2)
done
lemma ex_refinement_thm:
"[| strict_ex_prop X;
\<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X --> G\<squnion>H \<in> welldef |]
==> (G refines F wrt X) = (G iso_refines F wrt X)"
apply (rule_tac x = SKIP in allE, assumption)
apply (simp add: refines_def iso_refines_def strict_ex_refine_lemma_v)
done
lemma strict_uv_refine_lemma:
"strict_uv_prop X ==>
(\<forall>H. F ok H & G ok H & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) = (F \<in> X --> G \<in> X)"
by (unfold strict_uv_prop_def, blast)
lemma strict_uv_refine_lemma_v:
"strict_uv_prop X
==> (\<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef & F\<squnion>H \<in> X --> G\<squnion>H \<in> X) =
(F \<in> welldef \<inter> X --> G \<in> X)"
apply (unfold strict_uv_prop_def, safe)
apply (erule_tac x = SKIP and P = "%H. PP H --> RR H" for PP RR in allE)
apply (auto dest: Join_welldef_D1 Join_welldef_D2)
done
lemma uv_refinement_thm:
"[| strict_uv_prop X;
\<forall>H. F ok H & G ok H & F\<squnion>H \<in> welldef \<inter> X -->
G\<squnion>H \<in> welldef |]
==> (G refines F wrt X) = (G iso_refines F wrt X)"
apply (rule_tac x = SKIP in allE, assumption)
apply (simp add: refines_def iso_refines_def strict_uv_refine_lemma_v)
done
(* Added by Sidi Ehmety from Chandy & Sander, section 6 *)
lemma guarantees_equiv:
"(F \ X guarantees Y) = (\H. H \ X \ (F component_of H \ H \ Y))"
by (unfold guar_def component_of_def, auto)
lemma wg_weakest: "!!X. F\ (X guarantees Y) ==> X \ (wg F Y)"
by (unfold wg_def, auto)
lemma wg_guarantees: "F\ ((wg F Y) guarantees Y)"
by (unfold wg_def guar_def, blast)
lemma wg_equiv: "(H \ wg F X) = (F component_of H --> H \ X)"
by (simp add: guarantees_equiv wg_def, blast)
lemma component_of_wg: "F component_of H ==> (H \ wg F X) = (H \ X)"
by (simp add: wg_equiv)
lemma wg_finite:
"\FF. finite FF \ FF \ X \ {} \ OK FF (\F. F)
\<longrightarrow> (\<forall>F\<in>FF. ((\<Squnion>F \<in> FF. F) \<in> wg F X) = ((\<Squnion>F \<in> FF. F) \<in> X))"
apply clarify
apply (subgoal_tac "F component_of (\F \ FF. F) ")
apply (drule_tac X = X in component_of_wg, simp)
apply (simp add: component_of_def)
apply (rule_tac x = "\F \ (FF-{F}) . F" in exI)
apply (auto intro: JN_Join_diff dest: ok_sym simp add: OK_iff_ok)
done
lemma wg_ex_prop: "ex_prop X ==> (F \ X) = (\H. H \ wg F X)"
apply (simp (no_asm_use) add: ex_prop_equiv wg_equiv)
apply blast
done
(** From Charpentier and Chandy "Theorems About Composition" **)
(* Proposition 2 *)
lemma wx_subset: "(wx X)<=X"
by (unfold wx_def, auto)
lemma wx_ex_prop: "ex_prop (wx X)"
apply (simp add: wx_def ex_prop_equiv cong: bex_cong, safe, blast)
apply force
done
lemma wx_weakest: "\Z. Z<= X --> ex_prop Z --> Z \ wx X"
by (auto simp add: wx_def)
(* Proposition 6 *)
lemma wx'_ex_prop: "ex_prop({F. \G. F ok G --> F\G \ X})"
apply (unfold ex_prop_def, safe)
apply (drule_tac x = "G\Ga" in spec)
apply (force simp add: Join_assoc)
apply (drule_tac x = "F\Ga" in spec)
apply (simp add: ok_commute Join_ac)
done
text\<open>Equivalence with the other definition of wx\<close>
lemma wx_equiv: "wx X = {F. \G. F ok G --> (F\G) \ X}"
apply (unfold wx_def, safe)
apply (simp add: ex_prop_def, blast)
apply (simp (no_asm))
apply (rule_tac x = "{F. \G. F ok G --> F\G \ X}" in exI, safe)
apply (rule_tac [2] wx'_ex_prop)
apply (drule_tac x = SKIP in spec)+
apply auto
done
text\<open>Propositions 7 to 11 are about this second definition of wx.
They are the same as the ones proved for the first definition of wx,
by equivalence\<close>
(* Proposition 12 *)
(* Main result of the paper *)
lemma guarantees_wx_eq: "(X guarantees Y) = wx(-X \ Y)"
by (simp add: guar_def wx_equiv)
(* Rules given in section 7 of Chandy and Sander's
Reasoning About Program composition paper *)
lemma stable_guarantees_Always:
"Init F \ A ==> F \ (stable A) guarantees (Always A)"
apply (rule guaranteesI)
apply (simp add: Join_commute)
apply (rule stable_Join_Always1)
apply (simp_all add: invariant_def)
done
lemma constrains_guarantees_leadsTo:
"F \ transient A ==> F \ (A co A \ B) guarantees (A leadsTo (B-A))"
apply (rule guaranteesI)
apply (rule leadsTo_Basis')
apply (drule constrains_weaken_R)
prefer 2 apply assumption
apply blast
apply (blast intro: Join_transient_I1)
done
end
¤ Dauer der Verarbeitung: 0.33 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|