/*
* Copyright (C) The Apache Software Foundation. All rights reserved.
*
* This software is published under the terms of the Apache Software License
* version 1.1, a copy of which has been included with this distribution in
* the LICENSE.txt file.
*/
package installer;
import java.io.IOException;
import java.io.InputStream;
/**
* An input stream that decompresses from the BZip2 format (without the file
* header chars) to be read as any other stream.
*
* @author <a href="mailto:[email protected]">Keiron Liddle</a>
*/
public class CBZip2InputStream
extends InputStream
implements BZip2Constants
{
private static final int START_BLOCK_STATE = 1;
private static final int RAND_PART_A_STATE = 2;
private static final int RAND_PART_B_STATE = 3;
private static final int RAND_PART_C_STATE = 4;
private static final int NO_RAND_PART_A_STATE = 5;
private static final int NO_RAND_PART_B_STATE = 6;
private static final int NO_RAND_PART_C_STATE = 7;
private CRC m_crc = new CRC();
private boolean[] m_inUse = new boolean[ 256 ];
private char[] m_seqToUnseq = new char[ 256 ];
private char[] m_unseqToSeq = new char[ 256 ];
private char[] m_selector = new char[ MAX_SELECTORS ];
private char[] m_selectorMtf = new char[ MAX_SELECTORS ];
/*
* freq table collected to save a pass over the data
* during decompression.
*/
private int[] m_unzftab = new int[ 256 ];
private int[][] m_limit = new int[ N_GROUPS ][ MAX_ALPHA_SIZE ];
private int[][] m_base = new int[ N_GROUPS ][ MAX_ALPHA_SIZE ];
private int[][] m_perm = new int[ N_GROUPS ][ MAX_ALPHA_SIZE ];
private int[] m_minLens = new int[ N_GROUPS ];
private boolean m_streamEnd;
private int m_currentChar = -1;
private int m_currentState = START_BLOCK_STATE;
private int m_rNToGo;
private int m_rTPos;
private int m_tPos;
private int i2;
private int count;
private int chPrev;
private int ch2;
private int j2;
private char z;
private boolean m_blockRandomised;
/*
* always: in the range 0 .. 9.
* The current block size is 100000 * this number.
*/
private int m_blockSize100k;
private int m_bsBuff;
private int m_bsLive;
private InputStream m_input;
private int m_computedBlockCRC;
private int m_computedCombinedCRC;
/*
* index of the last char in the block, so
* the block size == last + 1.
*/
private int m_last;
private char[] m_ll8;
private int m_nInUse;
/*
* index in zptr[] of original string after sorting.
*/
private int m_origPtr;
private int m_storedBlockCRC;
private int m_storedCombinedCRC;
private int[] m_tt;
public CBZip2InputStream( final InputStream input )
{
bsSetStream( input );
initialize();
initBlock();
setupBlock();
}
private static void badBlockHeader()
{
cadvise();
}
private static void blockOverrun()
{
cadvise();
}
private static void cadvise()
{
System.out.println( "CRC Error" );
//throw new CCoruptionError();
}
private static void compressedStreamEOF()
{
cadvise();
}
private static void crcError()
{
cadvise();
}
public int read()
{
if( m_streamEnd )
{
return -1;
}
else
{
int retChar = m_currentChar;
switch( m_currentState )
{
case START_BLOCK_STATE:
break;
case RAND_PART_A_STATE:
break;
case RAND_PART_B_STATE:
setupRandPartB();
break;
case RAND_PART_C_STATE:
setupRandPartC();
break;
case NO_RAND_PART_A_STATE:
break;
case NO_RAND_PART_B_STATE:
setupNoRandPartB();
break;
case NO_RAND_PART_C_STATE:
setupNoRandPartC();
break;
default:
break;
}
return retChar;
}
}
private void setDecompressStructureSizes( int newSize100k )
{
if( !( 0 <= newSize100k && newSize100k <= 9 && 0 <= m_blockSize100k
&& m_blockSize100k <= 9 ) )
{
// throw new IOException("Invalid block size");
}
m_blockSize100k = newSize100k;
if( newSize100k == 0 )
{
return;
}
int n = BASE_BLOCK_SIZE * newSize100k;
m_ll8 = new char[ n ];
m_tt = new int[ n ];
}
private void setupBlock()
{
int[] cftab = new int[ 257 ];
char ch;
cftab[ 0 ] = 0;
for( int i = 1; i <= 256; i++ )
{
cftab[ i ] = m_unzftab[ i - 1 ];
}
for( int i = 1; i <= 256; i++ )
{
cftab[ i ] += cftab[ i - 1 ];
}
for( int i = 0; i <= m_last; i++ )
{
ch = m_ll8[ i ];
m_tt[ cftab[ ch ] ] = i;
cftab[ ch ]++;
}
cftab = null;
m_tPos = m_tt[ m_origPtr ];
count = 0;
i2 = 0;
ch2 = 256;
/*
* not a char and not EOF
*/
if( m_blockRandomised )
{
m_rNToGo = 0;
m_rTPos = 0;
setupRandPartA();
}
else
{
setupNoRandPartA();
}
}
private void setupNoRandPartA()
{
if( i2 <= m_last )
{
chPrev = ch2;
ch2 = m_ll8[ m_tPos ];
m_tPos = m_tt[ m_tPos ];
i2++;
m_currentChar = ch2;
m_currentState = NO_RAND_PART_B_STATE;
m_crc.updateCRC( ch2 );
}
else
{
endBlock();
initBlock();
setupBlock();
}
}
private void setupNoRandPartB()
{
if( ch2 != chPrev )
{
m_currentState = NO_RAND_PART_A_STATE;
count = 1;
setupNoRandPartA();
}
else
{
count++;
if( count >= 4 )
{
z = m_ll8[ m_tPos ];
m_tPos = m_tt[ m_tPos ];
m_currentState = NO_RAND_PART_C_STATE;
j2 = 0;
setupNoRandPartC();
}
else
{
m_currentState = NO_RAND_PART_A_STATE;
setupNoRandPartA();
}
}
}
private void setupNoRandPartC()
{
if( j2 < z )
{
m_currentChar = ch2;
m_crc.updateCRC( ch2 );
j2++;
}
else
{
m_currentState = NO_RAND_PART_A_STATE;
i2++;
count = 0;
setupNoRandPartA();
}
}
private void setupRandPartA()
{
if( i2 <= m_last )
{
chPrev = ch2;
ch2 = m_ll8[ m_tPos ];
m_tPos = m_tt[ m_tPos ];
if( m_rNToGo == 0 )
{
m_rNToGo = RAND_NUMS[ m_rTPos ];
m_rTPos++;
if( m_rTPos == 512 )
{
m_rTPos = 0;
}
}
m_rNToGo--;
ch2 ^= ( ( m_rNToGo == 1 ) ? 1 : 0 );
i2++;
m_currentChar = ch2;
m_currentState = RAND_PART_B_STATE;
m_crc.updateCRC( ch2 );
}
else
{
endBlock();
initBlock();
setupBlock();
}
}
private void setupRandPartB()
{
if( ch2 != chPrev )
{
m_currentState = RAND_PART_A_STATE;
count = 1;
setupRandPartA();
}
else
{
count++;
if( count >= 4 )
{
z = m_ll8[ m_tPos ];
m_tPos = m_tt[ m_tPos ];
if( m_rNToGo == 0 )
{
m_rNToGo = RAND_NUMS[ m_rTPos ];
m_rTPos++;
if( m_rTPos == 512 )
{
m_rTPos = 0;
}
}
m_rNToGo--;
z ^= ( ( m_rNToGo == 1 ) ? 1 : 0 );
j2 = 0;
m_currentState = RAND_PART_C_STATE;
setupRandPartC();
}
else
{
m_currentState = RAND_PART_A_STATE;
setupRandPartA();
}
}
}
private void setupRandPartC()
{
if( j2 < z )
{
m_currentChar = ch2;
m_crc.updateCRC( ch2 );
j2++;
}
else
{
m_currentState = RAND_PART_A_STATE;
i2++;
count = 0;
setupRandPartA();
}
}
private void getAndMoveToFrontDecode()
{
int nextSym;
int limitLast = BASE_BLOCK_SIZE * m_blockSize100k;
m_origPtr = readVariableSizedInt( 24 );
recvDecodingTables();
int EOB = m_nInUse + 1;
int groupNo = -1;
int groupPos = 0;
/*
* Setting up the unzftab entries here is not strictly
* necessary, but it does save having to do it later
* in a separate pass, and so saves a block's worth of
* cache misses.
*/
for( int i = 0; i <= 255; i++ )
{
m_unzftab[ i ] = 0;
}
final char[] yy = new char[ 256 ];
for( int i = 0; i <= 255; i++ )
{
yy[ i ] = (char)i;
}
m_last = -1;
int zt;
int zn;
int zvec;
int zj;
groupNo++;
groupPos = G_SIZE - 1;
zt = m_selector[ groupNo ];
zn = m_minLens[ zt ];
zvec = bsR( zn );
while( zvec > m_limit[ zt ][ zn ] )
{
zn++;
while( m_bsLive < 1 )
{
int zzi;
try
{
zzi = m_input.read();
}
catch( IOException e )
{
compressedStreamEOF();
break;
}
if( zzi == -1 )
{
compressedStreamEOF();
break;
}
m_bsBuff = ( m_bsBuff << 8 ) | ( zzi & 0xff );
m_bsLive += 8;
}
zj = ( m_bsBuff >> ( m_bsLive - 1 ) ) & 1;
m_bsLive--;
zvec = ( zvec << 1 ) | zj;
}
nextSym = m_perm[ zt ][ zvec - m_base[ zt ][ zn ] ];
while( true )
{
if( nextSym == EOB )
{
break;
}
if( nextSym == RUNA || nextSym == RUNB )
{
char ch;
int s = -1;
int N = 1;
do
{
if( nextSym == RUNA )
{
s = s + ( 0 + 1 ) * N;
}
else// if( nextSym == RUNB )
{
s = s + ( 1 + 1 ) * N;
}
N = N * 2;
if( groupPos == 0 )
{
groupNo++;
groupPos = G_SIZE;
}
groupPos--;
zt = m_selector[ groupNo ];
zn = m_minLens[ zt ];
zvec = bsR( zn );
while( zvec > m_limit[ zt ][ zn ] )
{
zn++;
while( m_bsLive < 1 )
{
int zzi;
char thech = 0;
try
{
thech = (char)m_input.read();
}
catch( IOException e )
{
compressedStreamEOF();
}
if( thech == -1 )
{
compressedStreamEOF();
}
zzi = thech;
m_bsBuff = ( m_bsBuff << 8 ) | ( zzi & 0xff );
m_bsLive += 8;
}
zj = ( m_bsBuff >> ( m_bsLive - 1 ) ) & 1;
m_bsLive--;
zvec = ( zvec << 1 ) | zj;
}
nextSym = m_perm[ zt ][ zvec - m_base[ zt ][ zn ] ];
} while( nextSym == RUNA || nextSym == RUNB );
s++;
ch = m_seqToUnseq[ yy[ 0 ] ];
m_unzftab[ ch ] += s;
while( s > 0 )
{
m_last++;
m_ll8[ m_last ] = ch;
s--;
}
if( m_last >= limitLast )
{
blockOverrun();
}
continue;
}
else
{
char tmp;
m_last++;
if( m_last >= limitLast )
{
blockOverrun();
}
tmp = yy[ nextSym - 1 ];
m_unzftab[ m_seqToUnseq[ tmp ] ]++;
m_ll8[ m_last ] = m_seqToUnseq[ tmp ];
/*
* This loop is hammered during decompression,
* hence the unrolling.
* for (j = nextSym-1; j > 0; j--) yy[j] = yy[j-1];
*/
int j = nextSym - 1;
for( ; j > 3; j -= 4 )
{
yy[ j ] = yy[ j - 1 ];
yy[ j - 1 ] = yy[ j - 2 ];
yy[ j - 2 ] = yy[ j - 3 ];
yy[ j - 3 ] = yy[ j - 4 ];
}
for( ; j > 0; j-- )
{
yy[ j ] = yy[ j - 1 ];
}
yy[ 0 ] = tmp;
if( groupPos == 0 )
{
groupNo++;
groupPos = G_SIZE;
}
groupPos--;
zt = m_selector[ groupNo ];
zn = m_minLens[ zt ];
zvec = bsR( zn );
while( zvec > m_limit[ zt ][ zn ] )
{
zn++;
while( m_bsLive < 1 )
{
char ch = 0;
try
{
ch = (char)m_input.read();
}
catch( IOException e )
{
compressedStreamEOF();
}
m_bsBuff = ( m_bsBuff << 8 ) | ( ch & 0xff );
m_bsLive += 8;
}
zj = ( m_bsBuff >> ( m_bsLive - 1 ) ) & 1;
m_bsLive--;
zvec = ( zvec << 1 ) | zj;
}
nextSym = m_perm[ zt ][ zvec - m_base[ zt ][ zn ] ];
continue;
}
}
}
private void bsFinishedWithStream()
{
m_input = null;
}
private int readVariableSizedInt( final int numBits )
{
return bsR( numBits );
}
private char readUnsignedChar()
{
return (char)bsR( 8 );
}
private int readInt()
{
int u = 0;
u = ( u << 8 ) | bsR( 8 );
u = ( u << 8 ) | bsR( 8 );
u = ( u << 8 ) | bsR( 8 );
u = ( u << 8 ) | bsR( 8 );
return u;
}
private int bsR( final int n )
{
while( m_bsLive < n )
{
char ch = 0;
try
{
ch = (char)m_input.read();
}
catch( final IOException ioe )
{
compressedStreamEOF();
}
if( ch == -1 )
{
compressedStreamEOF();
}
m_bsBuff = ( m_bsBuff << 8 ) | ( ch & 0xff );
m_bsLive += 8;
}
final int result = ( m_bsBuff >> ( m_bsLive - n ) ) & ( ( 1 << n ) - 1 );
m_bsLive -= n;
return result;
}
private void bsSetStream( final InputStream input )
{
m_input = input;
m_bsLive = 0;
m_bsBuff = 0;
}
private void complete()
{
m_storedCombinedCRC = readInt();
if( m_storedCombinedCRC != m_computedCombinedCRC )
{
crcError();
}
bsFinishedWithStream();
m_streamEnd = true;
}
private void endBlock()
{
m_computedBlockCRC = m_crc.getFinalCRC();
/*
* A bad CRC is considered a fatal error.
*/
if( m_storedBlockCRC != m_computedBlockCRC )
{
crcError();
}
m_computedCombinedCRC = ( m_computedCombinedCRC << 1 )
| ( m_computedCombinedCRC >>> 31 );
m_computedCombinedCRC ^= m_computedBlockCRC;
}
private void hbCreateDecodeTables( final int[] limit,
final int[] base,
final int[] perm,
final char[] length,
final int minLen,
final int maxLen,
final int alphaSize )
{
int pp = 0;
for( int i = minLen; i <= maxLen; i++ )
{
for( int j = 0; j < alphaSize; j++ )
{
if( length[ j ] == i )
{
perm[ pp ] = j;
pp++;
}
}
}
for( int i = 0; i < MAX_CODE_LEN; i++ )
{
base[ i ] = 0;
}
for( int i = 0; i < alphaSize; i++ )
{
base[ length[ i ] + 1 ]++;
}
for( int i = 1; i < MAX_CODE_LEN; i++ )
{
base[ i ] += base[ i - 1 ];
}
for( int i = 0; i < MAX_CODE_LEN; i++ )
{
limit[ i ] = 0;
}
int vec = 0;
for( int i = minLen; i <= maxLen; i++ )
{
vec += ( base[ i + 1 ] - base[ i ] );
limit[ i ] = vec - 1;
vec <<= 1;
}
for( int i = minLen + 1; i <= maxLen; i++ )
{
base[ i ] = ( ( limit[ i - 1 ] + 1 ) << 1 ) - base[ i ];
}
}
private void initBlock()
{
final char magic1 = readUnsignedChar();
final char magic2 = readUnsignedChar();
final char magic3 = readUnsignedChar();
final char magic4 = readUnsignedChar();
final char magic5 = readUnsignedChar();
final char magic6 = readUnsignedChar();
if( magic1 == 0x17 && magic2 == 0x72 && magic3 == 0x45 &&
magic4 == 0x38 && magic5 == 0x50 && magic6 == 0x90 )
{
complete();
return;
}
if( magic1 != 0x31 || magic2 != 0x41 || magic3 != 0x59 ||
magic4 != 0x26 || magic5 != 0x53 || magic6 != 0x59 )
{
badBlockHeader();
m_streamEnd = true;
return;
}
m_storedBlockCRC = readInt();
if( bsR( 1 ) == 1 )
{
m_blockRandomised = true;
}
else
{
m_blockRandomised = false;
}
// currBlockNo++;
getAndMoveToFrontDecode();
m_crc.initialiseCRC();
m_currentState = START_BLOCK_STATE;
}
private void initialize()
{
final char magic3 = readUnsignedChar();
final char magic4 = readUnsignedChar();
if( magic3 != 'h' || magic4 < '1' || magic4 > '9' )
{
bsFinishedWithStream();
m_streamEnd = true;
return;
}
setDecompressStructureSizes( magic4 - '0' );
m_computedCombinedCRC = 0;
}
private void makeMaps()
{
m_nInUse = 0;
for( int i = 0; i < 256; i++ )
{
if( m_inUse[ i ] )
{
m_seqToUnseq[ m_nInUse ] = (char)i;
m_unseqToSeq[ i ] = (char)m_nInUse;
m_nInUse++;
}
}
}
private void recvDecodingTables()
{
buildInUseTable();
makeMaps();
final int alphaSize = m_nInUse + 2;
/*
* Now the selectors
*/
final int groupCount = bsR( 3 );
final int selectorCount = bsR( 15 );
for( int i = 0; i < selectorCount; i++ )
{
int run = 0;
while( bsR( 1 ) == 1 )
{
run++;
}
m_selectorMtf[ i ] = (char)run;
}
/*
* Undo the MTF values for the selectors.
*/
final char[] pos = new char[ N_GROUPS ];
for( char v = 0; v < groupCount; v++ )
{
pos[ v ] = v;
}
for( int i = 0; i < selectorCount; i++ )
{
int v = m_selectorMtf[ i ];
final char tmp = pos[ v ];
while( v > 0 )
{
pos[ v ] = pos[ v - 1 ];
v--;
}
pos[ 0 ] = tmp;
m_selector[ i ] = tmp;
}
final char[][] len = new char[ N_GROUPS ][ MAX_ALPHA_SIZE ];
/*
* Now the coding tables
*/
for( int i = 0; i < groupCount; i++ )
{
int curr = bsR( 5 );
for( int j = 0; j < alphaSize; j++ )
{
while( bsR( 1 ) == 1 )
{
if( bsR( 1 ) == 0 )
{
curr++;
}
else
{
curr--;
}
}
len[ i ][ j ] = (char)curr;
}
}
/*
* Create the Huffman decoding tables
*/
for( int k = 0; k < groupCount; k++ )
{
int minLen = 32;
int maxLen = 0;
for( int i = 0; i < alphaSize; i++ )
{
if( len[ k ][ i ] > maxLen )
{
maxLen = len[ k ][ i ];
}
if( len[ k ][ i ] < minLen )
{
minLen = len[ k ][ i ];
}
}
hbCreateDecodeTables( m_limit[ k ], m_base[ k ], m_perm[ k ], len[ k ], minLen,
maxLen, alphaSize );
m_minLens[ k ] = minLen;
}
}
private void buildInUseTable()
{
final boolean[] inUse16 = new boolean[ 16 ];
/*
* Receive the mapping table
*/
for( int i = 0; i < 16; i++ )
{
if( bsR( 1 ) == 1 )
{
inUse16[ i ] = true;
}
else
{
inUse16[ i ] = false;
}
}
for( int i = 0; i < 256; i++ )
{
m_inUse[ i ] = false;
}
for( int i = 0; i < 16; i++ )
{
if( inUse16[ i ] )
{
for( int j = 0; j < 16; j++ )
{
if( bsR( 1 ) == 1 )
{
m_inUse[ i * 16 + j ] = true;
}
}
}
}
}
}
¤ Dauer der Verarbeitung: 0.29 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|