/*
* Copyright (c) 2007, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/connode.hpp"
#include "opto/mulnode.hpp"
#include "opto/subnode.hpp"
#include "opto/vectornode.hpp"
#include "opto/convertnode.hpp"
#include "utilities/powerOfTwo.hpp"
#include "utilities/globalDefinitions.hpp"
//------------------------------VectorNode--------------------------------------
// Return the vector operator for the specified scalar operation
// and vector length.
int VectorNode::opcode(int sopc, BasicType bt) {
switch (sopc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_AddVB;
case T_CHAR:
case T_SHORT: return Op_AddVS;
case T_INT: return Op_AddVI;
default: return 0;
}
case Op_AddL: return (bt == T_LONG ? Op_AddVL : 0);
case Op_AddF: return (bt == T_FLOAT ? Op_AddVF : 0);
case Op_AddD: return (bt == T_DOUBLE ? Op_AddVD : 0);
case Op_SubI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_SubVB;
case T_CHAR:
case T_SHORT: return Op_SubVS;
case T_INT: return Op_SubVI;
default: return 0;
}
case Op_SubL: return (bt == T_LONG ? Op_SubVL : 0);
case Op_SubF: return (bt == T_FLOAT ? Op_SubVF : 0);
case Op_SubD: return (bt == T_DOUBLE ? Op_SubVD : 0);
case Op_MulI:
switch (bt) {
case T_BOOLEAN:return 0;
case T_BYTE: return Op_MulVB;
case T_CHAR:
case T_SHORT: return Op_MulVS;
case T_INT: return Op_MulVI;
default: return 0;
}
case Op_MulL: return (bt == T_LONG ? Op_MulVL : 0);
case Op_MulF:
return (bt == T_FLOAT ? Op_MulVF : 0);
case Op_MulD:
return (bt == T_DOUBLE ? Op_MulVD : 0);
case Op_FmaD:
return (bt == T_DOUBLE ? Op_FmaVD : 0);
case Op_FmaF:
return (bt == T_FLOAT ? Op_FmaVF : 0);
case Op_CMoveF:
return (bt == T_FLOAT ? Op_CMoveVF : 0);
case Op_CMoveD:
return (bt == T_DOUBLE ? Op_CMoveVD : 0);
case Op_DivF:
return (bt == T_FLOAT ? Op_DivVF : 0);
case Op_DivD:
return (bt == T_DOUBLE ? Op_DivVD : 0);
case Op_AbsI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0; // abs does not make sense for unsigned
case T_BYTE: return Op_AbsVB;
case T_SHORT: return Op_AbsVS;
case T_INT: return Op_AbsVI;
default: return 0;
}
case Op_AbsL:
return (bt == T_LONG ? Op_AbsVL : 0);
case Op_MinI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT: return Op_MinV;
default: return 0;
}
case Op_MinL:
return (bt == T_LONG ? Op_MinV : 0);
case Op_MinF:
return (bt == T_FLOAT ? Op_MinV : 0);
case Op_MinD:
return (bt == T_DOUBLE ? Op_MinV : 0);
case Op_MaxI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT: return Op_MaxV;
default: return 0;
}
case Op_MaxL:
return (bt == T_LONG ? Op_MaxV : 0);
case Op_MaxF:
return (bt == T_FLOAT ? Op_MaxV : 0);
case Op_MaxD:
return (bt == T_DOUBLE ? Op_MaxV : 0);
case Op_AbsF:
return (bt == T_FLOAT ? Op_AbsVF : 0);
case Op_AbsD:
return (bt == T_DOUBLE ? Op_AbsVD : 0);
case Op_NegI:
switch (bt) {
case T_BYTE:
case T_SHORT:
case T_INT: return Op_NegVI;
default: return 0;
}
case Op_NegL:
return (bt == T_LONG ? Op_NegVL : 0);
case Op_NegF:
return (bt == T_FLOAT ? Op_NegVF : 0);
case Op_NegD:
return (bt == T_DOUBLE ? Op_NegVD : 0);
case Op_RoundDoubleMode:
return (bt == T_DOUBLE ? Op_RoundDoubleModeV : 0);
case Op_RotateLeft:
return (is_integral_type(bt) ? Op_RotateLeftV : 0);
case Op_RotateRight:
return (is_integral_type(bt) ? Op_RotateRightV : 0);
case Op_SqrtF:
return (bt == T_FLOAT ? Op_SqrtVF : 0);
case Op_SqrtD:
return (bt == T_DOUBLE ? Op_SqrtVD : 0);
case Op_RoundF:
return (bt == T_INT ? Op_RoundVF : 0);
case Op_RoundD:
return (bt == T_LONG ? Op_RoundVD : 0);
case Op_PopCountI:
return Op_PopCountVI;
case Op_PopCountL:
return Op_PopCountVL;
case Op_ReverseI:
case Op_ReverseL:
return (is_integral_type(bt) ? Op_ReverseV : 0);
case Op_ReverseBytesS:
case Op_ReverseBytesUS:
// Subword operations in superword usually don't have precise info
// about signedness. But the behavior of reverseBytes for short and
// char are exactly the same.
return ((bt == T_SHORT || bt == T_CHAR) ? Op_ReverseBytesV : 0);
case Op_ReverseBytesI:
// There is no reverseBytes() in Byte class but T_BYTE may appear
// in VectorAPI calls. We still use ReverseBytesI for T_BYTE to
// ensure vector intrinsification succeeds.
return ((bt == T_INT || bt == T_BYTE) ? Op_ReverseBytesV : 0);
case Op_ReverseBytesL:
return (bt == T_LONG ? Op_ReverseBytesV : 0);
case Op_CompressBits:
// Not implemented. Returning 0 temporarily
return 0;
case Op_ExpandBits:
// Not implemented. Returning 0 temporarily
return 0;
case Op_LShiftI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_LShiftVB;
case T_CHAR:
case T_SHORT: return Op_LShiftVS;
case T_INT: return Op_LShiftVI;
default: return 0;
}
case Op_LShiftL:
return (bt == T_LONG ? Op_LShiftVL : 0);
case Op_RShiftI:
switch (bt) {
case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
case T_CHAR: return Op_URShiftVS; // char is unsigned value
case T_BYTE: return Op_RShiftVB;
case T_SHORT: return Op_RShiftVS;
case T_INT: return Op_RShiftVI;
default: return 0;
}
case Op_RShiftL:
return (bt == T_LONG ? Op_RShiftVL : 0);
case Op_URShiftB:
return (bt == T_BYTE ? Op_URShiftVB : 0);
case Op_URShiftS:
return (bt == T_SHORT ? Op_URShiftVS : 0);
case Op_URShiftI:
switch (bt) {
case T_BOOLEAN:return Op_URShiftVB;
case T_CHAR: return Op_URShiftVS;
case T_BYTE:
case T_SHORT: return 0; // Vector logical right shift for signed short
// values produces incorrect Java result for
// negative data because java code should convert
// a short value into int value with sign
// extension before a shift.
case T_INT: return Op_URShiftVI;
default: return 0;
}
case Op_URShiftL:
return (bt == T_LONG ? Op_URShiftVL : 0);
case Op_AndI:
case Op_AndL:
return Op_AndV;
case Op_OrI:
case Op_OrL:
return Op_OrV;
case Op_XorI:
case Op_XorL:
return Op_XorV;
case Op_LoadB:
case Op_LoadUB:
case Op_LoadUS:
case Op_LoadS:
case Op_LoadI:
case Op_LoadL:
case Op_LoadF:
case Op_LoadD:
return Op_LoadVector;
case Op_StoreB:
case Op_StoreC:
case Op_StoreI:
case Op_StoreL:
case Op_StoreF:
case Op_StoreD:
return Op_StoreVector;
case Op_MulAddS2I:
return Op_MulAddVS2VI;
case Op_CountLeadingZerosI:
case Op_CountLeadingZerosL:
return Op_CountLeadingZerosV;
case Op_CountTrailingZerosI:
case Op_CountTrailingZerosL:
return Op_CountTrailingZerosV;
case Op_SignumF:
return Op_SignumVF;
case Op_SignumD:
return Op_SignumVD;
default:
assert(!VectorNode::is_convert_opcode(sopc),
"Convert node %s should be processed by VectorCastNode::opcode()",
NodeClassNames[sopc]);
return 0; // Unimplemented
}
}
int VectorNode::replicate_opcode(BasicType bt) {
switch(bt) {
case T_BOOLEAN:
case T_BYTE:
return Op_ReplicateB;
case T_SHORT:
case T_CHAR:
return Op_ReplicateS;
case T_INT:
return Op_ReplicateI;
case T_LONG:
return Op_ReplicateL;
case T_FLOAT:
return Op_ReplicateF;
case T_DOUBLE:
return Op_ReplicateD;
default:
assert(false, "wrong type: %s", type2name(bt));
return 0;
}
}
bool VectorNode::vector_size_supported(BasicType bt, uint vlen) {
return (Matcher::vector_size_supported(bt, vlen) &&
(vlen * type2aelembytes(bt) <= (uint)SuperWordMaxVectorSize));
}
// Also used to check if the code generator
// supports the vector operation.
bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
vector_size_supported(bt, vlen)) {
int vopc = VectorNode::opcode(opc, bt);
// For rotate operation we will do a lazy de-generation into
// OrV/LShiftV/URShiftV pattern if the target does not support
// vector rotation instruction.
if (VectorNode::is_vector_rotate(vopc)) {
return is_vector_rotate_supported(vopc, vlen, bt);
}
if (VectorNode::is_vector_integral_negate(vopc)) {
return is_vector_integral_negate_supported(vopc, vlen, bt, false);
}
return vopc > 0 && Matcher::match_rule_supported_superword(vopc, vlen, bt);
}
return false;
}
bool VectorNode::is_type_transition_short_to_int(Node* n) {
switch (n->Opcode()) {
case Op_MulAddS2I:
return true;
}
return false;
}
bool VectorNode::is_type_transition_to_int(Node* n) {
return is_type_transition_short_to_int(n);
}
bool VectorNode::is_muladds2i(Node* n) {
if (n->Opcode() == Op_MulAddS2I) {
return true;
}
return false;
}
bool VectorNode::is_roundopD(Node* n) {
if (n->Opcode() == Op_RoundDoubleMode) {
return true;
}
return false;
}
bool VectorNode::is_vector_rotate_supported(int vopc, uint vlen, BasicType bt) {
assert(VectorNode::is_vector_rotate(vopc), "wrong opcode");
// If target defines vector rotation patterns then no
// need for degeneration.
if (Matcher::match_rule_supported_vector(vopc, vlen, bt)) {
return true;
}
// If target does not support variable shift operations then no point
// in creating a rotate vector node since it will not be disintegratable.
// Adding a pessimistic check to avoid complex pattern matching which
// may not be full proof.
if (!Matcher::supports_vector_variable_shifts()) {
return false;
}
// Validate existence of nodes created in case of rotate degeneration.
switch (bt) {
case T_INT:
return Matcher::match_rule_supported_vector(Op_OrV, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_LShiftVI, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_URShiftVI, vlen, bt);
case T_LONG:
return Matcher::match_rule_supported_vector(Op_OrV, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_LShiftVL, vlen, bt) &&
Matcher::match_rule_supported_vector(Op_URShiftVL, vlen, bt);
default:
return false;
}
}
// Check whether the architecture supports the vector negate instructions. If not, then check
// whether the alternative vector nodes used to implement vector negation are supported.
// Return false if neither of them is supported.
bool VectorNode::is_vector_integral_negate_supported(int opc, uint vlen, BasicType bt, bool use_predicate) {
if (!use_predicate) {
// Check whether the NegVI/L is supported by the architecture.
if (Matcher::match_rule_supported_vector(opc, vlen, bt)) {
return true;
}
// Negate is implemented with "(SubVI/L (ReplicateI/L 0) src)", if NegVI/L is not supported.
int sub_opc = (bt == T_LONG) ? Op_SubL : Op_SubI;
if (Matcher::match_rule_supported_vector(VectorNode::opcode(sub_opc, bt), vlen, bt) &&
Matcher::match_rule_supported_vector(VectorNode::replicate_opcode(bt), vlen, bt)) {
return true;
}
} else {
// Check whether the predicated NegVI/L is supported by the architecture.
if (Matcher::match_rule_supported_vector_masked(opc, vlen, bt)) {
return true;
}
// Predicated negate is implemented with "(AddVI/L (XorV src (ReplicateI/L -1)) (ReplicateI/L 1))",
// if predicated NegVI/L is not supported.
int add_opc = (bt == T_LONG) ? Op_AddL : Op_AddI;
if (Matcher::match_rule_supported_vector_masked(Op_XorV, vlen, bt) &&
Matcher::match_rule_supported_vector_masked(VectorNode::opcode(add_opc, bt), vlen, bt) &&
Matcher::match_rule_supported_vector(VectorNode::replicate_opcode(bt), vlen, bt)) {
return true;
}
}
return false;
}
bool VectorNode::is_populate_index_supported(BasicType bt) {
int vlen = Matcher::max_vector_size(bt);
return Matcher::match_rule_supported_vector(Op_PopulateIndex, vlen, bt);
}
bool VectorNode::is_shift_opcode(int opc) {
switch (opc) {
case Op_LShiftI:
case Op_LShiftL:
case Op_RShiftI:
case Op_RShiftL:
case Op_URShiftB:
case Op_URShiftS:
case Op_URShiftI:
case Op_URShiftL:
return true;
default:
return false;
}
}
bool VectorNode::can_transform_shift_op(Node* n, BasicType bt) {
if (n->Opcode() != Op_URShiftI) {
return false;
}
Node* in2 = n->in(2);
if (!in2->is_Con()) {
return false;
}
jint cnt = in2->get_int();
// Only when shift amount is not greater than number of sign extended
// bits (16 for short and 24 for byte), unsigned shift right on signed
// subword types can be vectorized as vector signed shift.
if ((bt == T_BYTE && cnt <= 24) || (bt == T_SHORT && cnt <= 16)) {
return true;
}
return false;
}
bool VectorNode::is_convert_opcode(int opc) {
switch (opc) {
case Op_ConvI2F:
case Op_ConvL2D:
case Op_ConvF2I:
case Op_ConvD2L:
case Op_ConvI2D:
case Op_ConvL2F:
case Op_ConvL2I:
case Op_ConvI2L:
case Op_ConvF2L:
case Op_ConvD2F:
case Op_ConvF2D:
case Op_ConvD2I:
case Op_ConvF2HF:
case Op_ConvHF2F:
return true;
default:
return false;
}
}
bool VectorNode::is_minmax_opcode(int opc) {
return opc == Op_MinI || opc == Op_MaxI;
}
bool VectorNode::is_shift(Node* n) {
return is_shift_opcode(n->Opcode());
}
bool VectorNode::is_rotate_opcode(int opc) {
switch (opc) {
case Op_RotateRight:
case Op_RotateLeft:
return true;
default:
return false;
}
}
bool VectorNode::is_scalar_rotate(Node* n) {
if (is_rotate_opcode(n->Opcode())) {
return true;
}
return false;
}
bool VectorNode::is_vshift_cnt_opcode(int opc) {
switch (opc) {
case Op_LShiftCntV:
case Op_RShiftCntV:
return true;
default:
return false;
}
}
bool VectorNode::is_vshift_cnt(Node* n) {
return is_vshift_cnt_opcode(n->Opcode());
}
// Check if input is loop invariant vector.
bool VectorNode::is_invariant_vector(Node* n) {
// Only Replicate vector nodes are loop invariant for now.
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
case Op_ReplicateF:
case Op_ReplicateD:
return true;
default:
return false;
}
}
// [Start, end) half-open range defining which operands are vectors
void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
switch (n->Opcode()) {
case Op_LoadB: case Op_LoadUB:
case Op_LoadS: case Op_LoadUS:
case Op_LoadI: case Op_LoadL:
case Op_LoadF: case Op_LoadD:
case Op_LoadP: case Op_LoadN:
*start = 0;
*end = 0; // no vector operands
break;
case Op_StoreB: case Op_StoreC:
case Op_StoreI: case Op_StoreL:
case Op_StoreF: case Op_StoreD:
case Op_StoreP: case Op_StoreN:
*start = MemNode::ValueIn;
*end = MemNode::ValueIn + 1; // 1 vector operand
break;
case Op_LShiftI: case Op_LShiftL:
case Op_RShiftI: case Op_RShiftL:
case Op_URShiftI: case Op_URShiftL:
*start = 1;
*end = 2; // 1 vector operand
break;
case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
case Op_DivF: case Op_DivD:
case Op_AndI: case Op_AndL:
case Op_OrI: case Op_OrL:
case Op_XorI: case Op_XorL:
case Op_MulAddS2I:
*start = 1;
*end = 3; // 2 vector operands
break;
case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
*start = 2;
*end = n->req();
break;
case Op_FmaD:
case Op_FmaF:
*start = 1;
*end = 4; // 3 vector operands
break;
default:
*start = 1;
*end = n->req(); // default is all operands
}
}
VectorNode* VectorNode::make_mask_node(int vopc, Node* n1, Node* n2, uint vlen, BasicType bt) {
guarantee(vopc > 0, "vopc must be > 0");
const TypeVect* vmask_type = TypeVect::makemask(bt, vlen);
switch (vopc) {
case Op_AndV:
if (Matcher::match_rule_supported_vector_masked(Op_AndVMask, vlen, bt)) {
return new AndVMaskNode(n1, n2, vmask_type);
}
return new AndVNode(n1, n2, vmask_type);
case Op_OrV:
if (Matcher::match_rule_supported_vector_masked(Op_OrVMask, vlen, bt)) {
return new OrVMaskNode(n1, n2, vmask_type);
}
return new OrVNode(n1, n2, vmask_type);
case Op_XorV:
if (Matcher::match_rule_supported_vector_masked(Op_XorVMask, vlen, bt)) {
return new XorVMaskNode(n1, n2, vmask_type);
}
return new XorVNode(n1, n2, vmask_type);
default:
fatal("Unsupported mask vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
// Make a vector node for binary operation
VectorNode* VectorNode::make(int vopc, Node* n1, Node* n2, const TypeVect* vt, bool is_mask, bool is_var_shift) {
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "vopc must be > 0");
if (is_mask) {
return make_mask_node(vopc, n1, n2, vt->length(), vt->element_basic_type());
}
switch (vopc) {
case Op_AddVB: return new AddVBNode(n1, n2, vt);
case Op_AddVS: return new AddVSNode(n1, n2, vt);
case Op_AddVI: return new AddVINode(n1, n2, vt);
case Op_AddVL: return new AddVLNode(n1, n2, vt);
case Op_AddVF: return new AddVFNode(n1, n2, vt);
case Op_AddVD: return new AddVDNode(n1, n2, vt);
case Op_SubVB: return new SubVBNode(n1, n2, vt);
case Op_SubVS: return new SubVSNode(n1, n2, vt);
case Op_SubVI: return new SubVINode(n1, n2, vt);
case Op_SubVL: return new SubVLNode(n1, n2, vt);
case Op_SubVF: return new SubVFNode(n1, n2, vt);
case Op_SubVD: return new SubVDNode(n1, n2, vt);
case Op_MulVB: return new MulVBNode(n1, n2, vt);
case Op_MulVS: return new MulVSNode(n1, n2, vt);
case Op_MulVI: return new MulVINode(n1, n2, vt);
case Op_MulVL: return new MulVLNode(n1, n2, vt);
case Op_MulVF: return new MulVFNode(n1, n2, vt);
case Op_MulVD: return new MulVDNode(n1, n2, vt);
case Op_DivVF: return new DivVFNode(n1, n2, vt);
case Op_DivVD: return new DivVDNode(n1, n2, vt);
case Op_MinV: return new MinVNode(n1, n2, vt);
case Op_MaxV: return new MaxVNode(n1, n2, vt);
case Op_AbsVF: return new AbsVFNode(n1, vt);
case Op_AbsVD: return new AbsVDNode(n1, vt);
case Op_AbsVB: return new AbsVBNode(n1, vt);
case Op_AbsVS: return new AbsVSNode(n1, vt);
case Op_AbsVI: return new AbsVINode(n1, vt);
case Op_AbsVL: return new AbsVLNode(n1, vt);
case Op_NegVI: return new NegVINode(n1, vt);
case Op_NegVL: return new NegVLNode(n1, vt);
case Op_NegVF: return new NegVFNode(n1, vt);
case Op_NegVD: return new NegVDNode(n1, vt);
case Op_ReverseV: return new ReverseVNode(n1, vt);
case Op_ReverseBytesV: return new ReverseBytesVNode(n1, vt);
case Op_SqrtVF: return new SqrtVFNode(n1, vt);
case Op_SqrtVD: return new SqrtVDNode(n1, vt);
case Op_RoundVF: return new RoundVFNode(n1, vt);
case Op_RoundVD: return new RoundVDNode(n1, vt);
case Op_PopCountVI: return new PopCountVINode(n1, vt);
case Op_PopCountVL: return new PopCountVLNode(n1, vt);
case Op_RotateLeftV: return new RotateLeftVNode(n1, n2, vt);
case Op_RotateRightV: return new RotateRightVNode(n1, n2, vt);
case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt, is_var_shift);
case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt, is_var_shift);
case Op_LShiftVI: return new LShiftVINode(n1, n2, vt, is_var_shift);
case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt, is_var_shift);
case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt, is_var_shift);
case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt, is_var_shift);
case Op_RShiftVI: return new RShiftVINode(n1, n2, vt, is_var_shift);
case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt, is_var_shift);
case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt, is_var_shift);
case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt, is_var_shift);
case Op_URShiftVI: return new URShiftVINode(n1, n2, vt, is_var_shift);
case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt, is_var_shift);
case Op_AndV: return new AndVNode(n1, n2, vt);
case Op_OrV: return new OrVNode (n1, n2, vt);
case Op_XorV: return new XorVNode(n1, n2, vt);
case Op_RoundDoubleModeV: return new RoundDoubleModeVNode(n1, n2, vt);
case Op_MulAddVS2VI: return new MulAddVS2VINode(n1, n2, vt);
case Op_ExpandV: return new ExpandVNode(n1, n2, vt);
case Op_CompressV: return new CompressVNode(n1, n2, vt);
case Op_CompressM: assert(n1 == NULL, ""); return new CompressMNode(n2, vt);
case Op_CountLeadingZerosV: return new CountLeadingZerosVNode(n1, vt);
case Op_CountTrailingZerosV: return new CountTrailingZerosVNode(n1, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
// Return the vector version of a scalar binary operation node.
VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt, bool is_var_shift) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
return make(vopc, n1, n2, vt, false, is_var_shift);
}
// Make a vector node for ternary operation
VectorNode* VectorNode::make(int vopc, Node* n1, Node* n2, Node* n3, const TypeVect* vt) {
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "vopc must be > 0");
switch (vopc) {
case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt);
case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt);
case Op_SignumVD: return new SignumVDNode(n1, n2, n3, vt);
case Op_SignumVF: return new SignumVFNode(n1, n2, n3, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
// Return the vector version of a scalar ternary operation node.
VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
return make(vopc, n1, n2, n3, vt);
}
// Scalar promotion
VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t, bool is_mask) {
BasicType bt = opd_t->array_element_basic_type();
if (is_mask && Matcher::match_rule_supported_vector(Op_MaskAll, vlen, bt)) {
const TypeVect* vt = TypeVect::make(opd_t, vlen, true);
return new MaskAllNode(s, vt);
}
const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
: TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new ReplicateBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new ReplicateSNode(s, vt);
case T_INT:
return new ReplicateINode(s, vt);
case T_LONG:
return new ReplicateLNode(s, vt);
case T_FLOAT:
return new ReplicateFNode(s, vt);
case T_DOUBLE:
return new ReplicateDNode(s, vt);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
VectorNode* VectorNode::shift_count(int opc, Node* cnt, uint vlen, BasicType bt) {
// Match shift count type with shift vector type.
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (opc) {
case Op_LShiftI:
case Op_LShiftL:
return new LShiftCntVNode(cnt, vt);
case Op_RShiftI:
case Op_RShiftL:
case Op_URShiftB:
case Op_URShiftS:
case Op_URShiftI:
case Op_URShiftL:
return new RShiftCntVNode(cnt, vt);
default:
fatal("Missed vector creation for '%s'", NodeClassNames[opc]);
return NULL;
}
}
bool VectorNode::is_vector_rotate(int opc) {
switch (opc) {
case Op_RotateLeftV:
case Op_RotateRightV:
return true;
default:
return false;
}
}
bool VectorNode::is_vector_integral_negate(int opc) {
return opc == Op_NegVI || opc == Op_NegVL;
}
bool VectorNode::is_vector_shift(int opc) {
assert(opc > _last_machine_leaf && opc < _last_opcode, "invalid opcode");
switch (opc) {
case Op_LShiftVB:
case Op_LShiftVS:
case Op_LShiftVI:
case Op_LShiftVL:
case Op_RShiftVB:
case Op_RShiftVS:
case Op_RShiftVI:
case Op_RShiftVL:
case Op_URShiftVB:
case Op_URShiftVS:
case Op_URShiftVI:
case Op_URShiftVL:
return true;
default:
return false;
}
}
bool VectorNode::is_vector_shift_count(int opc) {
assert(opc > _last_machine_leaf && opc < _last_opcode, "invalid opcode");
switch (opc) {
case Op_RShiftCntV:
case Op_LShiftCntV:
return true;
default:
return false;
}
}
static bool is_con(Node* n, long con) {
if (n->is_Con()) {
const Type* t = n->bottom_type();
if (t->isa_int() && t->is_int()->get_con() == (int)con) {
return true;
}
if (t->isa_long() && t->is_long()->get_con() == con) {
return true;
}
}
return false;
}
// Return true if every bit in this vector is 1.
bool VectorNode::is_all_ones_vector(Node* n) {
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
case Op_MaskAll:
return is_con(n->in(1), -1);
default:
return false;
}
}
// Return true if every bit in this vector is 0.
bool VectorNode::is_all_zeros_vector(Node* n) {
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
case Op_MaskAll:
return is_con(n->in(1), 0);
default:
return false;
}
}
bool VectorNode::is_vector_bitwise_not_pattern(Node* n) {
if (n->Opcode() == Op_XorV) {
return is_all_ones_vector(n->in(1)) ||
is_all_ones_vector(n->in(2));
}
return false;
}
Node* VectorNode::try_to_gen_masked_vector(PhaseGVN* gvn, Node* node, const TypeVect* vt) {
int vopc = node->Opcode();
uint vlen = vt->length();
BasicType bt = vt->element_basic_type();
// Predicated vectors do not need to add another mask input
if (node->is_predicated_vector() || !Matcher::has_predicated_vectors() ||
!Matcher::match_rule_supported_vector_masked(vopc, vlen, bt) ||
!Matcher::match_rule_supported_vector(Op_VectorMaskGen, vlen, bt)) {
return NULL;
}
Node* mask = NULL;
// Generate a vector mask for vector operation whose vector length is lower than the
// hardware supported max vector length.
if (vt->length_in_bytes() < (uint)MaxVectorSize) {
Node* length = gvn->transform(new ConvI2LNode(gvn->makecon(TypeInt::make(vlen))));
mask = gvn->transform(VectorMaskGenNode::make(length, bt, vlen));
} else {
return NULL;
}
// Generate the related masked op for vector load/store/load_gather/store_scatter.
// Or append the mask to the vector op's input list by default.
switch(vopc) {
case Op_LoadVector:
return new LoadVectorMaskedNode(node->in(0), node->in(1), node->in(2),
node->as_LoadVector()->adr_type(), vt, mask,
node->as_LoadVector()->control_dependency());
case Op_LoadVectorGather:
return new LoadVectorGatherMaskedNode(node->in(0), node->in(1), node->in(2),
node->as_LoadVector()->adr_type(), vt,
node->in(3), mask);
case Op_StoreVector:
return new StoreVectorMaskedNode(node->in(0), node->in(1), node->in(2), node->in(3),
node->as_StoreVector()->adr_type(), mask);
case Op_StoreVectorScatter:
return new StoreVectorScatterMaskedNode(node->in(0), node->in(1), node->in(2),
node->as_StoreVector()->adr_type(),
node->in(3), node->in(4), mask);
default:
// Add the mask as an additional input to the original vector node by default.
// This is used for almost all the vector nodes.
node->add_req(mask);
node->add_flag(Node::Flag_is_predicated_vector);
return node;
}
}
Node* VectorNode::Ideal(PhaseGVN* phase, bool can_reshape) {
if (Matcher::vector_needs_partial_operations(this, vect_type())) {
return try_to_gen_masked_vector(phase, this, vect_type());
}
return NULL;
}
// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new PackBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new PackSNode(s, vt);
case T_INT:
return new PackINode(s, vt);
case T_LONG:
return new PackLNode(s, vt);
case T_FLOAT:
return new PackFNode(s, vt);
case T_DOUBLE:
return new PackDNode(s, vt);
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
// Create a binary tree form for Packs. [lo, hi) (half-open) range
PackNode* PackNode::binary_tree_pack(int lo, int hi) {
int ct = hi - lo;
assert(is_power_of_2(ct), "power of 2");
if (ct == 2) {
PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
pk->add_opd(in(lo+1));
return pk;
} else {
int mid = lo + ct/2;
PackNode* n1 = binary_tree_pack(lo, mid);
PackNode* n2 = binary_tree_pack(mid, hi );
BasicType bt = n1->vect_type()->element_basic_type();
assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
case T_CHAR:
case T_SHORT:
return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
case T_INT:
return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_LONG:
return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_FLOAT:
return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
case T_DOUBLE:
return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
default:
fatal("Type '%s' is not supported for vectors", type2name(bt));
return NULL;
}
}
}
// Return the vector version of a scalar load node.
LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp,
uint vlen, BasicType bt,
ControlDependency control_dependency) {
const TypeVect* vt = TypeVect::make(bt, vlen);
return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
}
Node* LoadVectorNode::Ideal(PhaseGVN* phase, bool can_reshape) {
const TypeVect* vt = vect_type();
if (Matcher::vector_needs_partial_operations(this, vt)) {
return VectorNode::try_to_gen_masked_vector(phase, this, vt);
}
return LoadNode::Ideal(phase, can_reshape);
}
// Return the vector version of a scalar store node.
StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem, Node* adr,
const TypePtr* atyp, Node* val, uint vlen) {
return new StoreVectorNode(ctl, mem, adr, atyp, val);
}
Node* StoreVectorNode::Ideal(PhaseGVN* phase, bool can_reshape) {
const TypeVect* vt = vect_type();
if (Matcher::vector_needs_partial_operations(this, vt)) {
return VectorNode::try_to_gen_masked_vector(phase, this, vt);
}
return StoreNode::Ideal(phase, can_reshape);
}
Node* LoadVectorMaskedNode::Ideal(PhaseGVN* phase, bool can_reshape) {
if (!in(3)->is_top() && in(3)->Opcode() == Op_VectorMaskGen) {
Node* mask_len = in(3)->in(1);
const TypeLong* ty = phase->type(mask_len)->isa_long();
if (ty && ty->is_con()) {
BasicType mask_bt = Matcher::vector_element_basic_type(in(3));
int load_sz = type2aelembytes(mask_bt) * ty->get_con();
assert(load_sz <= MaxVectorSize, "Unexpected load size");
if (load_sz == MaxVectorSize) {
Node* ctr = in(MemNode::Control);
Node* mem = in(MemNode::Memory);
Node* adr = in(MemNode::Address);
return phase->transform(new LoadVectorNode(ctr, mem, adr, adr_type(), vect_type()));
}
}
}
return LoadVectorNode::Ideal(phase, can_reshape);
}
Node* StoreVectorMaskedNode::Ideal(PhaseGVN* phase, bool can_reshape) {
if (!in(4)->is_top() && in(4)->Opcode() == Op_VectorMaskGen) {
Node* mask_len = in(4)->in(1);
const TypeLong* ty = phase->type(mask_len)->isa_long();
if (ty && ty->is_con()) {
BasicType mask_bt = Matcher::vector_element_basic_type(in(4));
int load_sz = type2aelembytes(mask_bt) * ty->get_con();
assert(load_sz <= MaxVectorSize, "Unexpected store size");
if (load_sz == MaxVectorSize) {
Node* ctr = in(MemNode::Control);
Node* mem = in(MemNode::Memory);
Node* adr = in(MemNode::Address);
Node* val = in(MemNode::ValueIn);
return phase->transform(new StoreVectorNode(ctr, mem, adr, adr_type(), val));
}
}
}
return StoreVectorNode::Ideal(phase, can_reshape);
}
int ExtractNode::opcode(BasicType bt) {
switch (bt) {
case T_BOOLEAN: return Op_ExtractUB;
case T_BYTE: return Op_ExtractB;
case T_CHAR: return Op_ExtractC;
case T_SHORT: return Op_ExtractS;
case T_INT: return Op_ExtractI;
case T_LONG: return Op_ExtractL;
case T_FLOAT: return Op_ExtractF;
case T_DOUBLE: return Op_ExtractD;
default:
assert(false, "wrong type: %s", type2name(bt));
return 0;
}
}
// Extract a scalar element of vector.
Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
assert((int)position < Matcher::max_vector_size(bt), "pos in range");
ConINode* pos = ConINode::make((int)position);
switch (bt) {
case T_BOOLEAN: return new ExtractUBNode(v, pos);
case T_BYTE: return new ExtractBNode(v, pos);
case T_CHAR: return new ExtractCNode(v, pos);
case T_SHORT: return new ExtractSNode(v, pos);
case T_INT: return new ExtractINode(v, pos);
case T_LONG: return new ExtractLNode(v, pos);
case T_FLOAT: return new ExtractFNode(v, pos);
case T_DOUBLE: return new ExtractDNode(v, pos);
default:
assert(false, "wrong type: %s", type2name(bt));
return NULL;
}
}
int ReductionNode::opcode(int opc, BasicType bt) {
int vopc = opc;
switch (opc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_AddReductionVI;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_AddL:
assert(bt == T_LONG, "must be");
vopc = Op_AddReductionVL;
break;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
vopc = Op_AddReductionVF;
break;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_AddReductionVD;
break;
case Op_MulI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_MulReductionVI;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_MulL:
assert(bt == T_LONG, "must be");
vopc = Op_MulReductionVL;
break;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MulReductionVF;
break;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MulReductionVD;
break;
case Op_MinI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_MinReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_MinL:
assert(bt == T_LONG, "must be");
vopc = Op_MinReductionV;
break;
case Op_MinF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MinReductionV;
break;
case Op_MinD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MinReductionV;
break;
case Op_MaxI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_MaxReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_MaxL:
assert(bt == T_LONG, "must be");
vopc = Op_MaxReductionV;
break;
case Op_MaxF:
assert(bt == T_FLOAT, "must be");
vopc = Op_MaxReductionV;
break;
case Op_MaxD:
assert(bt == T_DOUBLE, "must be");
vopc = Op_MaxReductionV;
break;
case Op_AndI:
switch (bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_AndReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_AndL:
assert(bt == T_LONG, "must be");
vopc = Op_AndReductionV;
break;
case Op_OrI:
switch(bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_OrReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_OrL:
assert(bt == T_LONG, "must be");
vopc = Op_OrReductionV;
break;
case Op_XorI:
switch(bt) {
case T_BOOLEAN:
case T_CHAR: return 0;
case T_BYTE:
case T_SHORT:
case T_INT:
vopc = Op_XorReductionV;
break;
default: ShouldNotReachHere(); return 0;
}
break;
case Op_XorL:
assert(bt == T_LONG, "must be");
vopc = Op_XorReductionV;
break;
default:
break;
}
return vopc;
}
// Return the appropriate reduction node.
ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
int vopc = opcode(opc, bt);
// This method should not be called for unimplemented vectors.
guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
case Op_MinReductionV: return new MinReductionVNode(ctrl, n1, n2);
case Op_MaxReductionV: return new MaxReductionVNode(ctrl, n1, n2);
case Op_AndReductionV: return new AndReductionVNode(ctrl, n1, n2);
case Op_OrReductionV: return new OrReductionVNode(ctrl, n1, n2);
case Op_XorReductionV: return new XorReductionVNode(ctrl, n1, n2);
default:
assert(false, "unknown node: %s", NodeClassNames[vopc]);
return NULL;
}
}
Node* ReductionNode::Ideal(PhaseGVN* phase, bool can_reshape) {
const TypeVect* vt = vect_type();
if (Matcher::vector_needs_partial_operations(this, vt)) {
return VectorNode::try_to_gen_masked_vector(phase, this, vt);
}
return NULL;
}
Node* VectorLoadMaskNode::Identity(PhaseGVN* phase) {
BasicType out_bt = type()->is_vect()->element_basic_type();
if (!Matcher::has_predicated_vectors() && out_bt == T_BOOLEAN) {
return in(1); // redundant conversion
}
return this;
}
Node* VectorStoreMaskNode::Identity(PhaseGVN* phase) {
// Identity transformation on boolean vectors.
// VectorStoreMask (VectorLoadMask bv) elem_size ==> bv
// vector[n]{bool} => vector[n]{t} => vector[n]{bool}
if (in(1)->Opcode() == Op_VectorLoadMask) {
return in(1)->in(1);
}
return this;
}
VectorStoreMaskNode* VectorStoreMaskNode::make(PhaseGVN& gvn, Node* in, BasicType in_type, uint num_elem) {
assert(in->bottom_type()->isa_vect(), "sanity");
const TypeVect* vt = TypeVect::make(T_BOOLEAN, num_elem);
int elem_size = type2aelembytes(in_type);
return new VectorStoreMaskNode(in, gvn.intcon(elem_size), vt);
}
VectorCastNode* VectorCastNode::make(int vopc, Node* n1, BasicType bt, uint vlen) {
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (vopc) {
case Op_VectorCastB2X: return new VectorCastB2XNode(n1, vt);
case Op_VectorCastS2X: return new VectorCastS2XNode(n1, vt);
case Op_VectorCastI2X: return new VectorCastI2XNode(n1, vt);
case Op_VectorCastL2X: return new VectorCastL2XNode(n1, vt);
case Op_VectorCastF2X: return new VectorCastF2XNode(n1, vt);
case Op_VectorCastD2X: return new VectorCastD2XNode(n1, vt);
case Op_VectorUCastB2X: return new VectorUCastB2XNode(n1, vt);
case Op_VectorUCastS2X: return new VectorUCastS2XNode(n1, vt);
case Op_VectorUCastI2X: return new VectorUCastI2XNode(n1, vt);
case Op_VectorCastHF2F: return new VectorCastHF2FNode(n1, vt);
case Op_VectorCastF2HF: return new VectorCastF2HFNode(n1, vt);
default:
assert(false, "unknown node: %s", NodeClassNames[vopc]);
return NULL;
}
}
int VectorCastNode::opcode(int sopc, BasicType bt, bool is_signed) {
assert((is_integral_type(bt) && bt != T_LONG) || is_signed, "");
// Handle special case for to/from Half Float conversions
switch (sopc) {
case Op_ConvHF2F:
assert(bt == T_SHORT, "");
return Op_VectorCastHF2F;
case Op_ConvF2HF:
assert(bt == T_FLOAT, "");
return Op_VectorCastF2HF;
default:
// Handled normally below
break;
}
// Handle normal conversions
switch (bt) {
case T_BYTE: return is_signed ? Op_VectorCastB2X : Op_VectorUCastB2X;
case T_SHORT: return is_signed ? Op_VectorCastS2X : Op_VectorUCastS2X;
case T_INT: return is_signed ? Op_VectorCastI2X : Op_VectorUCastI2X;
case T_LONG: return Op_VectorCastL2X;
case T_FLOAT: return Op_VectorCastF2X;
case T_DOUBLE: return Op_VectorCastD2X;
default:
assert(bt == T_CHAR || bt == T_BOOLEAN, "unknown type: %s", type2name(bt));
return 0;
}
}
bool VectorCastNode::implemented(int opc, uint vlen, BasicType src_type, BasicType dst_type) {
if (is_java_primitive(dst_type) &&
is_java_primitive(src_type) &&
(vlen > 1) && is_power_of_2(vlen) &&
VectorNode::vector_size_supported(dst_type, vlen)) {
int vopc = VectorCastNode::opcode(opc, src_type);
return vopc > 0 && Matcher::match_rule_supported_superword(vopc, vlen, dst_type);
}
return false;
}
Node* VectorCastNode::Identity(PhaseGVN* phase) {
if (!in(1)->is_top()) {
BasicType in_bt = in(1)->bottom_type()->is_vect()->element_basic_type();
BasicType out_bt = vect_type()->element_basic_type();
if (in_bt == out_bt) {
return in(1); // redundant cast
}
}
return this;
}
Node* ReductionNode::make_reduction_input(PhaseGVN& gvn, int opc, BasicType bt) {
int vopc = opcode(opc, bt);
guarantee(vopc != opc, "Vector reduction for '%s' is not implemented", NodeClassNames[opc]);
switch (vopc) {
case Op_AndReductionV:
switch (bt) {
case T_BYTE:
case T_SHORT:
case T_INT:
return gvn.makecon(TypeInt::MINUS_1);
case T_LONG:
return gvn.makecon(TypeLong::MINUS_1);
default:
fatal("Missed vector creation for '%s' as the basic type is not correct.", NodeClassNames[vopc]);
return NULL;
}
break;
case Op_AddReductionVI: // fallthrough
case Op_AddReductionVL: // fallthrough
case Op_AddReductionVF: // fallthrough
case Op_AddReductionVD:
case Op_OrReductionV:
case Op_XorReductionV:
return gvn.zerocon(bt);
case Op_MulReductionVI:
return gvn.makecon(TypeInt::ONE);
case Op_MulReductionVL:
return gvn.makecon(TypeLong::ONE);
case Op_MulReductionVF:
return gvn.makecon(TypeF::ONE);
case Op_MulReductionVD:
return gvn.makecon(TypeD::ONE);
case Op_MinReductionV:
switch (bt) {
case T_BYTE:
return gvn.makecon(TypeInt::make(max_jbyte));
case T_SHORT:
return gvn.makecon(TypeInt::make(max_jshort));
case T_INT:
return gvn.makecon(TypeInt::MAX);
case T_LONG:
return gvn.makecon(TypeLong::MAX);
case T_FLOAT:
return gvn.makecon(TypeF::POS_INF);
case T_DOUBLE:
return gvn.makecon(TypeD::POS_INF);
default: Unimplemented(); return NULL;
}
break;
case Op_MaxReductionV:
switch (bt) {
case T_BYTE:
return gvn.makecon(TypeInt::make(min_jbyte));
case T_SHORT:
return gvn.makecon(TypeInt::make(min_jshort));
case T_INT:
return gvn.makecon(TypeInt::MIN);
case T_LONG:
return gvn.makecon(TypeLong::MIN);
case T_FLOAT:
return gvn.makecon(TypeF::NEG_INF);
case T_DOUBLE:
return gvn.makecon(TypeD::NEG_INF);
default: Unimplemented(); return NULL;
}
break;
default:
fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
return NULL;
}
}
bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
VectorNode::vector_size_supported(bt, vlen)) {
int vopc = ReductionNode::opcode(opc, bt);
return vopc != opc && Matcher::match_rule_supported_superword(vopc, vlen, bt);
}
return false;
}
MacroLogicVNode* MacroLogicVNode::make(PhaseGVN& gvn, Node* in1, Node* in2, Node* in3,
Node* mask, uint truth_table, const TypeVect* vt) {
assert(truth_table <= 0xFF, "invalid");
assert(in1->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch");
assert(in2->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch");
assert(in3->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch");
assert(!mask || mask->bottom_type()->isa_vectmask(), "predicated register type expected");
Node* fn = gvn.intcon(truth_table);
return new MacroLogicVNode(in1, in2, in3, fn, mask, vt);
}
Node* VectorNode::degenerate_vector_rotate(Node* src, Node* cnt, bool is_rotate_left,
int vlen, BasicType bt, PhaseGVN* phase) {
assert(is_integral_type(bt), "sanity");
const TypeVect* vt = TypeVect::make(bt, vlen);
int shift_mask = (type2aelembytes(bt) * 8) - 1;
int shiftLOpc = (bt == T_LONG) ? Op_LShiftL : Op_LShiftI;
auto urshiftopc = [=]() {
switch(bt) {
case T_INT: return Op_URShiftI;
case T_LONG: return Op_URShiftL;
case T_BYTE: return Op_URShiftB;
case T_SHORT: return Op_URShiftS;
default: return (Opcodes)0;
}
};
int shiftROpc = urshiftopc();
// Compute shift values for right rotation and
// later swap them in case of left rotation.
Node* shiftRCnt = NULL;
Node* shiftLCnt = NULL;
const TypeInt* cnt_type = cnt->bottom_type()->isa_int();
bool is_binary_vector_op = false;
if (cnt_type && cnt_type->is_con()) {
// Constant shift.
int shift = cnt_type->get_con() & shift_mask;
shiftRCnt = phase->intcon(shift);
shiftLCnt = phase->intcon(shift_mask + 1 - shift);
} else if (VectorNode::is_invariant_vector(cnt)) {
// Scalar variable shift, handle replicates generated by auto vectorizer.
cnt = cnt->in(1);
if (bt == T_LONG) {
// Shift count vector for Rotate vector has long elements too.
if (cnt->Opcode() == Op_ConvI2L) {
cnt = cnt->in(1);
} else {
assert(cnt->bottom_type()->isa_long() &&
cnt->bottom_type()->is_long()->is_con(), "Long constant expected");
cnt = phase->transform(new ConvL2INode(cnt));
}
}
shiftRCnt = phase->transform(new AndINode(cnt, phase->intcon(shift_mask)));
shiftLCnt = phase->transform(new SubINode(phase->intcon(shift_mask + 1), shiftRCnt));
} else {
// Variable vector rotate count.
assert(Matcher::supports_vector_variable_shifts(), "");
int subVopc = 0;
int addVopc = 0;
Node* shift_mask_node = NULL;
Node* const_one_node = NULL;
assert(cnt->bottom_type()->isa_vect(), "Unexpected shift");
const Type* elem_ty = Type::get_const_basic_type(bt);
if (bt == T_LONG) {
shift_mask_node = phase->longcon(shift_mask);
const_one_node = phase->longcon(1L);
subVopc = VectorNode::opcode(Op_SubL, bt);
addVopc = VectorNode::opcode(Op_AddL, bt);
} else {
shift_mask_node = phase->intcon(shift_mask);
const_one_node = phase->intcon(1);
subVopc = VectorNode::opcode(Op_SubI, bt);
addVopc = VectorNode::opcode(Op_AddI, bt);
}
Node* vector_mask = phase->transform(VectorNode::scalar2vector(shift_mask_node, vlen, elem_ty));
Node* vector_one = phase->transform(VectorNode::scalar2vector(const_one_node, vlen, elem_ty));
shiftRCnt = cnt;
shiftRCnt = phase->transform(VectorNode::make(Op_AndV, shiftRCnt, vector_mask, vt));
vector_mask = phase->transform(VectorNode::make(addVopc, vector_one, vector_mask, vt));
shiftLCnt = phase->transform(VectorNode::make(subVopc, vector_mask, shiftRCnt, vt));
is_binary_vector_op = true;
}
// Swap the computed left and right shift counts.
if (is_rotate_left) {
swap(shiftRCnt,shiftLCnt);
}
if (!is_binary_vector_op) {
shiftLCnt = phase->transform(new LShiftCntVNode(shiftLCnt, vt));
shiftRCnt = phase->transform(new RShiftCntVNode(shiftRCnt, vt));
}
return new OrVNode(phase->transform(VectorNode::make(shiftLOpc, src, shiftLCnt, vlen, bt, is_binary_vector_op)),
phase->transform(VectorNode::make(shiftROpc, src, shiftRCnt, vlen, bt, is_binary_vector_op)),
vt);
}
Node* RotateLeftVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
int vlen = length();
BasicType bt = vect_type()->element_basic_type();
if ((!in(2)->is_Con() && !Matcher::supports_vector_variable_rotates()) ||
!Matcher::match_rule_supported_vector(Op_RotateLeftV, vlen, bt)) {
return VectorNode::degenerate_vector_rotate(in(1), in(2), true, vlen, bt, phase);
}
return NULL;
}
Node* RotateRightVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
int vlen = length();
BasicType bt = vect_type()->element_basic_type();
if ((!in(2)->is_Con() && !Matcher::supports_vector_variable_rotates()) ||
!Matcher::match_rule_supported_vector(Op_RotateRightV, vlen, bt)) {
return VectorNode::degenerate_vector_rotate(in(1), in(2), false, vlen, bt, phase);
}
return NULL;
}
#ifndef PRODUCT
void VectorMaskCmpNode::dump_spec(outputStream *st) const {
st->print(" %d #", _predicate); _type->dump_on(st);
}
#endif // PRODUCT
Node* VectorReinterpretNode::Identity(PhaseGVN *phase) {
Node* n = in(1);
if (n->Opcode() == Op_VectorReinterpret) {
// "VectorReinterpret (VectorReinterpret node) ==> node" if:
// 1) Types of 'node' and 'this' are identical
// 2) Truncations are not introduced by the first VectorReinterpret
if (Type::cmp(bottom_type(), n->in(1)->bottom_type()) == 0 &&
length_in_bytes() <= n->bottom_type()->is_vect()->length_in_bytes()) {
return n->in(1);
}
}
return this;
}
Node* VectorInsertNode::make(Node* vec, Node* new_val, int position) {
assert(position < (int)vec->bottom_type()->is_vect()->length(), "pos in range");
ConINode* pos = ConINode::make(position);
return new VectorInsertNode(vec, new_val, pos, vec->bottom_type()->is_vect());
}
Node* VectorUnboxNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* n = obj()->uncast();
if (EnableVectorReboxing && n->Opcode() == Op_VectorBox) {
if (Type::cmp(bottom_type(), n->in(VectorBoxNode::Value)->bottom_type()) == 0) {
// Handled by VectorUnboxNode::Identity()
} else {
VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n);
ciKlass* vbox_klass = vbox->box_type()->instance_klass();
const TypeVect* in_vt = vbox->vec_type();
const TypeVect* out_vt = type()->is_vect();
if (in_vt->length() == out_vt->length()) {
Node* value = vbox->in(VectorBoxNode::Value);
bool is_vector_mask = vbox_klass->is_subclass_of(ciEnv::current()->vector_VectorMask_klass());
bool is_vector_shuffle = vbox_klass->is_subclass_of(ciEnv::current()->vector_VectorShuffle_klass());
if (is_vector_mask) {
// VectorUnbox (VectorBox vmask) ==> VectorMaskCast vmask
const TypeVect* vmask_type = TypeVect::makemask(out_vt->element_basic_type(), out_vt->length());
return new VectorMaskCastNode(value, vmask_type);
} else if (is_vector_shuffle) {
if (!is_shuffle_to_vector()) {
// VectorUnbox (VectorBox vshuffle) ==> VectorLoadShuffle vshuffle
return new VectorLoadShuffleNode(value, out_vt);
}
} else {
// Vector type mismatch is only supported for masks and shuffles, but sometimes it happens in pathological cases.
}
} else {
// Vector length mismatch.
// Sometimes happen in pathological cases (e.g., when unboxing happens in effectively dead code).
}
}
}
return NULL;
}
Node* VectorUnboxNode::Identity(PhaseGVN* phase) {
Node* n = obj()->uncast();
if (EnableVectorReboxing && n->Opcode() == Op_VectorBox) {
if (Type::cmp(bottom_type(), n->in(VectorBoxNode::Value)->bottom_type()) == 0) {
return n->in(VectorBoxNode::Value); // VectorUnbox (VectorBox v) ==> v
} else {
// Handled by VectorUnboxNode::Ideal().
}
}
return this;
}
const TypeFunc* VectorBoxNode::vec_box_type(const TypeInstPtr* box_type) {
const Type** fields = TypeTuple::fields(0);
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = box_type;
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
return TypeFunc::make(domain, range);
}
Node* ShiftVNode::Identity(PhaseGVN* phase) {
Node* in2 = in(2);
// Shift by ZERO does nothing
if (is_vshift_cnt(in2) && phase->find_int_type(in2->in(1)) == TypeInt::ZERO) {
return in(1);
}
return this;
}
Node* VectorMaskGenNode::make(Node* length, BasicType mask_bt) {
int max_vector = Matcher::max_vector_size(mask_bt);
return make(length, mask_bt, max_vector);
}
Node* VectorMaskGenNode::make(Node* length, BasicType mask_bt, int mask_len) {
const TypeVectMask* t_vmask = TypeVectMask::make(mask_bt, mask_len);
return new VectorMaskGenNode(length, t_vmask);
}
Node* VectorMaskOpNode::make(Node* mask, const Type* ty, int mopc) {
switch(mopc) {
case Op_VectorMaskTrueCount:
return new VectorMaskTrueCountNode(mask, ty);
case Op_VectorMaskLastTrue:
return new VectorMaskLastTrueNode(mask, ty);
case Op_VectorMaskFirstTrue:
return new VectorMaskFirstTrueNode(mask, ty);
case Op_VectorMaskToLong:
return new VectorMaskToLongNode(mask, ty);
default:
assert(false, "Unhandled operation");
}
return NULL;
}
Node* VectorMaskOpNode::Ideal(PhaseGVN* phase, bool can_reshape) {
const TypeVect* vt = vect_type();
if (Matcher::vector_needs_partial_operations(this, vt)) {
return VectorNode::try_to_gen_masked_vector(phase, this, vt);
}
return NULL;
}
Node* VectorMaskToLongNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_VectorLongToMask) {
return in(1)->in(1);
}
return this;
}
Node* VectorLongToMaskNode::Ideal(PhaseGVN* phase, bool can_reshape) {
const TypeVect* dst_type = bottom_type()->is_vect();
if (in(1)->Opcode() == Op_AndL &&
in(1)->in(1)->Opcode() == Op_VectorMaskToLong &&
in(1)->in(2)->bottom_type()->isa_long() &&
in(1)->in(2)->bottom_type()->is_long()->is_con() &&
in(1)->in(2)->bottom_type()->is_long()->get_con() == ((1L << dst_type->length()) - 1)) {
// Different src/dst mask length represents a re-interpretation operation,
// we can however generate a mask casting operation if length matches.
Node* src = in(1)->in(1)->in(1);
if (dst_type->isa_vectmask() == NULL) {
if (src->Opcode() != Op_VectorStoreMask) {
return NULL;
}
src = src->in(1);
}
const TypeVect* src_type = src->bottom_type()->is_vect();
if (src_type->length() == dst_type->length() &&
((src_type->isa_vectmask() == NULL && dst_type->isa_vectmask() == NULL) ||
(src_type->isa_vectmask() && dst_type->isa_vectmask()))) {
return new VectorMaskCastNode(src, dst_type);
}
}
return NULL;
}
// Generate other vector nodes to implement the masked/non-masked vector negation.
Node* NegVNode::degenerate_integral_negate(PhaseGVN* phase, bool is_predicated) {
const TypeVect* vt = vect_type();
BasicType bt = vt->element_basic_type();
uint vlen = length();
// Transformation for predicated NegVI/L
if (is_predicated) {
// (NegVI/L src m) ==> (AddVI/L (XorV src (ReplicateI/L -1) m) (ReplicateI/L 1) m)
Node* const_minus_one = NULL;
Node* const_one = NULL;
int add_opc;
if (bt == T_LONG) {
const_minus_one = phase->longcon(-1L);
const_one = phase->longcon(1L);
add_opc = Op_AddL;
} else {
const_minus_one = phase->intcon(-1);
const_one = phase->intcon(1);
add_opc = Op_AddI;
}
const_minus_one = phase->transform(VectorNode::scalar2vector(const_minus_one, vlen, Type::get_const_basic_type(bt)));
Node* xorv = VectorNode::make(Op_XorV, in(1), const_minus_one, vt);
xorv->add_req(in(2));
xorv->add_flag(Node::Flag_is_predicated_vector);
phase->transform(xorv);
const_one = phase->transform(VectorNode::scalar2vector(const_one, vlen, Type::get_const_basic_type(bt)));
Node* addv = VectorNode::make(VectorNode::opcode(add_opc, bt), xorv, const_one, vt);
addv->add_req(in(2));
addv->add_flag(Node::Flag_is_predicated_vector);
return addv;
}
// NegVI/L ==> (SubVI/L (ReplicateI/L 0) src)
Node* const_zero = NULL;
int sub_opc;
if (bt == T_LONG) {
const_zero = phase->longcon(0L);
sub_opc = Op_SubL;
} else {
const_zero = phase->intcon(0);
sub_opc = Op_SubI;
}
const_zero = phase->transform(VectorNode::scalar2vector(const_zero, vlen, Type::get_const_basic_type(bt)));
return VectorNode::make(VectorNode::opcode(sub_opc, bt), const_zero, in(1), vt);
}
Node* NegVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
BasicType bt = vect_type()->element_basic_type();
uint vlen = length();
int opc = Opcode();
if (is_vector_integral_negate(opc)) {
if (is_predicated_vector()) {
if (!Matcher::match_rule_supported_vector_masked(opc, vlen, bt)) {
return degenerate_integral_negate(phase, true);
}
} else if (!Matcher::match_rule_supported_vector(opc, vlen, bt)) {
return degenerate_integral_negate(phase, false);
}
}
return NULL;
}
static Node* reverse_operations_identity(Node* n, Node* in1) {
if (n->is_predicated_using_blend()) {
return n;
}
if (n->Opcode() == in1->Opcode()) {
// OperationV (OperationV X MASK) MASK => X
if (n->is_predicated_vector() && in1->is_predicated_vector() && n->in(2) == in1->in(2)) {
return in1->in(1);
// OperationV (OperationV X) => X
} else if (!n->is_predicated_vector() && !in1->is_predicated_vector()) {
return in1->in(1);
}
}
return n;
}
Node* ReverseBytesVNode::Identity(PhaseGVN* phase) {
// "(ReverseBytesV X) => X" if the element type is T_BYTE.
if (vect_type()->element_basic_type() == T_BYTE) {
return in(1);
}
return reverse_operations_identity(this, in(1));
}
Node* ReverseVNode::Identity(PhaseGVN* phase) {
return reverse_operations_identity(this, in(1));
}
// Optimize away redundant AndV/OrV nodes when the operation
// is applied on the same input node multiple times
static Node* redundant_logical_identity(Node* n) {
Node* n1 = n->in(1);
// (OperationV (OperationV src1 src2) src1) => (OperationV src1 src2)
// (OperationV (OperationV src1 src2) src2) => (OperationV src1 src2)
// (OperationV (OperationV src1 src2 m1) src1 m1) => (OperationV src1 src2 m1)
// (OperationV (OperationV src1 src2 m1) src2 m1) => (OperationV src1 src2 m1)
if (n->Opcode() == n1->Opcode()) {
if (((!n->is_predicated_vector() && !n1->is_predicated_vector()) ||
( n->is_predicated_vector() && n1->is_predicated_vector() && n->in(3) == n1->in(3))) &&
( n->in(2) == n1->in(1) || n->in(2) == n1->in(2))) {
return n1;
}
}
Node* n2 = n->in(2);
if (n->Opcode() == n2->Opcode()) {
// (OperationV src1 (OperationV src1 src2)) => OperationV(src1, src2)
// (OperationV src2 (OperationV src1 src2)) => OperationV(src1, src2)
// (OperationV src1 (OperationV src1 src2 m1) m1) => OperationV(src1 src2 m1)
// It is not possible to optimize - (OperationV src2 (OperationV src1 src2 m1) m1) as the
// results of both "OperationV" nodes are different for unmasked lanes
if ((!n->is_predicated_vector() && !n2->is_predicated_vector() &&
(n->in(1) == n2->in(1) || n->in(1) == n2->in(2))) ||
(n->is_predicated_vector() && n2->is_predicated_vector() && n->in(3) == n2->in(3) &&
n->in(1) == n2->in(1))) {
return n2;
}
}
return n;
}
Node* AndVNode::Identity(PhaseGVN* phase) {
// (AndV src (Replicate m1)) => src
// (AndVMask src (MaskAll m1)) => src
if (VectorNode::is_all_ones_vector(in(2))) {
return in(1);
}
// (AndV (Replicate zero) src) => (Replicate zero)
// (AndVMask (MaskAll zero) src) => (MaskAll zero)
if (VectorNode::is_all_zeros_vector(in(1))) {
return in(1);
}
// The following transformations are only applied to
// the un-predicated operation, since the VectorAPI
// masked operation requires the unmasked lanes to
// save the same values in the first operand.
if (!is_predicated_vector()) {
// (AndV (Replicate m1) src) => src
// (AndVMask (MaskAll m1) src) => src
if (VectorNode::is_all_ones_vector(in(1))) {
return in(2);
}
// (AndV src (Replicate zero)) => (Replicate zero)
// (AndVMask src (MaskAll zero)) => (MaskAll zero)
if (VectorNode::is_all_zeros_vector(in(2))) {
return in(2);
}
}
// (AndV src src) => src
// (AndVMask src src) => src
if (in(1) == in(2)) {
return in(1);
}
return redundant_logical_identity(this);
}
Node* OrVNode::Identity(PhaseGVN* phase) {
// (OrV (Replicate m1) src) => (Replicate m1)
// (OrVMask (MaskAll m1) src) => (MaskAll m1)
if (VectorNode::is_all_ones_vector(in(1))) {
return in(1);
}
// (OrV src (Replicate zero)) => src
// (OrVMask src (MaskAll zero)) => src
if (VectorNode::is_all_zeros_vector(in(2))) {
return in(1);
}
// The following transformations are only applied to
// the un-predicated operation, since the VectorAPI
// masked operation requires the unmasked lanes to
// save the same values in the first operand.
if (!is_predicated_vector()) {
// (OrV src (Replicate m1)) => (Replicate m1)
// (OrVMask src (MaskAll m1)) => (MaskAll m1)
if (VectorNode::is_all_ones_vector(in(2))) {
return in(2);
}
// (OrV (Replicate zero) src) => src
// (OrVMask (MaskAll zero) src) => src
if (VectorNode::is_all_zeros_vector(in(1))) {
return in(2);
}
}
// (OrV src src) => src
// (OrVMask src src) => src
if (in(1) == in(2)) {
return in(1);
}
return redundant_logical_identity(this);
}
Node* XorVNode::Ideal(PhaseGVN* phase, bool can_reshape) {
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.47 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|