products/sources/formale sprachen/C/Lyx/images image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: CompleteLattice.thy   Sprache: Unknown

(*  Title:      HOL/Lattice/CompleteLattice.thy
    Author:     Markus Wenzel, TU Muenchen
*)


section \<open>Complete lattices\<close>

theory CompleteLattice imports Lattice begin

subsection \<open>Complete lattice operations\<close>

text \<open>
  A \emph{complete lattice} is a partial order with general
  (infinitary) infimum of any set of elements.  General supremum
  exists as well, as a consequence of the connection of infinitary
  bounds (see \S\ref{sec:connect-bounds}).
\<close>

class complete_lattice =
  assumes ex_Inf: "\inf. is_Inf A inf"

theorem ex_Sup: "\sup::'a::complete_lattice. is_Sup A sup"
proof -
  from ex_Inf obtain sup where "is_Inf {b. \a\A. a \ b} sup" by blast
  then have "is_Sup A sup" by (rule Inf_Sup)
  then show ?thesis ..
qed

text \<open>
  The general \<open>\<Sqinter>\<close> (meet) and \<open>\<Squnion>\<close> (join) operations select
  such infimum and supremum elements.
\<close>

definition
  Meet :: "'a::complete_lattice set \ 'a" ("\_" [90] 90) where
  "\A = (THE inf. is_Inf A inf)"
definition
  Join :: "'a::complete_lattice set \ 'a" ("\_" [90] 90) where
  "\A = (THE sup. is_Sup A sup)"

text \<open>
  Due to unique existence of bounds, the complete lattice operations
  may be exhibited as follows.
\<close>

lemma Meet_equality [elim?]: "is_Inf A inf \ \A = inf"
proof (unfold Meet_def)
  assume "is_Inf A inf"
  then show "(THE inf. is_Inf A inf) = inf"
    by (rule the_equality) (rule is_Inf_uniq [OF _ \<open>is_Inf A inf\<close>])
qed

lemma MeetI [intro?]:
  "(\a. a \ A \ inf \ a) \
    (\<And>b. \<forall>a \<in> A. b \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> inf) \<Longrightarrow>
    \<Sqinter>A = inf"
  by (rule Meet_equality, rule is_InfI) blast+

lemma Join_equality [elim?]: "is_Sup A sup \ \A = sup"
proof (unfold Join_def)
  assume "is_Sup A sup"
  then show "(THE sup. is_Sup A sup) = sup"
    by (rule the_equality) (rule is_Sup_uniq [OF _ \<open>is_Sup A sup\<close>])
qed

lemma JoinI [intro?]:
  "(\a. a \ A \ a \ sup) \
    (\<And>b. \<forall>a \<in> A. a \<sqsubseteq> b \<Longrightarrow> sup \<sqsubseteq> b) \<Longrightarrow>
    \<Squnion>A = sup"
  by (rule Join_equality, rule is_SupI) blast+


text \<open>
  \medskip The \<open>\<Sqinter>\<close> and \<open>\<Squnion>\<close> operations indeed determine
  bounds on a complete lattice structure.
\<close>

lemma is_Inf_Meet [intro?]: "is_Inf A (\A)"
proof (unfold Meet_def)
  from ex_Inf obtain inf where "is_Inf A inf" ..
  then show "is_Inf A (THE inf. is_Inf A inf)"
    by (rule theI) (rule is_Inf_uniq [OF _ \<open>is_Inf A inf\<close>])
qed

lemma Meet_greatest [intro?]: "(\a. a \ A \ x \ a) \ x \ \A"
  by (rule is_Inf_greatest, rule is_Inf_Meet) blast

lemma Meet_lower [intro?]: "a \ A \ \A \ a"
  by (rule is_Inf_lower) (rule is_Inf_Meet)


lemma is_Sup_Join [intro?]: "is_Sup A (\A)"
proof (unfold Join_def)
  from ex_Sup obtain sup where "is_Sup A sup" ..
  then show "is_Sup A (THE sup. is_Sup A sup)"
    by (rule theI) (rule is_Sup_uniq [OF _ \<open>is_Sup A sup\<close>])
qed

lemma Join_least [intro?]: "(\a. a \ A \ a \ x) \ \A \ x"
  by (rule is_Sup_least, rule is_Sup_Join) blast
lemma Join_lower [intro?]: "a \ A \ a \ \A"
  by (rule is_Sup_upper) (rule is_Sup_Join)


subsection \<open>The Knaster-Tarski Theorem\<close>

text \<open>
  The Knaster-Tarski Theorem (in its simplest formulation) states that
  any monotone function on a complete lattice has a least fixed-point
  (see @{cite \<open>pages 93--94\<close> "Davey-Priestley:1990"} for example).  This
  is a consequence of the basic boundary properties of the complete
  lattice operations.
\<close>

theorem Knaster_Tarski:
  assumes mono: "\x y. x \ y \ f x \ f y"
  obtains a :: "'a::complete_lattice" where
    "f a = a" and "\a'. f a' = a' \ a \ a'"
proof
  let ?H = "{u. f u \ u}"
  let ?a = "\?H"
  show "f ?a = ?a"
  proof -
    have ge: "f ?a \ ?a"
    proof
      fix x assume x: "x \ ?H"
      then have "?a \ x" ..
      then have "f ?a \ f x" by (rule mono)
      also from x have "... \ x" ..
      finally show "f ?a \ x" .
    qed
    also have "?a \ f ?a"
    proof
      from ge have "f (f ?a) \ f ?a" by (rule mono)
      then show "f ?a \ ?H" ..
    qed
    finally show ?thesis .
  qed

  fix a'
  assume "f a' = a'"
  then have "f a' \ a'" by (simp only: leq_refl)
  then have "a' \ ?H" ..
  then show "?a \ a'" ..
qed

theorem Knaster_Tarski_dual:
  assumes mono: "\x y. x \ y \ f x \ f y"
  obtains a :: "'a::complete_lattice" where
    "f a = a" and "\a'. f a' = a' \ a' \ a"
proof
  let ?H = "{u. u \ f u}"
  let ?a = "\?H"
  show "f ?a = ?a"
  proof -
    have le: "?a \ f ?a"
    proof
      fix x assume x: "x \ ?H"
      then have "x \ f x" ..
      also from x have "x \ ?a" ..
      then have "f x \ f ?a" by (rule mono)
      finally show "x \ f ?a" .
    qed
    have "f ?a \ ?a"
    proof
      from le have "f ?a \ f (f ?a)" by (rule mono)
      then show "f ?a \ ?H" ..
    qed
    from this and le show ?thesis by (rule leq_antisym)
  qed

  fix a'
  assume "f a' = a'"
  then have "a' \ f a'" by (simp only: leq_refl)
  then have "a' \ ?H" ..
  then show "a' \ ?a" ..
qed


subsection \<open>Bottom and top elements\<close>

text \<open>
  With general bounds available, complete lattices also have least and
  greatest elements.
\<close>

definition
  bottom :: "'a::complete_lattice"  ("\") where
  "\ = \UNIV"

definition
  top :: "'a::complete_lattice"  ("\") where
  "\ = \UNIV"

lemma bottom_least [intro?]: "\ \ x"
proof (unfold bottom_def)
  have "x \ UNIV" ..
  then show "\UNIV \ x" ..
qed

lemma bottomI [intro?]: "(\a. x \ a) \ \ = x"
proof (unfold bottom_def)
  assume "\a. x \ a"
  show "\UNIV = x"
  proof
    fix a show "x \ a" by fact
  next
    fix b :: "'a::complete_lattice"
    assume b: "\a \ UNIV. b \ a"
    have "x \ UNIV" ..
    with b show "b \ x" ..
  qed
qed

lemma top_greatest [intro?]: "x \ \"
proof (unfold top_def)
  have "x \ UNIV" ..
  then show "x \ \UNIV" ..
qed

lemma topI [intro?]: "(\a. a \ x) \ \ = x"
proof (unfold top_def)
  assume "\a. a \ x"
  show "\UNIV = x"
  proof
    fix a show "a \ x" by fact
  next
    fix b :: "'a::complete_lattice"
    assume b: "\a \ UNIV. a \ b"
    have "x \ UNIV" ..
    with b show "x \ b" ..
  qed
qed


subsection \<open>Duality\<close>

text \<open>
  The class of complete lattices is closed under formation of dual
  structures.
\<close>

instance dual :: (complete_lattice) complete_lattice
proof
  fix A' :: "'a::complete_lattice dual set"
  show "\inf'. is_Inf A' inf'"
  proof -
    have "\sup. is_Sup (undual ` A') sup" by (rule ex_Sup)
    then have "\sup. is_Inf (dual ` undual ` A') (dual sup)" by (simp only: dual_Inf)
    then show ?thesis by (simp add: dual_ex [symmetric] image_comp)
  qed
qed

text \<open>
  Apparently, the \<open>\<Sqinter>\<close> and \<open>\<Squnion>\<close> operations are dual to each
  other.
\<close>

theorem dual_Meet [intro?]: "dual (\A) = \(dual ` A)"
proof -
  from is_Inf_Meet have "is_Sup (dual ` A) (dual (\A))" ..
  then have "\(dual ` A) = dual (\A)" ..
  then show ?thesis ..
qed

theorem dual_Join [intro?]: "dual (\A) = \(dual ` A)"
proof -
  from is_Sup_Join have "is_Inf (dual ` A) (dual (\A))" ..
  then have "\(dual ` A) = dual (\A)" ..
  then show ?thesis ..
qed

text \<open>
  Likewise are \<open>\<bottom>\<close> and \<open>\<top>\<close> duals of each other.
\<close>

theorem dual_bottom [intro?]: "dual \ = \"
proof -
  have "\ = dual \"
  proof
    fix a' have "\ \ undual a'" ..
    then have "dual (undual a') \ dual \" ..
    then show "a' \ dual \" by simp
  qed
  then show ?thesis ..
qed

theorem dual_top [intro?]: "dual \ = \"
proof -
  have "\ = dual \"
  proof
    fix a' have "undual a' \<sqsubseteq> \<top>" ..
    then have "dual \ \ dual (undual a')" ..
    then show "dual \ \ a'" by simp
  qed
  then show ?thesis ..
qed


subsection \<open>Complete lattices are lattices\<close>

text \<open>
  Complete lattices (with general bounds available) are indeed plain
  lattices as well.  This holds due to the connection of general
  versus binary bounds that has been formally established in
  \S\ref{sec:gen-bin-bounds}.
\<close>

lemma is_inf_binary: "is_inf x y (\{x, y})"
proof -
  have "is_Inf {x, y} (\{x, y})" ..
  then show ?thesis by (simp only: is_Inf_binary)
qed

lemma is_sup_binary: "is_sup x y (\{x, y})"
proof -
  have "is_Sup {x, y} (\{x, y})" ..
  then show ?thesis by (simp only: is_Sup_binary)
qed

instance complete_lattice \<subseteq> lattice
proof
  fix x y :: "'a::complete_lattice"
  from is_inf_binary show "\inf. is_inf x y inf" ..
  from is_sup_binary show "\sup. is_sup x y sup" ..
qed

theorem meet_binary: "x \ y = \{x, y}"
  by (rule meet_equality) (rule is_inf_binary)

theorem join_binary: "x \ y = \{x, y}"
  by (rule join_equality) (rule is_sup_binary)


subsection \<open>Complete lattices and set-theory operations\<close>

text \<open>
  The complete lattice operations are (anti) monotone wrt.\ set
  inclusion.
\<close>

theorem Meet_subset_antimono: "A \ B \ \B \ \A"
proof (rule Meet_greatest)
  fix a assume "a \ A"
  also assume "A \ B"
  finally have "a \ B" .
  then show "\B \ a" ..
qed

theorem Join_subset_mono: "A \ B \ \A \ \B"
proof -
  assume "A \ B"
  then have "dual ` A \ dual ` B" by blast
  then have "\(dual ` B) \ \(dual ` A)" by (rule Meet_subset_antimono)
  then have "dual (\B) \ dual (\A)" by (simp only: dual_Join)
  then show ?thesis by (simp only: dual_leq)
qed

text \<open>
  Bounds over unions of sets may be obtained separately.
\<close>

theorem Meet_Un: "\(A \ B) = \A \ \B"
proof
  fix a assume "a \ A \ B"
  then show "\A \ \B \ a"
  proof
    assume a: "a \ A"
    have "\A \ \B \ \A" ..
    also from a have "\ \ a" ..
    finally show ?thesis .
  next
    assume a: "a \ B"
    have "\A \ \B \ \B" ..
    also from a have "\ \ a" ..
    finally show ?thesis .
  qed
next
  fix b assume b: "\a \ A \ B. b \ a"
  show "b \ \A \ \B"
  proof
    show "b \ \A"
    proof
      fix a assume "a \ A"
      then have "a \ A \ B" ..
      with b show "b \ a" ..
    qed
    show "b \ \B"
    proof
      fix a assume "a \ B"
      then have "a \ A \ B" ..
      with b show "b \ a" ..
    qed
  qed
qed

theorem Join_Un: "\(A \ B) = \A \ \B"
proof -
  have "dual (\(A \ B)) = \(dual ` A \ dual ` B)"
    by (simp only: dual_Join image_Un)
  also have "\ = \(dual ` A) \ \(dual ` B)"
    by (rule Meet_Un)
  also have "\ = dual (\A \ \B)"
    by (simp only: dual_join dual_Join)
  finally show ?thesis ..
qed

text \<open>
  Bounds over singleton sets are trivial.
\<close>

theorem Meet_singleton: "\{x} = x"
proof
  fix a assume "a \ {x}"
  then have "a = x" by simp
  then show "x \ a" by (simp only: leq_refl)
next
  fix b assume "\a \ {x}. b \ a"
  then show "b \ x" by simp
qed

theorem Join_singleton: "\{x} = x"
proof -
  have "dual (\{x}) = \{dual x}" by (simp add: dual_Join)
  also have "\ = dual x" by (rule Meet_singleton)
  finally show ?thesis ..
qed

text \<open>
  Bounds over the empty and universal set correspond to each other.
\<close>

theorem Meet_empty: "\{} = \UNIV"
proof
  fix a :: "'a::complete_lattice"
  assume "a \ {}"
  then have False by simp
  then show "\UNIV \ a" ..
next
  fix b :: "'a::complete_lattice"
  have "b \ UNIV" ..
  then show "b \ \UNIV" ..
qed

theorem Join_empty: "\{} = \UNIV"
proof -
  have "dual (\{}) = \{}" by (simp add: dual_Join)
  also have "\ = \UNIV" by (rule Meet_empty)
  also have "\ = dual (\UNIV)" by (simp add: dual_Meet)
  finally show ?thesis ..
qed

end

[ Dauer der Verarbeitung: 0.4 Sekunden  (vorverarbeitet)  ]