(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
module type HashedType =
sig
type t
val compare : t -> t -> int
val hash : t -> int
end
module SetMake(M : HashedType) =
struct
(** Hash Sets use hashes to prevent doing too many comparison tests. They
associate to each hash the set of keys having that hash.
Invariants:
1. There is no empty set in the intmap.
2. All values in the same set have the same hash, which is the int to
which it is associated in the intmap.
*)
module Set = Set.Make(M)
type elt = M.t
type t = Set.t Int.Map.t
let empty = Int.Map.empty
let is_empty = Int.Map.is_empty
let mem x s =
let h = M.hash x in
try
let m = Int.Map.find h s in
Set.mem x m
with Not_found -> false
let add x s =
let h = M.hash x in
try
let m = Int.Map.find h s in
let m = Set.add x m in
Int.Map.set h m s
with Not_found ->
let m = Set.singleton x in
Int.Map.add h m s
let singleton x =
let h = M.hash x in
let m = Set.singleton x in
Int.Map.singleton h m
let remove x s =
let h = M.hash x in
try
let m = Int.Map.find h s in
let m = Set.remove x m in
if Set.is_empty m then
Int.Map.remove h s
else
Int.Map.set h m s
with Not_found -> s
let height s = Int.Map.height s
let is_smaller s1 s2 = height s1 <= height s2 + 3
(** Assumes s1 << s2 *)
let fast_union s1 s2 =
let fold h s accu =
try Int.Map.modify h (fun _ s' -> Set.fold Set.add s s') accu
with Not_found -> Int.Map.add h s accu
in
Int.Map.fold fold s1 s2
let union s1 s2 =
if is_smaller s1 s2 then fast_union s1 s2
else if is_smaller s2 s1 then fast_union s2 s1
else
let fu _ m1 m2 = match m1, m2 with
| None, None -> None
| (Some _ as m), None | None, (Some _ as m) -> m
| Some m1, Some m2 -> Some (Set.union m1 m2)
in
Int.Map.merge fu s1 s2
(** Assumes s1 << s2 *)
let fast_inter s1 s2 =
let fold h s accu =
try
let s' = Int.Map.find h s2 in
let si = Set.filter (fun e -> Set.mem e s') s in
if Set.is_empty si then accu
else Int.Map.add h si accu
with Not_found -> accu
in
Int.Map.fold fold s1 Int.Map.empty
let inter s1 s2 =
if is_smaller s1 s2 then fast_inter s1 s2
else if is_smaller s2 s1 then fast_inter s2 s1
else
let fu _ m1 m2 = match m1, m2 with
| None, None -> None
| Some _, None | None, Some _ -> None
| Some m1, Some m2 ->
let m = Set.inter m1 m2 in
if Set.is_empty m then None else Some m
in
Int.Map.merge fu s1 s2
(** Assumes s1 << s2 *)
let fast_diff_l s1 s2 =
let fold h s accu =
try
let s' = Int.Map.find h s2 in
let si = Set.filter (fun e -> not (Set.mem e s')) s in
if Set.is_empty si then accu
else Int.Map.add h si accu
with Not_found -> Int.Map.add h s accu
in
Int.Map.fold fold s1 Int.Map.empty
(** Assumes s2 << s1 *)
let fast_diff_r s1 s2 =
let fold h s accu =
try
let s' = Int.Map.find h accu in
let si = Set.filter (fun e -> not (Set.mem e s)) s' in
if Set.is_empty si then Int.Map.remove h accu
else Int.Map.set h si accu
with Not_found -> accu
in
Int.Map.fold fold s2 s1
let diff s1 s2 =
if is_smaller s1 s2 then fast_diff_l s1 s2
else if is_smaller s2 s2 then fast_diff_r s1 s2
else
let fu _ m1 m2 = match m1, m2 with
| None, None -> None
| (Some _ as m), None -> m
| None, Some _ -> None
| Some m1, Some m2 ->
let m = Set.diff m1 m2 in
if Set.is_empty m then None else Some m
in
Int.Map.merge fu s1 s2
let compare s1 s2 = Int.Map.compare Set.compare s1 s2
let equal s1 s2 = Int.Map.equal Set.equal s1 s2
let subset s1 s2 =
let check h m1 =
let m2 = try Int.Map.find h s2 with Not_found -> Set.empty in
Set.subset m1 m2
in
Int.Map.for_all check s1
let iter f s =
let fi _ m = Set.iter f m in
Int.Map.iter fi s
let fold f s accu =
let ff _ m accu = Set.fold f m accu in
Int.Map.fold ff s accu
let for_all f s =
let ff _ m = Set.for_all f m in
Int.Map.for_all ff s
let exists f s =
let fe _ m = Set.exists f m in
Int.Map.exists fe s
let filter f s =
let ff m = Set.filter f m in
let s = Int.Map.map ff s in
Int.Map.filter (fun _ m -> not (Set.is_empty m)) s
let partition f s =
let fold h m (sl, sr) =
let (ml, mr) = Set.partition f m in
let sl = if Set.is_empty ml then sl else Int.Map.add h ml sl in
let sr = if Set.is_empty mr then sr else Int.Map.add h mr sr in
(sl, sr)
in
Int.Map.fold fold s (Int.Map.empty, Int.Map.empty)
let cardinal s =
let fold _ m accu = accu + Set.cardinal m in
Int.Map.fold fold s 0
let elements s =
let fold _ m accu = Set.fold (fun x accu -> x :: accu) m accu in
Int.Map.fold fold s []
let min_elt _ = assert false (** Cannot be implemented efficiently *)
let max_elt _ = assert false (** Cannot be implemented efficiently *)
let choose s =
let (_, m) = Int.Map.choose s in
Set.choose m
let split s x = assert false (** Cannot be implemented efficiently *)
end
module Make(M : HashedType) =
struct
(** This module is essentially the same as SetMake, except that we have maps
instead of sets in the intmap. Invariants are the same. *)
module Set = SetMake(M)
module Map = CMap.Make(M)
type key = M.t
type 'a t = 'a Map.t Int.Map.t
let empty = Int.Map.empty
let is_empty = Int.Map.is_empty
let mem k s =
let h = M.hash k in
try
let m = Int.Map.find h s in
Map.mem k m
with Not_found -> false
let add k x s =
let h = M.hash k in
try
let m = Int.Map.find h s in
let m = Map.add k x m in
Int.Map.set h m s
with Not_found ->
let m = Map.singleton k x in
Int.Map.add h m s
(* when Coq requires OCaml 4.06 or later, the module type
CSig.MapS may include the signature of OCaml's "update",
requiring an implementation here, which could be just:
let update k f s = assert false (* not implemented *)
*)
let singleton k x =
let h = M.hash k in
Int.Map.singleton h (Map.singleton k x)
let remove k s =
let h = M.hash k in
try
let m = Int.Map.find h s in
let m = Map.remove k m in
if Map.is_empty m then
Int.Map.remove h s
else
Int.Map.set h m s
with Not_found -> s
let merge f s1 s2 =
let fm h m1 m2 = match m1, m2 with
| None, None -> None
| Some m, None ->
let m = Map.merge f m Map.empty in
if Map.is_empty m then None
else Some m
| None, Some m ->
let m = Map.merge f Map.empty m in
if Map.is_empty m then None
else Some m
| Some m1, Some m2 ->
let m = Map.merge f m1 m2 in
if Map.is_empty m then None
else Some m
in
Int.Map.merge fm s1 s2
let union f s1 s2 =
let fm h m1 m2 =
let m = Map.union f m1 m2 in
if Map.is_empty m then None
else Some m
in
Int.Map.union fm s1 s2
let compare f s1 s2 =
let fc m1 m2 = Map.compare f m1 m2 in
Int.Map.compare fc s1 s2
let equal f s1 s2 =
let fe m1 m2 = Map.equal f m1 m2 in
Int.Map.equal fe s1 s2
let iter f s =
let fi _ m = Map.iter f m in
Int.Map.iter fi s
let fold f s accu =
let ff _ m accu = Map.fold f m accu in
Int.Map.fold ff s accu
let for_all f s =
let ff _ m = Map.for_all f m in
Int.Map.for_all ff s
let exists f s =
let fe _ m = Map.exists f m in
Int.Map.exists fe s
let filter f s =
let ff m = Map.filter f m in
let s = Int.Map.map ff s in
Int.Map.filter (fun _ m -> not (Map.is_empty m)) s
let partition f s =
let fold h m (sl, sr) =
let (ml, mr) = Map.partition f m in
let sl = if Map.is_empty ml then sl else Int.Map.add h ml sl in
let sr = if Map.is_empty mr then sr else Int.Map.add h mr sr in
(sl, sr)
in
Int.Map.fold fold s (Int.Map.empty, Int.Map.empty)
let cardinal s =
let fold _ m accu = accu + Map.cardinal m in
Int.Map.fold fold s 0
let bindings s =
let fold _ m accu = Map.fold (fun k x accu -> (k, x) :: accu) m accu in
Int.Map.fold fold s []
let min_binding _ = assert false (** Cannot be implemented efficiently *)
let max_binding _ = assert false (** Cannot be implemented efficiently *)
let fold_left _ _ _ = assert false (** Cannot be implemented efficiently *)
let fold_right _ _ _ = assert false (** Cannot be implemented efficiently *)
let choose s =
let (_, m) = Int.Map.choose s in
Map.choose m
let find k s =
let h = M.hash k in
let m = Int.Map.find h s in
Map.find k m
let find_opt k s =
let h = M.hash k in
match Int.Map.find_opt h s with
| None -> None
| Some m -> Map.find_opt k m
let get k s = try find k s with Not_found -> assert false
let split k s = assert false (** Cannot be implemented efficiently *)
let map f s =
let fs m = Map.map f m in
Int.Map.map fs s
let mapi f s =
let fs m = Map.mapi f m in
Int.Map.map fs s
let modify k f s =
let h = M.hash k in
let m = Int.Map.find h s in
let m = Map.modify k f m in
Int.Map.set h m s
let bind f s =
let fb m = Map.bind f m in
Int.Map.map fb s
let domain s = Int.Map.map Map.domain s
let set k x s =
let h = M.hash k in
let m = Int.Map.find h s in
let m = Map.set k x m in
Int.Map.set h m s
module Smart =
struct
let map f s =
let fs m = Map.Smart.map f m in
Int.Map.Smart.map fs s
let mapi f s =
let fs m = Map.Smart.mapi f m in
Int.Map.Smart.map fs s
end
let height s = Int.Map.height s
(* Not as efficient as the original version *)
let filter_range f s =
filter (fun x _ -> f x = 0) s
let update k f m =
let aux = function
| None -> (match f None with
| None -> None
| Some v -> Some (Map.singleton k v))
| Some m ->
let m = Map.update k f m in
if Map.is_empty m then None
else Some m
in
Int.Map.update (M.hash k) aux m
module Unsafe =
struct
let map f s =
let fs m = Map.Unsafe.map f m in
Int.Map.map fs s
end
module Monad(M : CMap.MonadS) =
struct
module IntM = Int.Map.Monad(M)
module ExtM = Map.Monad(M)
let fold f s accu =
let ff _ m accu = ExtM.fold f m accu in
IntM.fold ff s accu
let fold_left _ _ _ = assert false
let fold_right _ _ _ = assert false
end
end
¤ Dauer der Verarbeitung: 0.23 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|