products/sources/formale sprachen/PVS/doc image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei:   Sprache: SML

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

type constraint_type = Lt | Le | Eq

module type Point = sig
  type t

  module Set : CSig.SetS with type elt = t
  module Map : CMap.ExtS with type key = t and module Set := Set

  module Constraint : CSet.S with type elt = (t * constraint_type * t)

  val equal : t -> t -> bool
  val compare : t -> t -> int

  type explanation = (constraint_type * t) list
  val error_inconsistency : constraint_type -> t -> t -> explanation lazy_t option -> 'a

  val pr : t -> Pp.t
end

module Make (Point:Point) = struct

  (* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
  (* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
  (* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
  (* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
  (* Support for universe polymorphism by MS [2014] *)

  (* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
     Sozeau, Pierre-Marie Pédrot, Jacques-Henri Jourdan *)


  (* Points are stratified by a partial ordering $\le$.
     Let $\~{}$ be the associated equivalence. We also have a strict ordering
     $<$ between equivalence classes, and we maintain that $<$ is acyclic,
     and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.

     At every moment, we have a finite number of points, and we
     maintain the ordering in the presence of assertions $U<V$ and $U\le V$.

     The equivalence $\~{}$ is represented by a tree structure, as in the
     union-find algorithm. The assertions $<$ and $\le$ are represented by
     adjacency lists.

     We use the algorithm described in the paper:

     Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
     new approach to incremental cycle detection and related
     problems. arXiv preprint arXiv:1112.0784.

  *)


  module PMap = Point.Map
  module PSet = Point.Set
  module Constraint = Point.Constraint

  type status = NoMark | Visited | WeakVisited | ToMerge

  (* Comparison on this type is pointer equality *)
  type canonical_node =
    { canon: Point.t;
      ltle: bool PMap.t;  (* true: strict (lt) constraint.
                             false: weak  (le) constraint. *)

      gtge: PSet.t;
      rank : int;
      klvl: int;
      ilvl: int;
      mutable status: status
    }

  let big_rank = 1000000

  (* A Point.t is either an alias for another one, or a canonical one,
     for which we know the points that are above *)


  type entry =
    | Canonical of canonical_node
    | Equiv of Point.t

  type t =
    { entries : entry PMap.t;
      index : int;
      n_nodes : int; n_edges : int }

  (** Used to cleanup mutable marks if a traversal function is
      interrupted before it has the opportunity to do it itself. *)

  let unsafe_cleanup_marks g =
    let iter _ n = match n with
      | Equiv _ -> ()
      | Canonical n -> n.status <- NoMark
    in
    PMap.iter iter g.entries

  let rec cleanup_marks g =
    try unsafe_cleanup_marks g
    with e ->
      (* The only way unsafe_cleanup_marks may raise an exception is when
         a serious error (stack overflow, out of memory) occurs, or a signal is
         sent. In this unlikely event, we relaunch the cleanup until we finally
         succeed. *)

      cleanup_marks g; raise e

  (* Every Point.t has a unique canonical arc representative *)

  (* Low-level function : makes u an alias for v.
     Does not removes edges from n_edges, but decrements n_nodes.
     u should be entered as canonical before.  *)

  let enter_equiv g u v =
    { entries =
        PMap.modify u (fun _ a ->
            match a with
            | Canonical n ->
              n.status <- NoMark;
              Equiv v
            | _ -> assert false) g.entries;
      index = g.index;
      n_nodes = g.n_nodes - 1;
      n_edges = g.n_edges }

  (* Low-level function : changes data associated with a canonical node.
     Resets the mutable fields in the old record, in order to avoid breaking
     invariants for other users of this record.
     n.canon should already been inserted as a canonical node. *)

  let change_node g n =
    { g with entries =
               PMap.modify n.canon
                 (fun _ a ->
                    match a with
                    | Canonical n' ->
                      n'.status <- NoMark;
                      Canonical n
                    | _ -> assert false)
                 g.entries }

  (* canonical representative : we follow the Equiv links *)
  let rec repr g u =
    match PMap.find u g.entries with
    | Equiv v -> repr g v
    | Canonical arc -> arc
    | exception Not_found ->
      CErrors.anomaly ~label:"Univ.repr"
        Pp.(str"Universe " ++ Point.pr u ++ str" undefined.")

  exception AlreadyDeclared

  (* Reindexes the given point, using the next available index. *)
  let use_index g u =
    let u = repr g u in
    let g = change_node g { u with ilvl = g.index } in
    assert (g.index > min_int);
    { g with index = g.index - 1 }

  (* [safe_repr] is like [repr] but if the graph doesn't contain the
     searched point, we add it. *)

  let safe_repr g u =
    let rec safe_repr_rec entries u =
      match PMap.find u entries with
      | Equiv v -> safe_repr_rec entries v
      | Canonical arc -> arc
    in
    try g, safe_repr_rec g.entries u
    with Not_found ->
      let can =
        { canon = u;
          ltle = PMap.empty; gtge = PSet.empty;
          rank = 0;
          klvl = 0; ilvl = 0;
          status = NoMark }
      in
      let g = { g with
                entries = PMap.add u (Canonical can) g.entries;
                n_nodes = g.n_nodes + 1 }
      in
      let g = use_index g u in
      g, repr g u

  (* Returns 1 if u is higher than v in topological order.
             -1        lower
             0 if u = v *)

  let topo_compare u v =
    if u.klvl > v.klvl then 1
    else if u.klvl < v.klvl then -1
    else if u.ilvl > v.ilvl then 1
    else if u.ilvl < v.ilvl then -1
    else (assert (u==v); 0)

  (* Checks most of the invariants of the graph. For debugging purposes. *)
  let check_invariants ~required_canonical g =
    let n_edges = ref 0 in
    let n_nodes = ref 0 in
    PMap.iter (fun l u ->
        match u with
        | Canonical u ->
          PMap.iter (fun v _strict ->
              incr n_edges;
              let v = repr g v in
              assert (topo_compare u v = -1);
              if u.klvl = v.klvl then
                assert (PSet.mem u.canon v.gtge ||
                        PSet.exists (fun l -> u == repr g l) v.gtge))
            u.ltle;
          PSet.iter (fun v ->
              let v = repr g v in
              assert (v.klvl = u.klvl &&
                      (PMap.mem u.canon v.ltle ||
                       PMap.exists (fun l _ -> u == repr g l) v.ltle))
            ) u.gtge;
          assert (u.status = NoMark);
          assert (Point.equal l u.canon);
          assert (u.ilvl > g.index);
          assert (not (PMap.mem u.canon u.ltle));
          incr n_nodes
        | Equiv _ -> assert (not (required_canonical l)))
      g.entries;
    assert (!n_edges = g.n_edges);
    assert (!n_nodes = g.n_nodes)

  let clean_ltle g ltle =
    PMap.fold (fun u strict acc ->
        let uu = (repr g u).canon in
        if Point.equal uu u then acc
        else (
          let acc = PMap.remove u (fst acc) in
          if not strict && PMap.mem uu acc then (acc, true)
          else (PMap.add uu strict acc, true)))
      ltle (ltle, false)

  let clean_gtge g gtge =
    PSet.fold (fun u acc ->
        let uu = (repr g u).canon in
        if Point.equal uu u then acc
        else PSet.add uu (PSet.remove u (fst acc)), true)
      gtge (gtge, false)

  (* [get_ltle] and [get_gtge] return ltle and gtge arcs.
     Moreover, if one of these lists is dirty (e.g. points to a
     non-canonical node), these functions clean this node in the
     graph by removing some duplicate edges *)

  let get_ltle g u =
    let ltle, chgt_ltle = clean_ltle g u.ltle in
    if not chgt_ltle then u.ltle, u, g
    else
      let sz = PMap.cardinal u.ltle in
      let sz2 = PMap.cardinal ltle in
      let u = { u with ltle } in
      let g = change_node g u in
      let g = { g with n_edges = g.n_edges + sz2 - sz } in
      u.ltle, u, g

  let get_gtge g u =
    let gtge, chgt_gtge = clean_gtge g u.gtge in
    if not chgt_gtge then u.gtge, u, g
    else
      let u = { u with gtge } in
      let g = change_node g u in
      u.gtge, u, g

  (* [revert_graph] rollbacks the changes made to mutable fields in
     nodes in the graph.
     [to_revert] contains the touched nodes. *)

  let revert_graph to_revert g =
    List.iter (fun t ->
        match PMap.find t g.entries with
        | Equiv _ -> ()
        | Canonical t ->
          t.status <- NoMark) to_revert

  exception AbortBackward of t
  exception CycleDetected

  (* Implementation of the algorithm described in § 5.1 of the following paper:

     Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
     new approach to incremental cycle detection and related
     problems. arXiv preprint arXiv:1112.0784.

     The "STEP X" comments contained in this file refers to the
     corresponding step numbers of the algorithm described in Section
     5.1 of this paper.  *)


  (* [delta] is the timeout for backward search. It might be
      useful to tune a multiplicative constant. *)

  let get_delta g =
    int_of_float
      (min (float_of_int g.n_edges ** 0.5)
         (float_of_int g.n_nodes ** (2./.3.)))

  let rec backward_traverse to_revert b_traversed count g x =
    let x = repr g x in
    let count = count - 1 in
    if count < 0 then begin
      revert_graph to_revert g;
      raise (AbortBackward g)
    end;
    if x.status = NoMark then begin
      x.status <- Visited;
      let to_revert = x.canon::to_revert in
      let gtge, x, g = get_gtge g x in
      let to_revert, b_traversed, count, g =
        PSet.fold (fun y (to_revert, b_traversed, count, g) ->
            backward_traverse to_revert b_traversed count g y)
          gtge (to_revert, b_traversed, count, g)
      in
      to_revert, x.canon::b_traversed, count, g
    end
    else to_revert, b_traversed, count, g

  let rec forward_traverse f_traversed g v_klvl x y =
    let y = repr g y in
    if y.klvl < v_klvl then begin
      let y = { y with klvl = v_klvl;
                       gtge = if x == y then PSet.empty
                         else PSet.singleton x.canon }
      in
      let g = change_node g y in
      let ltle, y, g = get_ltle g y in
      let f_traversed, g =
        PMap.fold (fun z _ (f_traversed, g) ->
            forward_traverse f_traversed g v_klvl y z)
          ltle (f_traversed, g)
      in
      y.canon::f_traversed, g
    end else if y.klvl = v_klvl && x != y then
      let g = change_node g
          { y with gtge = PSet.add x.canon y.gtge } in
      f_traversed, g
    else f_traversed, g

  let rec find_to_merge to_revert g x v =
    let x = repr g x in
    match x.status with
    | Visited -> false, to_revert   | ToMerge -> true, to_revert
    | NoMark ->
      let to_revert = x::to_revert in
      if Point.equal x.canon v then
        begin x.status <- ToMerge; true, to_revert end
      else
        begin
          let merge, to_revert = PSet.fold
              (fun y (merge, to_revert) ->
                 let merge', to_revert = find_to_merge to_revert g y v in
                 merge' || merge, to_revert) x.gtge (false, to_revert)
          in
          x.status <- if merge then ToMerge else Visited;
          merge, to_revert
        end
    | _ -> assert false

  let get_new_edges g to_merge =
    (* Computing edge sets. *)
    let to_merge_lvl =
      List.fold_left (fun acc u -> PMap.add u.canon u acc)
        PMap.empty to_merge
    in
    let ltle =
      let fold _ n acc =
        let fold u strict acc =
          if strict then PMap.add u strict acc
          else if PMap.mem u acc then acc
          else PMap.add u false acc
        in
        PMap.fold fold n.ltle acc
      in
      PMap.fold fold to_merge_lvl PMap.empty
    in
    let ltle, _ = clean_ltle g ltle in
    let ltle =
      PMap.merge (fun _ a strict ->
          match a, strict with
          | Some _, Some true ->
            (* There is a lt edge inside the new component. This is a
                "bad cycle". *)

            raise CycleDetected
          | Some _, Some false -> None
          | _, _ -> strict
        ) to_merge_lvl ltle
    in
    let gtge =
      PMap.fold (fun _ n acc -> PSet.union acc n.gtge)
        to_merge_lvl PSet.empty
    in
    let gtge, _ = clean_gtge g gtge in
    let gtge = PSet.diff gtge (PMap.domain to_merge_lvl) in
    (ltle, gtge)


  let reorder g u v =
    (* STEP 2: backward search in the k-level of u. *)
    let delta = get_delta g in

    (* [v_klvl] is the chosen future level for u, v and all
        traversed nodes. *)

    let b_traversed, v_klvl, g =
      try
        let to_revert, b_traversed, _, g = backward_traverse [] [] delta g u in
        revert_graph to_revert g;
        let v_klvl = (repr g u).klvl in
        b_traversed, v_klvl, g
      with AbortBackward g ->
        (* Backward search was too long, use the next k-level. *)
        let v_klvl = (repr g u).klvl + 1 in
        [], v_klvl, g
    in
    let f_traversed, g =
      (* STEP 3: forward search. Contrary to what is described in
          the paper, we do not test whether v_klvl = u.klvl nor we assign
          v_klvl to v.klvl. Indeed, the first call to forward_traverse
          will do all that. *)

      forward_traverse [] g v_klvl (repr g v) v
    in

    (* STEP 4: merge nodes if needed. *)
    let to_merge, b_reindex, f_reindex =
      if (repr g u).klvl = v_klvl then
        begin
          let merge, to_revert = find_to_merge [] g u v in
          let r =
            if merge then
              List.filter (fun u -> u.status = ToMerge) to_revert,
              List.filter (fun u -> (repr g u).status <> ToMerge) b_traversed,
              List.filter (fun u -> (repr g u).status <> ToMerge) f_traversed
            else [], b_traversed, f_traversed
          in
          List.iter (fun u -> u.status <- NoMark) to_revert;
          r
        end
      else [], b_traversed, f_traversed
    in
    let to_reindex, g =
      match to_merge with
      | [] -> List.rev_append f_reindex b_reindex, g
      | n0::q0 ->
        (* Computing new root. *)
        let root, rank_rest =
          List.fold_left (fun ((best, _rank_rest) as acc) n ->
              if n.rank >= best.rank then n, best.rank else acc)
            (n0, min_int) q0
        in
        let ltle, gtge = get_new_edges g to_merge in
        (* Inserting the new root. *)
        let g = change_node g
            { root with ltle; gtge;
                        rank = max root.rank (rank_rest + 1); }
        in

        (* Inserting shortcuts for old nodes. *)
        let g = List.fold_left (fun g n ->
            if Point.equal n.canon root.canon then g else enter_equiv g n.canon root.canon)
            g to_merge
        in

        (* Updating g.n_edges *)
        let oldsz =
          List.fold_left (fun sz u -> sz+PMap.cardinal u.ltle)
            0 to_merge
        in
        let sz = PMap.cardinal ltle in
        let g = { g with n_edges = g.n_edges + sz - oldsz } in

        (* Not clear in the paper: we have to put the newly
            created component just between B and F. *)

        List.rev_append f_reindex (root.canon::b_reindex), g

    in

    (* STEP 5: reindex traversed nodes. *)
    List.fold_left use_index g to_reindex

  (* Assumes [u] and [v] are already in the graph. *)
  (* Does NOT assume that ucan != vcan. *)
  let insert_edge strict ucan vcan g =
    try
      let u = ucan.canon and v = vcan.canon in
      (* STEP 1: do we need to reorder nodes ? *)
      let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in

      (* STEP 6: insert the new edge in the graph. *)
      let u = repr g u in
      let v = repr g v in
      if u == v then
        if strict then raise CycleDetected else g
      else
        let g =
          try let oldstrict = PMap.find v.canon u.ltle in
            if strict && not oldstrict then
              change_node g { u with ltle = PMap.add v.canon true u.ltle }
            else g
          with Not_found ->
            { (change_node g { u with ltle = PMap.add v.canon strict u.ltle })
              with n_edges = g.n_edges + 1 }
        in
        if u.klvl <> v.klvl || PSet.mem u.canon v.gtge then g
        else
          let v = { v with gtge = PSet.add u.canon v.gtge } in
          change_node g v
    with
    | CycleDetected as e -> raise e
    | e ->
      (* Unlikely event: fatal error or signal *)
      let () = cleanup_marks g in
      raise e

  let add ?(rank=0) v g =
    try
      let _arcv = PMap.find v g.entries in
      raise AlreadyDeclared
    with Not_found ->
      assert (g.index > min_int);
      let node = {
        canon = v;
        ltle = PMap.empty;
        gtge = PSet.empty;
        rank;
        klvl = 0;
        ilvl = g.index;
        status = NoMark;
      }
      in
      let entries = PMap.add v (Canonical node) g.entries in
      { entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges }

  exception Undeclared of Point.t
  let check_declared g us =
    let check l = if not (PMap.mem l g.entries) then raise (Undeclared l) in
    PSet.iter check us

  exception Found_explanation of (constraint_type * Point.t) list

  let get_explanation strict u v g =
    let v = repr g v in
    let visited_strict = ref PMap.empty in
    let rec traverse strict u =
      if u == v then
        if strict then None else Some []
      else if topo_compare u v = 1 then None
      else
        let visited =
          try not (PMap.find u.canon !visited_strict) || strict
          with Not_found -> false
        in
        if visited then None
        else begin
          visited_strict := PMap.add u.canon strict !visited_strict;
          try
            PMap.iter (fun u' strictu' ->
                match traverse (strict && not strictu') (repr g u'with
                | None -> ()
                | Some exp ->
                  let typ = if strictu' then Lt else Le in
                  raise (Found_explanation ((typ, u') :: exp)))
              u.ltle;
            None
          with Found_explanation exp -> Some exp
        end
    in
    let u = repr g u in
    if u == v then [(Eq, v.canon)]
    else match traverse strict u with Some exp -> exp | None -> assert false

  let get_explanation strict u v g =
    Some (lazy (get_explanation strict u v g))

  (* To compare two nodes, we simply do a forward search.
     We implement two improvements:
     - we ignore nodes that are higher than the destination;
     - we do a BFS rather than a DFS because we expect to have a short
         path (typically, the shortest path has length 1)
  *)

  exception Found of canonical_node list
  let search_path strict u v g =
    let rec loop to_revert todo next_todo =
      match todo, next_todo with
      | [], [] -> to_revert (* No path found *)
      | [], _ -> loop to_revert next_todo []
      | (u, strict)::todo, _ ->
        if u.status = Visited || (u.status = WeakVisited && strict)
        then loop to_revert todo next_todo
        else
          let to_revert =
            if u.status = NoMark then u::to_revert else to_revert
          in
          u.status <- if strict then WeakVisited else Visited;
          if try PMap.find v.canon u.ltle || not strict
            with Not_found -> false
          then raise (Found to_revert)
          else
            begin
              let next_todo =
                PMap.fold (fun u strictu next_todo ->
                    let strict = not strictu && strict in
                    let u = repr g u in
                    if u == v && not strict then raise (Found to_revert)
                    else if topo_compare u v = 1 then next_todo
                    else (u, strict)::next_todo)
                  u.ltle next_todo
              in
              loop to_revert todo next_todo
            end
    in
    if u == v then not strict
    else
      try
        let res, to_revert =
          try false, loop [] [u, strict] []
          with Found to_revert -> true, to_revert
        in
        List.iter (fun u -> u.status <- NoMark) to_revert;
        res
      with e ->
        (* Unlikely event: fatal error or signal *)
        let () = cleanup_marks g in
        raise e

  (** Uncomment to debug the cycle detection algorithm. *)
  (*let insert_edge strict ucan vcan g =
    let check_invariants = check_invariants ~required_canonical:(fun _ -> false) in
    check_invariants g;
    let g = insert_edge strict ucan vcan g in
    check_invariants g;
    let ucan = repr g ucan.canon in
    let vcan = repr g vcan.canon in
    assert (search_path strict ucan vcan g);
    g*)


  (** User interface *)

  type 'a check_function = t -> 'a -> 'a -> bool

  let check_eq g u v =
    u == v ||
    let arcu = repr g u and arcv = repr g v in
    arcu == arcv

  let check_smaller g strict u v =
    search_path strict (repr g u) (repr g v) g

  let check_leq g u v = check_smaller g false u v
  let check_lt g u v = check_smaller g true u v

  (* enforce_eq g u v will force u=v if possible, will fail otherwise *)

  let rec enforce_eq u v g =
    let ucan = repr g u in
    let vcan = repr g v in
    if topo_compare ucan vcan = 1 then enforce_eq v u g
    else
      let g = insert_edge false ucan vcan g in  (* Cannot fail *)
      try insert_edge false vcan ucan g
      with CycleDetected ->
        Point.error_inconsistency Eq v u (get_explanation true u v g)

  (* enforce_leq g u v will force u<=v if possible, will fail otherwise *)
  let enforce_leq u v g =
    let ucan = repr g u in
    let vcan = repr g v in
    try insert_edge false ucan vcan g
    with CycleDetected ->
      Point.error_inconsistency Le u v (get_explanation true v u g)

  (* enforce_lt u v will force u<v if possible, will fail otherwise *)
  let enforce_lt u v g =
    let ucan = repr g u in
    let vcan = repr g v in
    try insert_edge true ucan vcan g
    with CycleDetected ->
      Point.error_inconsistency Lt u v (get_explanation false v u g)

  let empty =
    { entries = PMap.empty; index = 0; n_nodes = 0; n_edges = 0 }

  (* Normalization *)

  (** [normalize g] returns a graph where all edges point
      directly to the canonical representent of their target. The output
      graph should be equivalent to the input graph from a logical point
      of view, but optimized. We maintain the invariant that the key of
      a [Canonical] element is its own name, by keeping [Equiv] edges. *)

  let normalize g =
    let g =
      { g with
        entries = PMap.map (fun entry ->
            match entry with
            | Equiv u -> Equiv ((repr g u).canon)
            | Canonical ucan -> Canonical { ucan with rank = 1 })
            g.entries }
    in
    PMap.fold (fun _ u g ->
        match u with
        | Equiv _u -> g
        | Canonical u ->
          let _, u, g = get_ltle g u in
          let _, _, g = get_gtge g u in
          g)
      g.entries g

  let constraints_of g =
    let module UF = Unionfind.Make (PSet) (PMap) in
    let uf = UF.create () in
    let constraints_of u v acc =
      match v with
      | Canonical {canon=u; ltle; _} ->
        PMap.fold (fun v strict acc->
            let typ = if strict then Lt else Le in
            Constraint.add (u,typ,v) acc) ltle acc
      | Equiv v -> UF.union u v uf; acc
    in
    let csts = PMap.fold constraints_of g.entries Constraint.empty in
    csts, UF.partition uf

  (* domain g.entries = kept + removed *)
  let constraints_for ~kept g =
    (* rmap: partial map from canonical points to kept points *)
    let rmap, csts = PSet.fold (fun u (rmap,csts) ->
        let arcu = repr g u in
        if PSet.mem arcu.canon kept then
          PMap.add arcu.canon arcu.canon rmap, Constraint.add (u,Eq,arcu.canon) csts
        else
          match PMap.find arcu.canon rmap with
          | v -> rmap, Constraint.add (u,Eq,v) csts
          | exception Not_found -> PMap.add arcu.canon u rmap, csts)
        kept (PMap.empty,Constraint.empty)
    in
    let rec add_from u csts todo = match todo with
      | [] -> csts
      | (v,strict)::todo ->
        let v = repr g v in
        (match PMap.find v.canon rmap with
         | v ->
           let d = if strict then Lt else Le in
           let csts = Constraint.add (u,d,v) csts in
           add_from u csts todo
         | exception Not_found ->
           (* v is not equal to any kept point *)
           let todo = PMap.fold (fun v' strict' todo ->
               (v',strict || strict') :: todo)
               v.ltle todo
           in
           add_from u csts todo)
    in
    PSet.fold (fun u csts ->
        let arc = repr g u in
        PMap.fold (fun v strict csts -> add_from u csts [v,strict])
          arc.ltle csts)
      kept csts

  let domain g = PMap.domain g.entries

  let choose p g u =
    let exception Found of Point.t in
    let ru = (repr g u).canon in
    if p ru then Some ru
    else
      try PMap.iter (fun v -> function
          | Canonical _ -> () (* we already tried [p ru] *)
          | Equiv v' ->
            let rv = (repr g v').canon in
            if rv == ru && p v then raise (Found v)
            (* NB: we could also try [p v'] but it will come up in the
               rest of the iteration regardless. *)

        ) g.entries; None
      with Found v -> Some v

  let sort make_dummy first g =
    let cans =
      PMap.fold (fun _ u l ->
          match u with
          | Equiv _ -> l
          | Canonical can -> can :: l
        ) g.entries []
    in
    let cans = List.sort topo_compare cans in
    let lowest =
      PMap.mapi (fun u _ -> if CList.mem_f Point.equal u first then 0 else 2)
        (PMap.filter
           (fun _ u -> match u with Equiv _ -> false | Canonical _ -> true)
           g.entries)
    in
    let lowest =
      List.fold_left (fun lowest can ->
          let lvl = PMap.find can.canon lowest in
          PMap.fold (fun u' strict lowest ->
              let cost = if strict then 1 else 0 in
              let u' = (repr g u').canon in
              PMap.modify u' (fun _ lvl0 -> max lvl0 (lvl+cost)) lowest)
            can.ltle lowest)
        lowest cans
    in
    let max_lvl = PMap.fold (fun _ a b -> max a b) lowest 0 in
    let types = Array.init (max_lvl + 1) (fun i ->
        match List.nth_opt first i with
        | Some u -> u
        | None -> make_dummy (i-2))
    in
    let g = Array.fold_left (fun g u ->
        let g, u = safe_repr g u in
        change_node g { u with rank = big_rank }) g types
    in
    let g = if max_lvl > List.length first && not (CList.is_empty first) then
        enforce_lt (CList.last first) types.(List.length first) g
      else g
    in
    let g =
      PMap.fold (fun u lvl g -> enforce_eq u (types.(lvl)) g)
        lowest g
    in
    normalize g

  (** Pretty-printing *)

  let pr_pmap sep pr map =
    let cmp (u,_) (v,_) = Point.compare u v in
    Pp.prlist_with_sep sep pr (List.sort cmp (PMap.bindings map))

  let pr_arc prl = let open Pp in
    function
    | _, Canonical {canon=u; ltle; _} ->
      if PMap.is_empty ltle then mt ()
      else
        prl u ++ str " " ++
        v 0
          (pr_pmap spc (fun (v, strict) ->
               (if strict then str "< " else str "<= ") ++ prl v)
              ltle) ++
        fnl ()
    | u, Equiv v ->
      prl u  ++ str " = " ++ prl v ++ fnl ()

  let pr prl g =
    pr_pmap Pp.mt (pr_arc prl) g.entries

  (* Dumping constraints to a file *)

  let dump output g =
    let dump_arc u = function
      | Canonical {canon=u; ltle; _} ->
        PMap.iter (fun v strict ->
            let typ = if strict then Lt else Le in
            output typ u v) ltle;
      | Equiv v ->
        output Eq u v
    in
    PMap.iter dump_arc g.entries

end

¤ Dauer der Verarbeitung: 0.50 Sekunden  (vorverarbeitet)  ¤





Druckansicht
unsichere Verbindung
Druckansicht
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff