Require Import Bool DecidableClass Algebra Ring PArith Omega.
Section Bool.
(* Boolean formulas and their evaluations *)
Inductive formula :=
| formula_var : positive -> formula
| formula_btm : formula
| formula_top : formula
| formula_cnj : formula -> formula -> formula
| formula_dsj : formula -> formula -> formula
| formula_neg : formula -> formula
| formula_xor : formula -> formula -> formula
| formula_ifb : formula -> formula -> formula -> formula.
Fixpoint formula_eval var f := match f with
| formula_var x => list_nth x var false
| formula_btm => false
| formula_top => true
| formula_cnj fl fr => (formula_eval var fl) && (formula_eval var fr)
| formula_dsj fl fr => (formula_eval var fl) || (formula_eval var fr)
| formula_neg f => negb (formula_eval var f)
| formula_xor fl fr => xorb (formula_eval var fl) (formula_eval var fr)
| formula_ifb fc fl fr =>
if formula_eval var fc then formula_eval var fl else formula_eval var fr
end.
End Bool.
(* Translation of formulas into polynomials *)
Section Translation.
(* This is straightforward. *)
Fixpoint poly_of_formula f := match f with
| formula_var x => Poly (Cst false) x (Cst true)
| formula_btm => Cst false
| formula_top => Cst true
| formula_cnj fl fr =>
let pl := poly_of_formula fl in
let pr := poly_of_formula fr in
poly_mul pl pr
| formula_dsj fl fr =>
let pl := poly_of_formula fl in
let pr := poly_of_formula fr in
poly_add (poly_add pl pr) (poly_mul pl pr)
| formula_neg f => poly_add (Cst true) (poly_of_formula f)
| formula_xor fl fr => poly_add (poly_of_formula fl) (poly_of_formula fr)
| formula_ifb fc fl fr =>
let pc := poly_of_formula fc in
let pl := poly_of_formula fl in
let pr := poly_of_formula fr in
poly_add pr (poly_add (poly_mul pc pl) (poly_mul pc pr))
end.
Opaque poly_add.
(* Compatibility of translation wrt evaluation *)
Lemma poly_of_formula_eval_compat : forall var f,
eval var (poly_of_formula f) = formula_eval var f.
Proof.
intros var f; induction f; simpl poly_of_formula; simpl formula_eval; auto.
now simpl; match goal with [ |- ?t = ?u ] => destruct u; reflexivity end.
rewrite poly_mul_compat, IHf1, IHf2; ring.
repeat rewrite poly_add_compat.
rewrite poly_mul_compat; try_rewrite.
now match goal with [ |- ?t = ?x || ?y ] => destruct x; destruct y; reflexivity end.
rewrite poly_add_compat; try_rewrite.
now match goal with [ |- ?t = negb ?x ] => destruct x; reflexivity end.
rewrite poly_add_compat; congruence.
rewrite ?poly_add_compat, ?poly_mul_compat; try_rewrite.
match goal with
[ |- ?t = if ?b1 then ?b2 else ?b3 ] => destruct b1; destruct b2; destruct b3; reflexivity
end.
Qed.
Hint Extern 5 => change 0 with (min 0 0) : core.
Local Hint Resolve poly_add_valid_compat poly_mul_valid_compat : core.
Local Hint Constructors valid : core.
Hint Extern 5 => zify; omega : core.
(* Compatibility with validity *)
Lemma poly_of_formula_valid_compat : forall f, exists n, valid n (poly_of_formula f).
Proof.
intros f; induction f; simpl.
+ exists (Pos.succ p); constructor; intuition; inversion H.
+ exists 1%positive; auto.
+ exists 1%positive; auto.
+ destruct IHf1 as [n1 Hn1]; destruct IHf2 as [n2 Hn2]; exists (Pos.max n1 n2); auto.
+ destruct IHf1 as [n1 Hn1]; destruct IHf2 as [n2 Hn2]; exists (Pos.max (Pos.max n1 n2) (Pos.max n1 n2)); auto.
+ destruct IHf as [n Hn]; exists (Pos.max 1 n); auto.
+ destruct IHf1 as [n1 Hn1]; destruct IHf2 as [n2 Hn2]; exists (Pos.max n1 n2); auto.
+ destruct IHf1 as [n1 Hn1]; destruct IHf2 as [n2 Hn2]; destruct IHf3 as [n3 Hn3]; eexists; eauto.
Qed.
(* The soundness lemma ; alas not complete! *)
Lemma poly_of_formula_sound : forall fl fr var,
poly_of_formula fl = poly_of_formula fr -> formula_eval var fl = formula_eval var fr.
Proof.
intros fl fr var Heq.
repeat rewrite <- poly_of_formula_eval_compat.
rewrite Heq; reflexivity.
Qed.
End Translation.
Section Completeness.
(* Lemma reduce_poly_of_formula_simpl : forall fl fr var,
simpl_eval (var_of_list var) (reduce (poly_of_formula fl)) = simpl_eval (var_of_list var) (reduce (poly_of_formula fr)) ->
formula_eval var fl = formula_eval var fr.
Proof.
intros fl fr var Hrw.
do 2 rewrite <- poly_of_formula_eval_compat.
destruct (poly_of_formula_valid_compat fl) as [nl Hl].
destruct (poly_of_formula_valid_compat fr) as [nr Hr].
rewrite <- (reduce_eval_compat nl (poly_of_formula fl)); [|assumption].
rewrite <- (reduce_eval_compat nr (poly_of_formula fr)); [|assumption].
do 2 rewrite <- eval_simpl_eval_compat; assumption.
Qed. *)
(* Soundness of the method ; immediate *)
Lemma reduce_poly_of_formula_sound : forall fl fr var,
reduce (poly_of_formula fl) = reduce (poly_of_formula fr) ->
formula_eval var fl = formula_eval var fr.
Proof.
intros fl fr var Heq.
repeat rewrite <- poly_of_formula_eval_compat.
destruct (poly_of_formula_valid_compat fl) as [nl Hl].
destruct (poly_of_formula_valid_compat fr) as [nr Hr].
rewrite <- (reduce_eval_compat nl (poly_of_formula fl)); auto.
rewrite <- (reduce_eval_compat nr (poly_of_formula fr)); auto.
rewrite Heq; reflexivity.
Qed.
Definition make_last {A} n (x def : A) :=
Pos.peano_rect (fun _ => list A)
(cons x nil)
(fun _ F => cons def F) n.
(* Replace the nth element of a list *)
Fixpoint list_replace l n b :=
match l with
| nil => make_last n b false
| cons a l =>
Pos.peano_rect _
(cons b l) (fun n _ => cons a (list_replace l n b)) n
end.
(** Extract a non-null witness from a polynomial *)
Existing Instance Decidable_null.
Fixpoint boolean_witness p :=
match p with
| Cst c => nil
| Poly p i q =>
if decide (null p) then
let var := boolean_witness q in
list_replace var i true
else
let var := boolean_witness p in
list_replace var i false
end.
Lemma list_nth_base : forall A (def : A) l,
list_nth 1 l def = match l with nil => def | cons x _ => x end.
Proof.
intros A def l; unfold list_nth.
rewrite Pos.peano_rect_base; reflexivity.
Qed.
Lemma list_nth_succ : forall A n (def : A) l,
list_nth (Pos.succ n) l def =
match l with nil => def | cons _ l => list_nth n l def end.
Proof.
intros A def l; unfold list_nth.
rewrite Pos.peano_rect_succ; reflexivity.
Qed.
Lemma list_nth_nil : forall A n (def : A),
list_nth n nil def = def.
Proof.
intros A n def; induction n using Pos.peano_rect.
+ rewrite list_nth_base; reflexivity.
+ rewrite list_nth_succ; reflexivity.
Qed.
Lemma make_last_nth_1 : forall A n i x def, i <> n ->
list_nth i (@make_last A n x def) def = def.
Proof.
intros A n; induction n using Pos.peano_rect; intros i x def Hd;
unfold make_last; simpl.
+ induction i using Pos.peano_case; [elim Hd; reflexivity|].
rewrite list_nth_succ, list_nth_nil; reflexivity.
+ unfold make_last; rewrite Pos.peano_rect_succ; fold (make_last n x def).
induction i using Pos.peano_case.
- rewrite list_nth_base; reflexivity.
- rewrite list_nth_succ; apply IHn; zify; omega.
Qed.
Lemma make_last_nth_2 : forall A n x def, list_nth n (@make_last A n x def) def = x.
Proof.
intros A n; induction n using Pos.peano_rect; intros x def; simpl.
+ reflexivity.
+ unfold make_last; rewrite Pos.peano_rect_succ; fold (make_last n x def).
rewrite list_nth_succ; auto.
Qed.
Lemma list_replace_nth_1 : forall var i j x, i <> j ->
list_nth i (list_replace var j x) false = list_nth i var false.
Proof.
intros var; induction var; intros i j x Hd; simpl.
+ rewrite make_last_nth_1, list_nth_nil; auto.
+ induction j using Pos.peano_rect.
- rewrite Pos.peano_rect_base.
induction i using Pos.peano_rect; [now elim Hd; auto|].
rewrite 2list_nth_succ; reflexivity.
- rewrite Pos.peano_rect_succ.
induction i using Pos.peano_rect.
{ rewrite 2list_nth_base; reflexivity. }
{ rewrite 2list_nth_succ; apply IHvar; zify; omega. }
Qed.
Lemma list_replace_nth_2 : forall var i x, list_nth i (list_replace var i x) false = x.
Proof.
intros var; induction var; intros i x; simpl.
+ now apply make_last_nth_2.
+ induction i using Pos.peano_rect.
- rewrite Pos.peano_rect_base, list_nth_base; reflexivity.
- rewrite Pos.peano_rect_succ, list_nth_succ; auto.
Qed.
(* The witness is correct only if the polynomial is linear *)
Lemma boolean_witness_nonzero : forall k p, linear k p -> ~ null p ->
eval (boolean_witness p) p = true.
Proof.
intros k p Hl Hp; induction Hl; simpl.
destruct c; [reflexivity|elim Hp; now constructor].
case_decide.
rewrite eval_null_zero; [|assumption]; rewrite list_replace_nth_2; simpl.
match goal with [ |- (if ?b then true else false) = true ] =>
assert (Hrw : b = true); [|rewrite Hrw; reflexivity]
end.
erewrite eval_suffix_compat; [now eauto| |now apply linear_valid_incl; eauto].
now intros j Hd; apply list_replace_nth_1; zify; omega.
rewrite list_replace_nth_2, xorb_false_r.
erewrite eval_suffix_compat; [now eauto| |now apply linear_valid_incl; eauto].
now intros j Hd; apply list_replace_nth_1; zify; omega.
Qed.
(* This should be better when using the [vm_compute] tactic instead of plain reflexivity. *)
Lemma reduce_poly_of_formula_sound_alt : forall var fl fr,
reduce (poly_add (poly_of_formula fl) (poly_of_formula fr)) = Cst false ->
formula_eval var fl = formula_eval var fr.
Proof.
intros var fl fr Heq.
repeat rewrite <- poly_of_formula_eval_compat.
destruct (poly_of_formula_valid_compat fl) as [nl Hl].
destruct (poly_of_formula_valid_compat fr) as [nr Hr].
rewrite <- (reduce_eval_compat nl (poly_of_formula fl)); auto.
rewrite <- (reduce_eval_compat nr (poly_of_formula fr)); auto.
rewrite <- xorb_false_l; change false with (eval var (Cst false)).
rewrite <- poly_add_compat, <- Heq.
repeat rewrite poly_add_compat.
rewrite (reduce_eval_compat nl); [|assumption].
rewrite (reduce_eval_compat (Pos.max nl nr)); [|apply poly_add_valid_compat; assumption].
rewrite (reduce_eval_compat nr); [|assumption].
rewrite poly_add_compat; ring.
Qed.
(* The completeness lemma *)
(* Lemma reduce_poly_of_formula_complete : forall fl fr,
reduce (poly_of_formula fl) <> reduce (poly_of_formula fr) ->
{var | formula_eval var fl <> formula_eval var fr}.
Proof.
intros fl fr H.
pose (p := poly_add (reduce (poly_of_formula fl)) (poly_opp (reduce (poly_of_formula fr)))).
pose (var := boolean_witness p).
exists var.
intros Hc; apply (f_equal Z_of_bool) in Hc.
assert (Hfl : linear 0 (reduce (poly_of_formula fl))).
now destruct (poly_of_formula_valid_compat fl) as [n Hn]; apply (linear_le_compat n); [|now auto]; apply linear_reduce; auto.
assert (Hfr : linear 0 (reduce (poly_of_formula fr))).
now destruct (poly_of_formula_valid_compat fr) as [n Hn]; apply (linear_le_compat n); [|now auto]; apply linear_reduce; auto.
repeat rewrite <- poly_of_formula_eval_compat in Hc.
define (decide (null p)) b Hb; destruct b; tac_decide.
now elim H; apply (null_sub_implies_eq 0 0); fold p; auto;
apply linear_valid_incl; auto.
elim (boolean_witness_nonzero 0 p); auto.
unfold p; rewrite <- (min_id 0); apply poly_add_linear_compat; try apply poly_opp_linear_compat; now auto.
unfold p at 2; rewrite poly_add_compat, poly_opp_compat.
destruct (poly_of_formula_valid_compat fl) as [nl Hnl].
destruct (poly_of_formula_valid_compat fr) as [nr Hnr].
repeat erewrite reduce_eval_compat; eauto.
fold var; rewrite Hc; ring.
Defined. *)
End Completeness.
(* Reification tactics *)
(* For reflexivity purposes, that would better be transparent *)
Global Transparent decide poly_add.
(* Ltac append_var x l k :=
match l with
| nil => constr: (k, cons x l)
| cons x _ => constr: (k, l)
| cons ?y ?l =>
let ans := append_var x l (S k) in
match ans with (?k, ?l) => constr: (k, cons y l) end
end.
Ltac build_formula t l :=
match t with
| true => constr: (formula_top, l)
| false => constr: (formula_btm, l)
| ?fl && ?fr =>
match build_formula fl l with (?tl, ?l) =>
match build_formula fr l with (?tr, ?l) =>
constr: (formula_cnj tl tr, l)
end
end
| ?fl || ?fr =>
match build_formula fl l with (?tl, ?l) =>
match build_formula fr l with (?tr, ?l) =>
constr: (formula_dsj tl tr, l)
end
end
| negb ?f =>
match build_formula f l with (?t, ?l) =>
constr: (formula_neg t, l)
end
| _ =>
let ans := append_var t l 0 in
match ans with (?k, ?l) => constr: (formula_var k, l) end
end.
(* Extract a counterexample from a polynomial and display it *)
Ltac counterexample p l :=
let var := constr: (boolean_witness p) in
let var := eval vm_compute in var in
let rec print l vl :=
match l with
| nil => idtac
| cons ?x ?l =>
match vl with
| nil =>
idtac x ":=" "false"; print l (@nil bool)
| cons ?v ?vl =>
idtac x ":=" v; print l vl
end
end
in
idtac "Counter-example:"; print l var.
Ltac btauto_reify :=
lazymatch goal with
| [ |- @eq bool ?t ?u ] =>
lazymatch build_formula t (@nil bool) with
| (?fl, ?l) =>
lazymatch build_formula u l with
| (?fr, ?l) =>
change (formula_eval l fl = formula_eval l fr)
end
end
| _ => fail "Cannot recognize a boolean equality"
end.
(* The long-awaited tactic *)
Ltac btauto :=
lazymatch goal with
| [ |- @eq bool ?t ?u ] =>
lazymatch build_formula t (@nil bool) with
| (?fl, ?l) =>
lazymatch build_formula u l with
| (?fr, ?l) =>
change (formula_eval l fl = formula_eval l fr);
apply reduce_poly_of_formula_sound_alt;
vm_compute; (reflexivity || fail "Not a tautology")
end
end
| _ => fail "Cannot recognize a boolean equality"
end. *)
Register formula_var as plugins.btauto.f_var.
Register formula_btm as plugins.btauto.f_btm.
Register formula_top as plugins.btauto.f_top.
Register formula_cnj as plugins.btauto.f_cnj.
Register formula_dsj as plugins.btauto.f_dsj.
Register formula_neg as plugins.btauto.f_neg.
Register formula_xor as plugins.btauto.f_xor.
Register formula_ifb as plugins.btauto.f_ifb.
Register formula_eval as plugins.btauto.eval.
Register boolean_witness as plugins.btauto.witness.
Register reduce_poly_of_formula_sound_alt as plugins.btauto.soundness.
¤ Dauer der Verarbeitung: 0.3 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|