products/sources/formale sprachen/Coq/plugins/setoid_ring image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Ncring_initial.v   Sprache: Coq

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import ZArith_base.
Require Import Zpow_def.
Require Import BinInt.
Require Import BinNat.
Require Import Setoid.
Require Import BinList.
Require Import BinPos.
Require Import BinNat.
Require Import BinInt.
Require Import Setoid.
Require Export Ncring.
Require Export Ncring_polynom.

Set Implicit Arguments.

(* An object to return when an expression is not recognized as a constant *)
Definition NotConstant := false.

(** Z is a ring and a setoid*)

Lemma Zsth : Equivalence (@eq Z).
Proofexact Z.eq_equiv. Qed.

Instance Zops:@Ring_ops Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z).
Defined.

Instance Zr: (@Ring _ _ _ _ _ _ _ _ Zops).
Proof.
constructor; try apply Zsth; try solve_proper.
 exact Z.add_comm. exact Z.add_assoc.
 exact Z.mul_1_l.  exact Z.mul_1_r. exact Z.mul_assoc.
 exact Z.mul_add_distr_r.  introsapply Z.mul_add_distr_l.  exact Z.sub_diag.
Defined.

(*Instance ZEquality: @Equality Z:= (@eq Z).*)

(** Two generic morphisms from Z to (arbitrary) rings, *)
(**second one is more convenient for proofs but they are ext. equal*)
Section ZMORPHISM.
Context {R:Type}`{Ring R}.

 Ltac rrefl := reflexivity.

 Fixpoint gen_phiPOS1 (p:positive) : R :=
  match p with
  | xH => 1
  | xO p => (1 + 1) * (gen_phiPOS1 p)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
  end.

 Fixpoint gen_phiPOS (p:positive) : R :=
  match p with
  | xH => 1
  | xO xH => (1 + 1)
  | xO p => (1 + 1) * (gen_phiPOS p)
  | xI xH => 1 + (1 +1)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS p))
  end.

 Definition gen_phiZ1 z :=
  match z with
  | Zpos p => gen_phiPOS1 p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS1 p)
  end.

 Definition gen_phiZ z :=
  match z with
  | Zpos p => gen_phiPOS p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS p)
  end.
 Declare Scope ZMORPHISM.
 Notation "[ x ]" := (gen_phiZ x) : ZMORPHISM.
 Open Scope ZMORPHISM.

 Definition get_signZ z :=
  match z with
  | Zneg p => Some (Zpos p)
  | _ => None
  end.

   Ltac norm := gen_rewrite.
   Ltac add_push :=  Ncring.gen_add_push.
Ltac rsimpl := simpl.

 Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
 Proof.
  induction x;rsimpl.
  rewrite IHx. destruct x;simpl;norm.
  rewrite IHx;destruct x;simpl;norm.
  reflexivity.
 Qed.

 Lemma ARgen_phiPOS_Psucc : forall x,
   gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x).
 Proof.
  induction x;rsimpl;norm.
 rewrite IHx. gen_rewrite. add_push 1. reflexivity.
 Qed.

 Lemma ARgen_phiPOS_add : forall x y,
   gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
 Proof.
  induction x;destruct y;simpl;norm.
  rewrite Pos.add_carry_spec.
  rewrite ARgen_phiPOS_Psucc.
  rewrite IHx;norm.
  add_push (gen_phiPOS1 y);add_push 1;reflexivity.
  rewrite IHx;norm;add_push (gen_phiPOS1 y);reflexivity.
  rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
  rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;reflexivity.
  rewrite IHx;norm;add_push(gen_phiPOS1 y);reflexivity.
  add_push 1;reflexivity.
  rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
 Qed.

 Lemma ARgen_phiPOS_mult :
   forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
 Proof.
  induction x;intros;simpl;norm.
  rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
  rewrite IHx;reflexivity.
 Qed.


(*morphisms are extensionally equal*)
 Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
 Proof.
  destruct x;rsimpl; try rewrite same_gen; reflexivity.
 Qed.

 Lemma gen_Zeqb_ok : forall x y,
   Zeq_bool x y = true -> [x] == [y].
 Proof.
  intros x y H7.
  assert (H10 := Zeq_bool_eq x y H7);unfold IDphi in H10.
  rewrite H10;reflexivity.
 Qed.

 Lemma gen_phiZ1_add_pos_neg : forall x y,
 gen_phiZ1 (Z.pos_sub x y)
 == gen_phiPOS1 x + -gen_phiPOS1 y.
 Proof.
  intros x y.
  generalize (Z.pos_sub_discr x y).
  destruct (Z.pos_sub x y) as [|p|p]; intros; subst.
  - now rewrite ring_opp_def.
  - rewrite ARgen_phiPOS_add;simpl;norm.
    add_push (gen_phiPOS1 p). rewrite ring_opp_def;norm.
  - rewrite ARgen_phiPOS_add;simpl;norm.
    rewrite ring_opp_def;norm.
 Qed.

 Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
  match CompOpp x with Eq => be | Lt => bl | Gt => bg end
  = match x with Eq => be | Lt => bg | Gt => bl end.
 Proofdestruct x;simpl;intros;trivialQed.

 Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
 Proof.
  intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
  induction x;destruct y;simpl;norm.
  apply ARgen_phiPOS_add.
  apply gen_phiZ1_add_pos_neg. 
   rewrite gen_phiZ1_add_pos_neg. rewrite ring_add_comm.
reflexivity.
 rewrite ARgen_phiPOS_add. rewrite ring_opp_add. reflexivity.
Qed.

Lemma gen_phiZ_opp : forall x, [- x] == - [x].
 Proof.
  intros x. repeat rewrite same_genZ. generalize x ;clear x.
  induction x;simpl;norm.
  rewrite ring_opp_opp.  reflexivity.
 Qed.

 Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
 Proof.
  intros x y;repeat rewrite same_genZ.
  destruct x;destruct y;simpl;norm;
  rewrite  ARgen_phiPOS_mult;try (norm;fail).
  rewrite ring_opp_opp ;reflexivity.
 Qed.

 Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
 Proofintros;subst;reflexivityQed.

Declare Equivalent Keys bracket gen_phiZ.
(*proof that [.] satisfies morphism specifications*)
Global Instance gen_phiZ_morph :
(@Ring_morphism (Z:Type) R _ _ _ _ _ _ _ Zops Zr _ _ _ _ _ _ _ _ _ gen_phiZ) . (* beurk!*)
 apply Build_Ring_morphism; simpl;try reflexivity.
   apply gen_phiZ_add. introsrewrite ring_sub_def.
replace (x-y)%Z with (x + (-y))%Z.
now rewrite gen_phiZ_add, gen_phiZ_opp, ring_sub_def.
reflexivity.
 apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext.
 Defined.

End ZMORPHISM.

Instance multiplication_phi_ring{R:Type}`{Ring R} : Multiplication  :=
  {multiplication x y := (gen_phiZ x) * y}.

¤ Dauer der Verarbeitung: 0.4 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff