Polymorphic Cumulative Inductive T1 := t1 : T1.
Fail Monomorphic Cumulative Inductive T2 := t2 : T2.
Polymorphic Cumulative Record R1 := { r1 : T1 }.
Fail Monomorphic Cumulative Inductive R2 := {r2 : T1}.
Set Universe Polymorphism.
Set Polymorphic Inductive Cumulativity.
Set Printing Universes.
Inductive List (A: Type) := nil | cons : A -> List A -> List A.
Definition LiftL@{k i j|k <= i, k <= j} {A:Type@{k}} : List@{i} A -> List@{j} A := fun x => x.
Lemma LiftL_Lem A (l : List A) : l = LiftL l.
Proof. reflexivity. Qed.
Inductive Tp := tp : Type -> Tp.
Definition LiftTp@{i j|i <= j} : Tp@{i} -> Tp@{j} := fun x => x.
Fail Definition LowerTp@{i j|j < i} : Tp@{i} -> Tp@{j} := fun x => x.
Record Tp' := { tp' : Tp }.
Definition CTp := Tp.
(* here we have to reduce a constant to infer the correct subtyping. *)
Record Tp'' := { tp'' : CTp }.
Definition LiftTp'@{i j|i <= j} : Tp'@{i} -> Tp'@{j} := fun x => x.
Definition LiftTp''@{i j|i <= j} : Tp''@{i} -> Tp''@{j} := fun x => x.
Lemma LiftC_Lem (t : Tp) : LiftTp t = t.
Proof. reflexivity. Qed.
Section subtyping_test.
Universe i j.
Constraint i < j.
Inductive TP2 := tp2 : Type@{i} -> Type@{j} -> TP2.
End subtyping_test.
Record A : Type := { a :> Type; }.
Record B (X : A) : Type := { b : X; }.
NonCumulative Inductive NCList (A: Type)
:= ncnil | nccons : A -> NCList A -> NCList A.
Fail Definition LiftNCL@{k i j|k <= i, k <= j} {A:Type@{k}}
: NCList@{i} A -> NCList@{j} A := fun x => x.
Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x.
Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b})
:= forall f g : (forall a, B a),
(forall x, eq@{e} (f x) (g x))
-> eq@{e} f g.
Section down.
Universes a b e e'.
Constraint e' < e.
Lemma funext_down {A B}
: @funext_type@{a b e} A B -> @funext_type@{a b e'} A B.
Proof.
intros H f g Hfg. exact (H f g Hfg).
Defined.
End down.
Record Arrow@{i j} := { arrow : Type@{i} -> Type@{j} }.
Fail Definition arrow_lift@{i i' j j' | i' < i, j < j'}
: Arrow@{i j} -> Arrow@{i' j'}
:= fun x => x.
Definition arrow_lift@{i i' j j' | i' = i, j <= j'}
: Arrow@{i j} -> Arrow@{i' j'}
:= fun x => x.
Inductive Mut1 A :=
| Base1 : Type -> Mut1 A
| Node1 : (A -> Mut2 A) -> Mut1 A
with Mut2 A :=
| Base2 : Type -> Mut2 A
| Node2 : Mut1 A -> Mut2 A.
(* If we don't reduce T while inferring cumulativity for the
constructor we will see a Rel and believe i is irrelevant. *)
Inductive withparams@{i j} (T:=Type@{i}:Type@{j}) := mkwithparams : T -> withparams.
Definition withparams_co@{i i' j|i < i', i' < j} : withparams@{i j} -> withparams@{i' j}
:= fun x => x.
Fail Definition withparams_not_irr@{i i' j|i' < i, i' < j} : withparams@{i j} -> withparams@{i' j}
:= fun x => x.
(** Cumulative constructors *)
Record twotys@{u v w} : Type@{w} :=
twoconstr { fstty : Type@{u}; sndty : Type@{v} }.
Monomorphic Universes i j k l.
Monomorphic Constraint i < j.
Monomorphic Constraint j < k.
Monomorphic Constraint k < l.
Parameter Tyi : Type@{i}.
Definition checkcumul :=
eq_refl _ : @eq twotys@{k k l} (twoconstr@{i j k} Tyi Tyi) (twoconstr@{j i k} Tyi Tyi).
(* They can only be compared at the highest type *)
Fail Definition checkcumul' :=
eq_refl _ : @eq twotys@{i k l} (twoconstr@{i j k} Tyi Tyi) (twoconstr@{j i k} Tyi Tyi).
(* An inductive type with an irrelevant universe *)
Inductive foo@{i} : Type@{i} := mkfoo { }.
Definition bar := foo.
(* The universe on mkfoo is flexible and should be unified with i. *)
Definition foo1@{i} : foo@{i} := let x := mkfoo in x. (* fast path for conversion *)
Definition foo2@{i} : bar@{i} := let x := mkfoo in x. (* must reduce *)
(* Rigid universes however should not be unified unnecessarily. *)
Definition foo3@{i j|} : foo@{i} := let x := mkfoo@{j} in x.
Definition foo4@{i j|} : bar@{i} := let x := mkfoo@{j} in x.
(* Constructors for an inductive with indices *)
Module WithIndex.
Inductive foo@{i} : (Prop -> Prop) -> Prop := mkfoo: foo (fun x => x).
Monomorphic Universes i j.
Monomorphic Constraint i < j.
Definition bar : eq mkfoo@{i} mkfoo@{j} := eq_refl _.
End WithIndex.
Module CumulApp.
(* i is covariant here, and we have one parameter *)
Inductive foo@{i} (A : nat) : Type@{i+1} := mkfoo (B : Type@{i}).
Definition bar@{i j|i<=j} := fun x : foo@{i} 0 => x : foo@{j} 0.
End CumulApp.
¤ Dauer der Verarbeitung: 0.15 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|