(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Set Implicit Arguments.
(** Streams *)
CoInductive Stream (A : Type) :=
Cons : A -> Stream A -> Stream A.
Section Streams.
Variable A : Type.
Notation Stream := (Stream A).
Definition hd (x:Stream) := match x with
| Cons a _ => a
end.
Definition tl (x:Stream) := match x with
| Cons _ s => s
end.
Fixpoint Str_nth_tl (n:nat) (s:Stream) : Stream :=
match n with
| O => s
| S m => Str_nth_tl m (tl s)
end.
Definition Str_nth (n:nat) (s:Stream) : A := hd (Str_nth_tl n s).
Lemma unfold_Stream :
forall x:Stream, x = match x with
| Cons a s => Cons a s
end.
Proof.
intro x.
case x.
trivial.
Qed.
Lemma tl_nth_tl :
forall (n:nat) (s:Stream), tl (Str_nth_tl n s) = Str_nth_tl n (tl s).
Proof.
simple induction n; simpl; auto.
Qed.
Hint Resolve tl_nth_tl: datatypes.
Lemma Str_nth_tl_plus :
forall (n m:nat) (s:Stream),
Str_nth_tl n (Str_nth_tl m s) = Str_nth_tl (n + m) s.
simple induction n; simpl; intros; auto with datatypes.
rewrite <- H.
rewrite tl_nth_tl; trivial with datatypes.
Qed.
Lemma Str_nth_plus :
forall (n m:nat) (s:Stream), Str_nth n (Str_nth_tl m s) = Str_nth (n + m) s.
intros; unfold Str_nth; rewrite Str_nth_tl_plus;
trivial with datatypes.
Qed.
(** Extensional Equality between two streams *)
CoInductive EqSt (s1 s2: Stream) : Prop :=
eqst :
hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.
(** A coinduction principle *)
Ltac coinduction proof :=
cofix proof; intros; constructor;
[ clear proof | try (apply proof; clear proof) ].
(** Extensional equality is an equivalence relation *)
Theorem EqSt_reflex : forall s:Stream, EqSt s s.
coinduction EqSt_reflex.
reflexivity.
Qed.
Theorem sym_EqSt : forall s1 s2:Stream, EqSt s1 s2 -> EqSt s2 s1.
coinduction Eq_sym.
+ case H; intros; symmetry ; assumption.
+ case H; intros; assumption.
Qed.
Theorem trans_EqSt :
forall s1 s2 s3:Stream, EqSt s1 s2 -> EqSt s2 s3 -> EqSt s1 s3.
coinduction Eq_trans.
- transitivity (hd s2).
+ case H; intros; assumption.
+ case H0; intros; assumption.
- apply (Eq_trans (tl s1) (tl s2) (tl s3)).
+ case H; trivial with datatypes.
+ case H0; trivial with datatypes.
Qed.
(** The definition given is equivalent to require the elements at each
position to be equal *)
Theorem eqst_ntheq :
forall (n:nat) (s1 s2:Stream), EqSt s1 s2 -> Str_nth n s1 = Str_nth n s2.
unfold Str_nth; simple induction n.
- intros s1 s2 H; case H; trivial with datatypes.
- intros m hypind.
simpl.
intros s1 s2 H.
apply hypind.
case H; trivial with datatypes.
Qed.
Theorem ntheq_eqst :
forall s1 s2:Stream,
(forall n:nat, Str_nth n s1 = Str_nth n s2) -> EqSt s1 s2.
coinduction Equiv2.
- apply (H 0).
- intros n; apply (H (S n)).
Qed.
Section Stream_Properties.
Variable P : Stream -> Prop.
(*i
Inductive Exists : Stream -> Prop :=
| Here : forall x:Stream, P x -> Exists x
| Further : forall x:Stream, ~ P x -> Exists (tl x) -> Exists x.
i*)
Inductive Exists ( x: Stream ) : Prop :=
| Here : P x -> Exists x
| Further : Exists (tl x) -> Exists x.
CoInductive ForAll (x: Stream) : Prop :=
HereAndFurther : P x -> ForAll (tl x) -> ForAll x.
Lemma ForAll_Str_nth_tl : forall m x, ForAll x -> ForAll (Str_nth_tl m x).
Proof.
induction m.
- tauto.
- intros x [_ H].
simpl.
apply IHm.
assumption.
Qed.
Section Co_Induction_ForAll.
Variable Inv : Stream -> Prop.
Hypothesis InvThenP : forall x:Stream, Inv x -> P x.
Hypothesis InvIsStable : forall x:Stream, Inv x -> Inv (tl x).
Theorem ForAll_coind : forall x:Stream, Inv x -> ForAll x.
coinduction ForAll_coind; auto.
Qed.
End Co_Induction_ForAll.
End Stream_Properties.
End Streams.
Section Map.
Variables A B : Type.
Variable f : A -> B.
CoFixpoint map (s:Stream A) : Stream B := Cons (f (hd s)) (map (tl s)).
Lemma Str_nth_tl_map : forall n s, Str_nth_tl n (map s)= map (Str_nth_tl n s).
Proof.
induction n.
- reflexivity.
- simpl.
intros s.
apply IHn.
Qed.
Lemma Str_nth_map : forall n s, Str_nth n (map s)= f (Str_nth n s).
Proof.
intros n s.
unfold Str_nth.
rewrite Str_nth_tl_map.
reflexivity.
Qed.
Lemma ForAll_map : forall (P:Stream B -> Prop) (S:Stream A), ForAll (fun s => P
(map s)) S <-> ForAll P (map S).
Proof.
intros P S.
split; generalize S; clear S; cofix ForAll_map; intros S; constructor;
destruct H as [H0 H]; firstorder.
Qed.
Lemma Exists_map : forall (P:Stream B -> Prop) (S:Stream A), Exists (fun s => P
(map s)) S -> Exists P (map S).
Proof.
intros P S H.
(induction H;[left|right]); firstorder.
Defined.
End Map.
Section Constant_Stream.
Variable A : Type.
Variable a : A.
CoFixpoint const : Stream A := Cons a const.
End Constant_Stream.
Section Zip.
Variable A B C : Type.
Variable f: A -> B -> C.
CoFixpoint zipWith (a:Stream A) (b:Stream B) : Stream C :=
Cons (f (hd a) (hd b)) (zipWith (tl a) (tl b)).
Lemma Str_nth_tl_zipWith : forall n (a:Stream A) (b:Stream B),
Str_nth_tl n (zipWith a b)= zipWith (Str_nth_tl n a) (Str_nth_tl n b).
Proof.
induction n.
- reflexivity.
- intros [x xs] [y ys].
unfold Str_nth in *.
simpl in *.
apply IHn.
Qed.
Lemma Str_nth_zipWith : forall n (a:Stream A) (b:Stream B), Str_nth n (zipWith a
b)= f (Str_nth n a) (Str_nth n b).
Proof.
intros.
unfold Str_nth.
rewrite Str_nth_tl_zipWith.
reflexivity.
Qed.
End Zip.
Unset Implicit Arguments.
¤ Diese beiden folgenden Angebotsgruppen bietet das Unternehmen0.17Angebot
Wie Sie bei der Firma Beratungs- und Dienstleistungen beauftragen können
¤
|
schauen Sie vor die Tür
Die hierunter aufgelisteten Ziele sind für diese Firma wichtig
Ziele
Entwicklung einer Software für die statische Quellcodeanalyse
|