(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * MSetRBT : Implementation of MSetInterface via Red-Black trees *)
(** Initial author: Andrew W. Appel, 2011.
Extra modifications by: Pierre Letouzey
The design decisions behind this implementation are described here:
- Efficient Verified Red-Black Trees, by Andrew W. Appel, September 2011.
http://www.cs.princeton.edu/~appel/papers/redblack.pdf
Additional suggested reading:
- Red-Black Trees in a Functional Setting by Chris Okasaki.
Journal of Functional Programming, 9(4):471-477, July 1999.
http://www.eecs.usma.edu/webs/people/okasaki/jfp99redblack.pdf
- Red-black trees with types, by Stefan Kahrs.
Journal of Functional Programming, 11(4), 425-432, 2001.
- Functors for Proofs and Programs, by J.-C. Filliatre and P. Letouzey.
ESOP'04: European Symposium on Programming, pp. 370-384, 2004.
http://www.lri.fr/~filliatr/ftp/publis/fpp.ps.gz
*)
Require MSetGenTree.
Require Import Bool List BinPos Pnat Setoid SetoidList PeanoNat.
Local Open Scope list_scope.
(* For nicer extraction, we create induction principles
only when needed *)
Local Unset Elimination Schemes.
(** An extra function not (yet?) in MSetInterface.S *)
Module Type MSetRemoveMin (Import M:MSetInterface.S).
Parameter remove_min : t -> option (elt * t).
Axiom remove_min_spec1 : forall s k s',
remove_min s = Some (k,s') ->
min_elt s = Some k /\ remove k s [=] s'.
Axiom remove_min_spec2 : forall s, remove_min s = None -> Empty s.
End MSetRemoveMin.
(** The type of color annotation. *)
Inductive color := Red | Black.
Module Color.
Definition t := color.
End Color.
(** * Ops : the pure functions *)
Module Ops (X:Orders.OrderedType) <: MSetInterface.Ops X.
(** ** Generic trees instantiated with color *)
(** We reuse a generic definition of trees where the information
parameter is a color. Functions like mem or fold are also
provided by this generic functor. *)
Include MSetGenTree.Ops X Color.
Definition t := tree.
Local Notation Rd := (Node Red).
Local Notation Bk := (Node Black).
(** ** Basic tree *)
Definition singleton (k: elt) : tree := Bk Leaf k Leaf.
(** ** Changing root color *)
Definition makeBlack t :=
match t with
| Leaf => Leaf
| Node _ a x b => Bk a x b
end.
Definition makeRed t :=
match t with
| Leaf => Leaf
| Node _ a x b => Rd a x b
end.
(** ** Balancing *)
(** We adapt when one side is not a true red-black tree.
Both sides have the same black depth. *)
Definition lbal l k r :=
match l with
| Rd (Rd a x b) y c => Rd (Bk a x b) y (Bk c k r)
| Rd a x (Rd b y c) => Rd (Bk a x b) y (Bk c k r)
| _ => Bk l k r
end.
Definition rbal l k r :=
match r with
| Rd (Rd b y c) z d => Rd (Bk l k b) y (Bk c z d)
| Rd b y (Rd c z d) => Rd (Bk l k b) y (Bk c z d)
| _ => Bk l k r
end.
(** A variant of [rbal], with reverse pattern order.
Is it really useful ? Should we always use it ? *)
Definition rbal' l k r :=
match r with
| Rd b y (Rd c z d) => Rd (Bk l k b) y (Bk c z d)
| Rd (Rd b y c) z d => Rd (Bk l k b) y (Bk c z d)
| _ => Bk l k r
end.
(** Balancing with different black depth.
One side is almost a red-black tree, while the other is
a true red-black tree, but with black depth + 1.
Used in deletion. *)
Definition lbalS l k r :=
match l with
| Rd a x b => Rd (Bk a x b) k r
| _ =>
match r with
| Bk a y b => rbal' l k (Rd a y b)
| Rd (Bk a y b) z c => Rd (Bk l k a) y (rbal' b z (makeRed c))
| _ => Rd l k r (* impossible *)
end
end.
Definition rbalS l k r :=
match r with
| Rd b y c => Rd l k (Bk b y c)
| _ =>
match l with
| Bk a x b => lbal (Rd a x b) k r
| Rd a x (Bk b y c) => Rd (lbal (makeRed a) x b) y (Bk c k r)
| _ => Rd l k r (* impossible *)
end
end.
(** ** Insertion *)
Fixpoint ins x s :=
match s with
| Leaf => Rd Leaf x Leaf
| Node c l y r =>
match X.compare x y with
| Eq => s
| Lt =>
match c with
| Red => Rd (ins x l) y r
| Black => lbal (ins x l) y r
end
| Gt =>
match c with
| Red => Rd l y (ins x r)
| Black => rbal l y (ins x r)
end
end
end.
Definition add x s := makeBlack (ins x s).
(** ** Deletion *)
Fixpoint append (l:tree) : tree -> tree :=
match l with
| Leaf => fun r => r
| Node lc ll lx lr =>
fix append_l (r:tree) : tree :=
match r with
| Leaf => l
| Node rc rl rx rr =>
match lc, rc with
| Red, Red =>
let lrl := append lr rl in
match lrl with
| Rd lr' x rl' => Rd (Rd ll lx lr') x (Rd rl' rx rr)
| _ => Rd ll lx (Rd lrl rx rr)
end
| Black, Black =>
let lrl := append lr rl in
match lrl with
| Rd lr' x rl' => Rd (Bk ll lx lr') x (Bk rl' rx rr)
| _ => lbalS ll lx (Bk lrl rx rr)
end
| Black, Red => Rd (append_l rl) rx rr
| Red, Black => Rd ll lx (append lr r)
end
end
end.
Fixpoint del x t :=
match t with
| Leaf => Leaf
| Node _ a y b =>
match X.compare x y with
| Eq => append a b
| Lt =>
match a with
| Bk _ _ _ => lbalS (del x a) y b
| _ => Rd (del x a) y b
end
| Gt =>
match b with
| Bk _ _ _ => rbalS a y (del x b)
| _ => Rd a y (del x b)
end
end
end.
Definition remove x t := makeBlack (del x t).
(** ** Removing minimal element *)
Fixpoint delmin l x r : (elt * tree) :=
match l with
| Leaf => (x,r)
| Node lc ll lx lr =>
let (k,l') := delmin ll lx lr in
match lc with
| Black => (k, lbalS l' x r)
| Red => (k, Rd l' x r)
end
end.
Definition remove_min t : option (elt * tree) :=
match t with
| Leaf => None
| Node _ l x r =>
let (k,t) := delmin l x r in
Some (k, makeBlack t)
end.
(** ** Tree-ification
We rebuild a tree of size [if pred then n-1 else n] as soon
as the list [l] has enough elements *)
Definition bogus : tree * list elt := (Leaf, nil).
Notation treeify_t := (list elt -> tree * list elt).
Definition treeify_zero : treeify_t :=
fun acc => (Leaf,acc).
Definition treeify_one : treeify_t :=
fun acc => match acc with
| x::acc => (Rd Leaf x Leaf, acc)
| _ => bogus
end.
Definition treeify_cont (f g : treeify_t) : treeify_t :=
fun acc =>
match f acc with
| (l, x::acc) =>
match g acc with
| (r, acc) => (Bk l x r, acc)
end
| _ => bogus
end.
Fixpoint treeify_aux (pred:bool)(n: positive) : treeify_t :=
match n with
| xH => if pred then treeify_zero else treeify_one
| xO n => treeify_cont (treeify_aux pred n) (treeify_aux true n)
| xI n => treeify_cont (treeify_aux false n) (treeify_aux pred n)
end.
Fixpoint plength_aux (l:list elt)(p:positive) := match l with
| nil => p
| _::l => plength_aux l (Pos.succ p)
end.
Definition plength l := plength_aux l 1.
Definition treeify (l:list elt) :=
fst (treeify_aux true (plength l) l).
(** ** Filtering *)
Fixpoint filter_aux (f: elt -> bool) s acc :=
match s with
| Leaf => acc
| Node _ l k r =>
let acc := filter_aux f r acc in
if f k then filter_aux f l (k::acc)
else filter_aux f l acc
end.
Definition filter (f: elt -> bool) (s: t) : t :=
treeify (filter_aux f s nil).
Fixpoint partition_aux (f: elt -> bool) s acc1 acc2 :=
match s with
| Leaf => (acc1,acc2)
| Node _ sl k sr =>
let (acc1, acc2) := partition_aux f sr acc1 acc2 in
if f k then partition_aux f sl (k::acc1) acc2
else partition_aux f sl acc1 (k::acc2)
end.
Definition partition (f: elt -> bool) (s:t) : t*t :=
let (ok,ko) := partition_aux f s nil nil in
(treeify ok, treeify ko).
(** ** Union, intersection, difference *)
(** union of the elements of [l1] and [l2] into a third [acc] list. *)
Fixpoint union_list l1 : list elt -> list elt -> list elt :=
match l1 with
| nil => @rev_append _
| x::l1' =>
fix union_l1 l2 acc :=
match l2 with
| nil => rev_append l1 acc
| y::l2' =>
match X.compare x y with
| Eq => union_list l1' l2' (x::acc)
| Lt => union_l1 l2' (y::acc)
| Gt => union_list l1' l2 (x::acc)
end
end
end.
Definition linear_union s1 s2 :=
treeify (union_list (rev_elements s1) (rev_elements s2) nil).
Fixpoint inter_list l1 : list elt -> list elt -> list elt :=
match l1 with
| nil => fun _ acc => acc
| x::l1' =>
fix inter_l1 l2 acc :=
match l2 with
| nil => acc
| y::l2' =>
match X.compare x y with
| Eq => inter_list l1' l2' (x::acc)
| Lt => inter_l1 l2' acc
| Gt => inter_list l1' l2 acc
end
end
end.
Definition linear_inter s1 s2 :=
treeify (inter_list (rev_elements s1) (rev_elements s2) nil).
Fixpoint diff_list l1 : list elt -> list elt -> list elt :=
match l1 with
| nil => fun _ acc => acc
| x::l1' =>
fix diff_l1 l2 acc :=
match l2 with
| nil => rev_append l1 acc
| y::l2' =>
match X.compare x y with
| Eq => diff_list l1' l2' acc
| Lt => diff_l1 l2' acc
| Gt => diff_list l1' l2 (x::acc)
end
end
end.
Definition linear_diff s1 s2 :=
treeify (diff_list (rev_elements s1) (rev_elements s2) nil).
(** [compare_height] returns:
- [Lt] if [height s2] is at least twice [height s1];
- [Gt] if [height s1] is at least twice [height s2];
- [Eq] if heights are approximately equal.
Warning: this is not an equivalence relation! but who cares.... *)
Definition skip_red t :=
match t with
| Rd t' _ _ => t'
| _ => t
end.
Definition skip_black t :=
match skip_red t with
| Bk t' _ _ => t'
| t' => t'
end.
Fixpoint compare_height (s1x s1 s2 s2x: tree) : comparison :=
match skip_red s1x, skip_red s1, skip_red s2, skip_red s2x with
| Node _ s1x' _ _, Node _ s1' _ _, Node _ s2' _ _, Node _ s2x' _ _ =>
compare_height (skip_black s1x') s1' s2' (skip_black s2x')
| _, Leaf, _, Node _ _ _ _ => Lt
| Node _ _ _ _, _, Leaf, _ => Gt
| Node _ s1x' _ _, Node _ s1' _ _, Node _ s2' _ _, Leaf =>
compare_height (skip_black s1x') s1' s2' Leaf
| Leaf, Node _ s1' _ _, Node _ s2' _ _, Node _ s2x' _ _ =>
compare_height Leaf s1' s2' (skip_black s2x')
| _, _, _, _ => Eq
end.
(** When one tree is quite smaller than the other, we simply
adds repeatively all its elements in the big one.
For trees of comparable height, we rather use [linear_union]. *)
Definition union (t1 t2: t) : t :=
match compare_height t1 t1 t2 t2 with
| Lt => fold add t1 t2
| Gt => fold add t2 t1
| Eq => linear_union t1 t2
end.
Definition diff (t1 t2: t) : t :=
match compare_height t1 t1 t2 t2 with
| Lt => filter (fun k => negb (mem k t2)) t1
| Gt => fold remove t2 t1
| Eq => linear_diff t1 t2
end.
Definition inter (t1 t2: t) : t :=
match compare_height t1 t1 t2 t2 with
| Lt => filter (fun k => mem k t2) t1
| Gt => filter (fun k => mem k t1) t2
| Eq => linear_inter t1 t2
end.
End Ops.
(** * MakeRaw : the pure functions and their specifications *)
Module Type MakeRaw (X:Orders.OrderedType) <: MSetInterface.RawSets X.
Include Ops X.
(** Generic definition of binary-search-trees and proofs of
specifications for generic functions such as mem or fold. *)
Include MSetGenTree.Props X Color.
Local Notation Rd := (Node Red).
Local Notation Bk := (Node Black).
Local Hint Immediate MX.eq_sym : core.
Local Hint Unfold In lt_tree gt_tree Ok : core.
Local Hint Constructors InT bst : core.
Local Hint Resolve MX.eq_refl MX.eq_trans MX.lt_trans ok : core.
Local Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node : core.
Local Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans : core.
Local Hint Resolve elements_spec2 : core.
(** ** Singleton set *)
Lemma singleton_spec x y : InT y (singleton x) <-> X.eq y x.
Proof.
unfold singleton; intuition_in.
Qed.
Instance singleton_ok x : Ok (singleton x).
Proof.
unfold singleton; auto.
Qed.
(** ** makeBlack, MakeRed *)
Lemma makeBlack_spec s x : InT x (makeBlack s) <-> InT x s.
Proof.
destruct s; simpl; intuition_in.
Qed.
Lemma makeRed_spec s x : InT x (makeRed s) <-> InT x s.
Proof.
destruct s; simpl; intuition_in.
Qed.
Instance makeBlack_ok s `{Ok s} : Ok (makeBlack s).
Proof.
destruct s; simpl; ok.
Qed.
Instance makeRed_ok s `{Ok s} : Ok (makeRed s).
Proof.
destruct s; simpl; ok.
Qed.
(** ** Generic handling for red-matching and red-red-matching *)
Definition isblack t :=
match t with Bk _ _ _ => True | _ => False end.
Definition notblack t :=
match t with Bk _ _ _ => False | _ => True end.
Definition notred t :=
match t with Rd _ _ _ => False | _ => True end.
Definition rcase {A} f g t : A :=
match t with
| Rd a x b => f a x b
| _ => g t
end.
Inductive rspec {A} f g : tree -> A -> Prop :=
| rred a x b : rspec f g (Rd a x b) (f a x b)
| relse t : notred t -> rspec f g t (g t).
Fact rmatch {A} f g t : rspec (A:=A) f g t (rcase f g t).
Proof.
destruct t as [|[|] l x r]; simpl; now constructor.
Qed.
Definition rrcase {A} f g t : A :=
match t with
| Rd (Rd a x b) y c => f a x b y c
| Rd a x (Rd b y c) => f a x b y c
| _ => g t
end.
Notation notredred := (rrcase (fun _ _ _ _ _ => False) (fun _ => True)).
Inductive rrspec {A} f g : tree -> A -> Prop :=
| rrleft a x b y c : rrspec f g (Rd (Rd a x b) y c) (f a x b y c)
| rrright a x b y c : rrspec f g (Rd a x (Rd b y c)) (f a x b y c)
| rrelse t : notredred t -> rrspec f g t (g t).
Fact rrmatch {A} f g t : rrspec (A:=A) f g t (rrcase f g t).
Proof.
destruct t as [|[|] l x r]; simpl; try now constructor.
destruct l as [|[|] ll lx lr], r as [|[|] rl rx rr]; now constructor.
Qed.
Definition rrcase' {A} f g t : A :=
match t with
| Rd a x (Rd b y c) => f a x b y c
| Rd (Rd a x b) y c => f a x b y c
| _ => g t
end.
Fact rrmatch' {A} f g t : rrspec (A:=A) f g t (rrcase' f g t).
Proof.
destruct t as [|[|] l x r]; simpl; try now constructor.
destruct l as [|[|] ll lx lr], r as [|[|] rl rx rr]; now constructor.
Qed.
(** Balancing operations are instances of generic match *)
Fact lbal_match l k r :
rrspec
(fun a x b y c => Rd (Bk a x b) y (Bk c k r))
(fun l => Bk l k r)
l
(lbal l k r).
Proof.
exact (rrmatch _ _ _).
Qed.
Fact rbal_match l k r :
rrspec
(fun a x b y c => Rd (Bk l k a) x (Bk b y c))
(fun r => Bk l k r)
r
(rbal l k r).
Proof.
exact (rrmatch _ _ _).
Qed.
Fact rbal'_match l k r :
rrspec
(fun a x b y c => Rd (Bk l k a) x (Bk b y c))
(fun r => Bk l k r)
r
(rbal' l k r).
Proof.
exact (rrmatch' _ _ _).
Qed.
Fact lbalS_match l x r :
rspec
(fun a y b => Rd (Bk a y b) x r)
(fun l =>
match r with
| Bk a y b => rbal' l x (Rd a y b)
| Rd (Bk a y b) z c => Rd (Bk l x a) y (rbal' b z (makeRed c))
| _ => Rd l x r
end)
l
(lbalS l x r).
Proof.
exact (rmatch _ _ _).
Qed.
Fact rbalS_match l x r :
rspec
(fun a y b => Rd l x (Bk a y b))
(fun r =>
match l with
| Bk a y b => lbal (Rd a y b) x r
| Rd a y (Bk b z c) => Rd (lbal (makeRed a) y b) z (Bk c x r)
| _ => Rd l x r
end)
r
(rbalS l x r).
Proof.
exact (rmatch _ _ _).
Qed.
(** ** Balancing for insertion *)
Lemma lbal_spec l x r y :
InT y (lbal l x r) <-> X.eq y x \/ InT y l \/ InT y r.
Proof.
case lbal_match; intuition_in.
Qed.
Instance lbal_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
Ok (lbal l x r).
Proof.
destruct (lbal_match l x r); ok.
Qed.
Lemma rbal_spec l x r y :
InT y (rbal l x r) <-> X.eq y x \/ InT y l \/ InT y r.
Proof.
case rbal_match; intuition_in.
Qed.
Instance rbal_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
Ok (rbal l x r).
Proof.
destruct (rbal_match l x r); ok.
Qed.
Lemma rbal'_spec l x r y :
InT y (rbal' l x r) <-> X.eq y x \/ InT y l \/ InT y r.
Proof.
case rbal'_match; intuition_in.
Qed.
Instance rbal'_ok l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r) :
Ok (rbal' l x r).
Proof.
destruct (rbal'_match l x r); ok.
Qed.
Hint Rewrite In_node_iff In_leaf_iff
makeRed_spec makeBlack_spec lbal_spec rbal_spec rbal'_spec : rb.
Ltac descolor := destruct_all Color.t.
Ltac destree t := destruct t as [|[|] ? ? ?].
Ltac autorew := autorewrite with rb.
Tactic Notation "autorew" "in" ident(H) := autorewrite with rb in H.
(** ** Insertion *)
Lemma ins_spec : forall s x y,
InT y (ins x s) <-> X.eq y x \/ InT y s.
Proof.
induct s x.
- intuition_in.
- intuition_in. setoid_replace y with x; eauto.
- descolor; autorew; rewrite IHl; intuition_in.
- descolor; autorew; rewrite IHr; intuition_in.
Qed.
Hint Rewrite ins_spec : rb.
Instance ins_ok s x `{Ok s} : Ok (ins x s).
Proof.
induct s x; auto; descolor;
(apply lbal_ok || apply rbal_ok || ok); auto;
intros y; autorew; intuition; order.
Qed.
Lemma add_spec' s x y :
InT y (add x s) <-> X.eq y x \/ InT y s.
Proof.
unfold add. now autorew.
Qed.
Hint Rewrite add_spec' : rb.
Lemma add_spec s x y `{Ok s} :
InT y (add x s) <-> X.eq y x \/ InT y s.
Proof.
apply add_spec'.
Qed.
Instance add_ok s x `{Ok s} : Ok (add x s).
Proof.
unfold add; auto_tc.
Qed.
(** ** Balancing for deletion *)
Lemma lbalS_spec l x r y :
InT y (lbalS l x r) <-> X.eq y x \/ InT y l \/ InT y r.
Proof.
case lbalS_match.
- intros; autorew; intuition_in.
- clear l. intros l _.
destruct r as [|[|] rl rx rr].
* autorew. intuition_in.
* destree rl; autorew; intuition_in.
* autorew. intuition_in.
Qed.
Instance lbalS_ok l x r :
forall `(Ok l, Ok r, lt_tree x l, gt_tree x r), Ok (lbalS l x r).
Proof.
case lbalS_match; intros.
- ok.
- destruct r as [|[|] rl rx rr].
* ok.
* destruct rl as [|[|] rll rlx rlr]; intros; ok.
+ apply rbal'_ok; ok.
intros w; autorew; auto.
+ intros w; autorew.
destruct 1 as [Hw|[Hw|Hw]]; try rewrite Hw; eauto.
* ok. autorew. apply rbal'_ok; ok.
Qed.
Lemma rbalS_spec l x r y :
InT y (rbalS l x r) <-> X.eq y x \/ InT y l \/ InT y r.
Proof.
case rbalS_match.
- intros; autorew; intuition_in.
- intros t _.
destruct l as [|[|] ll lx lr].
* autorew. intuition_in.
* destruct lr as [|[|] lrl lrx lrr]; autorew; intuition_in.
* autorew. intuition_in.
Qed.
Instance rbalS_ok l x r :
forall `(Ok l, Ok r, lt_tree x l, gt_tree x r), Ok (rbalS l x r).
Proof.
case rbalS_match; intros.
- ok.
- destruct l as [|[|] ll lx lr].
* ok.
* destruct lr as [|[|] lrl lrx lrr]; intros; ok.
+ apply lbal_ok; ok.
intros w; autorew; auto.
+ intros w; autorew.
destruct 1 as [Hw|[Hw|Hw]]; try rewrite Hw; eauto.
* ok. apply lbal_ok; ok.
Qed.
Hint Rewrite lbalS_spec rbalS_spec : rb.
(** ** Append for deletion *)
Ltac append_tac l r :=
induction l as [| lc ll _ lx lr IHlr];
[intro r; simpl
|induction r as [| rc rl IHrl rx rr _];
[simpl
|destruct lc, rc;
[specialize (IHlr rl); clear IHrl
|simpl;
assert (Hr:notred (Bk rl rx rr)) by (simpl; trivial);
set (r:=Bk rl rx rr) in *; clearbody r; clear IHrl rl rx rr;
specialize (IHlr r)
|change (append _ _) with (Rd (append (Bk ll lx lr) rl) rx rr);
assert (Hl:notred (Bk ll lx lr)) by (simpl; trivial);
set (l:=Bk ll lx lr) in *; clearbody l; clear IHlr ll lx lr
|specialize (IHlr rl); clear IHrl]]].
Fact append_rr_match ll lx lr rl rx rr :
rspec
(fun a x b => Rd (Rd ll lx a) x (Rd b rx rr))
(fun t => Rd ll lx (Rd t rx rr))
(append lr rl)
(append (Rd ll lx lr) (Rd rl rx rr)).
Proof.
exact (rmatch _ _ _).
Qed.
Fact append_bb_match ll lx lr rl rx rr :
rspec
(fun a x b => Rd (Bk ll lx a) x (Bk b rx rr))
(fun t => lbalS ll lx (Bk t rx rr))
(append lr rl)
(append (Bk ll lx lr) (Bk rl rx rr)).
Proof.
exact (rmatch _ _ _).
Qed.
Lemma append_spec l r x :
InT x (append l r) <-> InT x l \/ InT x r.
Proof.
revert r.
append_tac l r; autorew; try tauto.
- (* Red / Red *)
revert IHlr; case append_rr_match;
[intros a y b | intros t Ht]; autorew; tauto.
- (* Black / Black *)
revert IHlr; case append_bb_match;
[intros a y b | intros t Ht]; autorew; tauto.
Qed.
Hint Rewrite append_spec : rb.
Lemma append_ok : forall x l r `{Ok l, Ok r},
lt_tree x l -> gt_tree x r -> Ok (append l r).
Proof.
append_tac l r.
- (* Leaf / _ *)
trivial.
- (* _ / Leaf *)
trivial.
- (* Red / Red *)
intros; inv.
assert (IH : Ok (append lr rl)) by (apply IHlr; eauto). clear IHlr.
assert (X.lt lx rx) by (transitivity x; eauto).
assert (G : gt_tree lx (append lr rl)).
{ intros w. autorew. destruct 1; [|transitivity x]; eauto. }
assert (L : lt_tree rx (append lr rl)).
{ intros w. autorew. destruct 1; [transitivity x|]; eauto. }
revert IH G L; case append_rr_match; intros; ok.
- (* Red / Black *)
intros; ok.
intros w; autorew; destruct 1; eauto.
- (* Black / Red *)
intros; ok.
intros w; autorew; destruct 1; eauto.
- (* Black / Black *)
intros; inv.
assert (IH : Ok (append lr rl)) by (apply IHlr; eauto). clear IHlr.
assert (X.lt lx rx) by (transitivity x; eauto).
assert (G : gt_tree lx (append lr rl)).
{ intros w. autorew. destruct 1; [|transitivity x]; eauto. }
assert (L : lt_tree rx (append lr rl)).
{ intros w. autorew. destruct 1; [transitivity x|]; eauto. }
revert IH G L; case append_bb_match; intros; ok.
apply lbalS_ok; ok.
Qed.
(** ** Deletion *)
Lemma del_spec : forall s x y `{Ok s},
InT y (del x s) <-> InT y s /\ ~X.eq y x.
Proof.
induct s x.
- intuition_in.
- autorew; intuition_in.
assert (X.lt y x') by eauto. order.
assert (X.lt x' y) by eauto. order.
order.
- destruct l as [|[|] ll lx lr]; autorew;
rewrite ?IHl by trivial; intuition_in; order.
- destruct r as [|[|] rl rx rr]; autorew;
rewrite ?IHr by trivial; intuition_in; order.
Qed.
Hint Rewrite del_spec : rb.
Instance del_ok s x `{Ok s} : Ok (del x s).
Proof.
induct s x.
- trivial.
- eapply append_ok; eauto.
- assert (lt_tree x' (del x l)).
{ intro w. autorew; trivial. destruct 1. eauto. }
destruct l as [|[|] ll lx lr]; auto_tc.
- assert (gt_tree x' (del x r)).
{ intro w. autorew; trivial. destruct 1. eauto. }
destruct r as [|[|] rl rx rr]; auto_tc.
Qed.
Lemma remove_spec s x y `{Ok s} :
InT y (remove x s) <-> InT y s /\ ~X.eq y x.
Proof.
unfold remove. now autorew.
Qed.
Hint Rewrite remove_spec : rb.
Instance remove_ok s x `{Ok s} : Ok (remove x s).
Proof.
unfold remove; auto_tc.
Qed.
(** ** Removing the minimal element *)
Lemma delmin_spec l y r c x s' `{O : Ok (Node c l y r)} :
delmin l y r = (x,s') ->
min_elt (Node c l y r) = Some x /\ del x (Node c l y r) = s'.
Proof.
revert y r c x s' O.
induction l as [|lc ll IH ly lr _].
- simpl. intros y r _ x s' _. injection 1; intros; subst.
now rewrite MX.compare_refl.
- intros y r c x s' O.
simpl delmin.
specialize (IH ly lr). destruct delmin as (x0,s0).
destruct (IH lc x0 s0); clear IH; [ok|trivial|].
remember (Node lc ll ly lr) as l.
simpl min_elt in *.
intros E.
replace x0 with x in * by (destruct lc; now injection E).
split.
* subst l; intuition.
* assert (X.lt x y).
{ inversion_clear O.
assert (InT x l) by now apply min_elt_spec1. auto. }
simpl. case X.compare_spec; try order.
destruct lc; injection E; subst l s0; auto.
Qed.
Lemma remove_min_spec1 s x s' `{Ok s}:
remove_min s = Some (x,s') ->
min_elt s = Some x /\ remove x s = s'.
Proof.
unfold remove_min.
destruct s as [|c l y r]; try easy.
generalize (delmin_spec l y r c).
destruct delmin as (x0,s0). intros D.
destruct (D x0 s0) as (->,<-); auto.
fold (remove x0 (Node c l y r)).
inversion_clear 1; auto.
Qed.
Lemma remove_min_spec2 s : remove_min s = None -> Empty s.
Proof.
unfold remove_min.
destruct s as [|c l y r].
- easy.
- now destruct delmin.
Qed.
Lemma remove_min_ok (s:t) `{Ok s}:
match remove_min s with
| Some (_,s') => Ok s'
| None => True
end.
Proof.
generalize (remove_min_spec1 s).
destruct remove_min as [(x0,s0)|]; auto.
intros R. destruct (R x0 s0); auto. subst s0. auto_tc.
Qed.
(** ** Treeify *)
Notation ifpred p n := (if p then pred n else n%nat).
Definition treeify_invariant size (f:treeify_t) :=
forall acc,
size <= length acc ->
let (t,acc') := f acc in
cardinal t = size /\ acc = elements t ++ acc'.
Lemma treeify_zero_spec : treeify_invariant 0 treeify_zero.
Proof.
intro. simpl. auto.
Qed.
Lemma treeify_one_spec : treeify_invariant 1 treeify_one.
Proof.
intros [|x acc]; simpl; auto; inversion 1.
Qed.
Lemma treeify_cont_spec f g size1 size2 size :
treeify_invariant size1 f ->
treeify_invariant size2 g ->
size = S (size1 + size2) ->
treeify_invariant size (treeify_cont f g).
Proof.
intros Hf Hg EQ acc LE. unfold treeify_cont.
specialize (Hf acc).
destruct (f acc) as (t1,acc1).
destruct Hf as (Hf1,Hf2).
{ transitivity size; trivial. subst. auto with arith. }
destruct acc1 as [|x acc1].
{ exfalso. revert LE. apply Nat.lt_nge. subst.
rewrite app_nil_r, <- elements_cardinal; auto with arith. }
specialize (Hg acc1).
destruct (g acc1) as (t2,acc2).
destruct Hg as (Hg1,Hg2).
{ revert LE. subst.
rewrite app_length, <- elements_cardinal. simpl.
rewrite Nat.add_succ_r, <- Nat.succ_le_mono.
apply Nat.add_le_mono_l. }
rewrite elements_node, app_ass. now subst.
Qed.
Lemma treeify_aux_spec n (p:bool) :
treeify_invariant (ifpred p (Pos.to_nat n)) (treeify_aux p n).
Proof.
revert p.
induction n as [n|n|]; intros p; simpl treeify_aux.
- eapply treeify_cont_spec; [ apply (IHn false) | apply (IHn p) | ].
rewrite Pos2Nat.inj_xI.
assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H.
destruct p; simpl; intros; rewrite Nat.add_0_r; trivial.
now rewrite <- Nat.add_succ_r, Nat.succ_pred; trivial.
- eapply treeify_cont_spec; [ apply (IHn p) | apply (IHn true) | ].
rewrite Pos2Nat.inj_xO.
assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H.
rewrite <- Nat.add_succ_r, Nat.succ_pred by trivial.
destruct p; simpl; intros; rewrite Nat.add_0_r; trivial.
symmetry. now apply Nat.add_pred_l.
- destruct p; [ apply treeify_zero_spec | apply treeify_one_spec ].
Qed.
Lemma plength_aux_spec l p :
Pos.to_nat (plength_aux l p) = length l + Pos.to_nat p.
Proof.
revert p. induction l; trivial. simpl plength_aux.
intros. now rewrite IHl, Pos2Nat.inj_succ, Nat.add_succ_r.
Qed.
Lemma plength_spec l : Pos.to_nat (plength l) = S (length l).
Proof.
unfold plength. rewrite plength_aux_spec. apply Nat.add_1_r.
Qed.
Lemma treeify_elements l : elements (treeify l) = l.
Proof.
assert (H := treeify_aux_spec (plength l) true l).
unfold treeify. destruct treeify_aux as (t,acc); simpl in *.
destruct H as (H,H'). { now rewrite plength_spec. }
subst l. rewrite plength_spec, app_length, <- elements_cardinal in *.
destruct acc.
* now rewrite app_nil_r.
* exfalso. revert H. simpl.
rewrite Nat.add_succ_r, Nat.add_comm.
apply Nat.succ_add_discr.
Qed.
Lemma treeify_spec x l : InT x (treeify l) <-> InA X.eq x l.
Proof.
intros. now rewrite <- elements_spec1, treeify_elements.
Qed.
Lemma treeify_ok l : sort X.lt l -> Ok (treeify l).
Proof.
intros. apply elements_sort_ok. rewrite treeify_elements; auto.
Qed.
(** ** Filter *)
Lemma filter_app A f (l l':list A) :
List.filter f (l ++ l') = List.filter f l ++ List.filter f l'.
Proof.
induction l as [|x l IH]; simpl; trivial.
destruct (f x); simpl; now rewrite IH.
Qed.
Lemma filter_aux_elements s f acc :
filter_aux f s acc = List.filter f (elements s) ++ acc.
Proof.
revert acc.
induction s as [|c l IHl x r IHr]; trivial.
intros acc.
rewrite elements_node, filter_app. simpl.
destruct (f x); now rewrite IHl, IHr, app_ass.
Qed.
Lemma filter_elements s f :
elements (filter f s) = List.filter f (elements s).
Proof.
unfold filter.
now rewrite treeify_elements, filter_aux_elements, app_nil_r.
Qed.
Lemma filter_spec s x f :
Proper (X.eq==>Logic.eq) f ->
(InT x (filter f s) <-> InT x s /\ f x = true).
Proof.
intros Hf.
rewrite <- elements_spec1, filter_elements, filter_InA, elements_spec1;
now auto_tc.
Qed.
Instance filter_ok s f `(Ok s) : Ok (filter f s).
Proof.
apply elements_sort_ok.
rewrite filter_elements.
apply filter_sort with X.eq; auto_tc.
Qed.
(** ** Partition *)
Lemma partition_aux_spec s f acc1 acc2 :
partition_aux f s acc1 acc2 =
(filter_aux f s acc1, filter_aux (fun x => negb (f x)) s acc2).
Proof.
revert acc1 acc2.
induction s as [ | c l Hl x r Hr ]; simpl.
- trivial.
- intros acc1 acc2.
destruct (f x); simpl; now rewrite Hr, Hl.
Qed.
Lemma partition_spec s f :
partition f s = (filter f s, filter (fun x => negb (f x)) s).
Proof.
unfold partition, filter. now rewrite partition_aux_spec.
Qed.
Lemma partition_spec1 s f :
Proper (X.eq==>Logic.eq) f ->
Equal (fst (partition f s)) (filter f s).
Proof. now rewrite partition_spec. Qed.
Lemma partition_spec2 s f :
Proper (X.eq==>Logic.eq) f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Proof. now rewrite partition_spec. Qed.
Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)).
Proof. rewrite partition_spec; now apply filter_ok. Qed.
Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)).
Proof. rewrite partition_spec; now apply filter_ok. Qed.
(** ** An invariant for binary list functions with accumulator. *)
Ltac inA :=
rewrite ?InA_app_iff, ?InA_cons, ?InA_nil, ?InA_rev in *; auto_tc.
Record INV l1 l2 acc : Prop := {
l1_sorted : sort X.lt (rev l1);
l2_sorted : sort X.lt (rev l2);
acc_sorted : sort X.lt acc;
l1_lt_acc x y : InA X.eq x l1 -> InA X.eq y acc -> X.lt x y;
l2_lt_acc x y : InA X.eq x l2 -> InA X.eq y acc -> X.lt x y}.
Local Hint Resolve l1_sorted l2_sorted acc_sorted : core.
Lemma INV_init s1 s2 `(Ok s1, Ok s2) :
INV (rev_elements s1) (rev_elements s2) nil.
Proof.
rewrite !rev_elements_rev.
split; rewrite ?rev_involutive; auto; intros; now inA.
Qed.
Lemma INV_sym l1 l2 acc : INV l1 l2 acc -> INV l2 l1 acc.
Proof.
destruct 1; now split.
Qed.
Lemma INV_drop x1 l1 l2 acc :
INV (x1 :: l1) l2 acc -> INV l1 l2 acc.
Proof.
intros (l1s,l2s,accs,l1a,l2a). simpl in *.
destruct (sorted_app_inv _ _ l1s) as (U & V & W); auto.
split; auto.
Qed.
Lemma INV_eq x1 x2 l1 l2 acc :
INV (x1 :: l1) (x2 :: l2) acc -> X.eq x1 x2 ->
INV l1 l2 (x1 :: acc).
Proof.
intros (U,V,W,X,Y) EQ. simpl in *.
destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
split; auto.
- constructor; auto. apply InA_InfA with X.eq; auto_tc.
- intros x y; inA; intros Hx [Hy|Hy].
+ apply U3; inA.
+ apply X; inA.
- intros x y; inA; intros Hx [Hy|Hy].
+ rewrite Hy, EQ; apply V3; inA.
+ apply Y; inA.
Qed.
Lemma INV_lt x1 x2 l1 l2 acc :
INV (x1 :: l1) (x2 :: l2) acc -> X.lt x1 x2 ->
INV (x1 :: l1) l2 (x2 :: acc).
Proof.
intros (U,V,W,X,Y) EQ. simpl in *.
destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
split; auto.
- constructor; auto. apply InA_InfA with X.eq; auto_tc.
- intros x y; inA; intros Hx [Hy|Hy].
+ rewrite Hy; clear Hy. destruct Hx; [order|].
transitivity x1; auto. apply U3; inA.
+ apply X; inA.
- intros x y; inA; intros Hx [Hy|Hy].
+ rewrite Hy. apply V3; inA.
+ apply Y; inA.
Qed.
Lemma INV_rev l1 l2 acc :
INV l1 l2 acc -> Sorted X.lt (rev_append l1 acc).
Proof.
intros. rewrite rev_append_rev.
apply SortA_app with X.eq; eauto with *.
intros x y. inA. eapply @l1_lt_acc; eauto.
Qed.
(** ** union *)
Lemma union_list_ok l1 l2 acc :
INV l1 l2 acc -> sort X.lt (union_list l1 l2 acc).
Proof.
revert l2 acc.
induction l1 as [|x1 l1 IH1];
[intro l2|induction l2 as [|x2 l2 IH2]];
intros acc inv.
- eapply INV_rev, INV_sym; eauto.
- eapply INV_rev; eauto.
- simpl. case X.compare_spec; intro C.
* apply IH1. eapply INV_eq; eauto.
* apply (IH2 (x2::acc)). eapply INV_lt; eauto.
* apply IH1. eapply INV_sym, INV_lt; eauto. now apply INV_sym.
Qed.
Instance linear_union_ok s1 s2 `(Ok s1, Ok s2) :
Ok (linear_union s1 s2).
Proof.
unfold linear_union. now apply treeify_ok, union_list_ok, INV_init.
Qed.
Instance fold_add_ok s1 s2 `(Ok s1, Ok s2) :
Ok (fold add s1 s2).
Proof.
rewrite fold_spec, <- fold_left_rev_right.
unfold elt in *.
induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
Qed.
Instance union_ok s1 s2 `(Ok s1, Ok s2) : Ok (union s1 s2).
Proof.
unfold union. destruct compare_height; auto_tc.
Qed.
Lemma union_list_spec x l1 l2 acc :
InA X.eq x (union_list l1 l2 acc) <->
InA X.eq x l1 \/ InA X.eq x l2 \/ InA X.eq x acc.
Proof.
revert l2 acc.
induction l1 as [|x1 l1 IH1].
- intros l2 acc; simpl. rewrite rev_append_rev. inA. tauto.
- induction l2 as [|x2 l2 IH2]; intros acc; simpl.
* rewrite rev_append_rev. inA. tauto.
* case X.compare_spec; intro C.
+ rewrite IH1, !InA_cons, C; tauto.
+ rewrite (IH2 (x2::acc)), !InA_cons. tauto.
+ rewrite IH1, !InA_cons; tauto.
Qed.
Lemma linear_union_spec s1 s2 x :
InT x (linear_union s1 s2) <-> InT x s1 \/ InT x s2.
Proof.
unfold linear_union.
rewrite treeify_spec, union_list_spec, !rev_elements_rev.
rewrite !InA_rev, InA_nil, !elements_spec1 by auto_tc.
tauto.
Qed.
Lemma fold_add_spec s1 s2 x :
InT x (fold add s1 s2) <-> InT x s1 \/ InT x s2.
Proof.
rewrite fold_spec, <- fold_left_rev_right.
rewrite <- (elements_spec1 s1), <- InA_rev by auto_tc.
unfold elt in *.
induction (rev (elements s1)); simpl.
- rewrite InA_nil. tauto.
- unfold flip. rewrite add_spec', IHl, InA_cons. tauto.
Qed.
Lemma union_spec' s1 s2 x :
InT x (union s1 s2) <-> InT x s1 \/ InT x s2.
Proof.
unfold union. destruct compare_height.
- apply linear_union_spec.
- apply fold_add_spec.
- rewrite fold_add_spec. tauto.
Qed.
Lemma union_spec : forall s1 s2 y `{Ok s1, Ok s2},
(InT y (union s1 s2) <-> InT y s1 \/ InT y s2).
Proof.
intros; apply union_spec'.
Qed.
(** ** inter *)
Lemma inter_list_ok l1 l2 acc :
INV l1 l2 acc -> sort X.lt (inter_list l1 l2 acc).
Proof.
revert l2 acc.
induction l1 as [|x1 l1 IH1]; [|induction l2 as [|x2 l2 IH2]]; simpl.
- eauto.
- eauto.
- intros acc inv.
case X.compare_spec; intro C.
* apply IH1. eapply INV_eq; eauto.
* apply (IH2 acc). eapply INV_sym, INV_drop, INV_sym; eauto.
* apply IH1. eapply INV_drop; eauto.
Qed.
Instance linear_inter_ok s1 s2 `(Ok s1, Ok s2) :
Ok (linear_inter s1 s2).
Proof.
unfold linear_inter. now apply treeify_ok, inter_list_ok, INV_init.
Qed.
Instance inter_ok s1 s2 `(Ok s1, Ok s2) : Ok (inter s1 s2).
Proof.
unfold inter. destruct compare_height; auto_tc.
Qed.
Lemma inter_list_spec x l1 l2 acc :
sort X.lt (rev l1) ->
sort X.lt (rev l2) ->
(InA X.eq x (inter_list l1 l2 acc) <->
(InA X.eq x l1 /\ InA X.eq x l2) \/ InA X.eq x acc).
Proof.
revert l2 acc.
induction l1 as [|x1 l1 IH1].
- intros l2 acc; simpl. inA. tauto.
- induction l2 as [|x2 l2 IH2]; intros acc.
* simpl. inA. tauto.
* simpl. intros U V.
destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
case X.compare_spec; intro C.
+ rewrite IH1, !InA_cons, C; tauto.
+ rewrite (IH2 acc); auto. inA. intuition; try order.
assert (X.lt x x1) by (apply U3; inA). order.
+ rewrite IH1; auto. inA. intuition; try order.
assert (X.lt x x2) by (apply V3; inA). order.
Qed.
Lemma linear_inter_spec s1 s2 x `(Ok s1, Ok s2) :
InT x (linear_inter s1 s2) <-> InT x s1 /\ InT x s2.
Proof.
unfold linear_inter.
rewrite !rev_elements_rev, treeify_spec, inter_list_spec
by (rewrite rev_involutive; auto_tc).
rewrite !InA_rev, InA_nil, !elements_spec1 by auto_tc. tauto.
Qed.
Local Instance mem_proper s `(Ok s) :
Proper (X.eq ==> Logic.eq) (fun k => mem k s).
Proof.
intros x y EQ. apply Bool.eq_iff_eq_true; rewrite !mem_spec; auto.
now rewrite EQ.
Qed.
Lemma inter_spec s1 s2 y `{Ok s1, Ok s2} :
InT y (inter s1 s2) <-> InT y s1 /\ InT y s2.
Proof.
unfold inter. destruct compare_height.
- now apply linear_inter_spec.
- rewrite filter_spec, mem_spec by auto_tc; tauto.
- rewrite filter_spec, mem_spec by auto_tc; tauto.
Qed.
(** ** difference *)
Lemma diff_list_ok l1 l2 acc :
INV l1 l2 acc -> sort X.lt (diff_list l1 l2 acc).
Proof.
revert l2 acc.
induction l1 as [|x1 l1 IH1];
[intro l2|induction l2 as [|x2 l2 IH2]];
intros acc inv.
- eauto.
- unfold diff_list. eapply INV_rev; eauto.
- simpl. case X.compare_spec; intro C.
* apply IH1. eapply INV_drop, INV_sym, INV_drop, INV_sym; eauto.
* apply (IH2 acc). eapply INV_sym, INV_drop, INV_sym; eauto.
* apply IH1. eapply INV_sym, INV_lt; eauto. now apply INV_sym.
Qed.
Instance diff_inter_ok s1 s2 `(Ok s1, Ok s2) :
Ok (linear_diff s1 s2).
Proof.
unfold linear_inter. now apply treeify_ok, diff_list_ok, INV_init.
Qed.
Instance fold_remove_ok s1 s2 `(Ok s2) :
Ok (fold remove s1 s2).
Proof.
rewrite fold_spec, <- fold_left_rev_right.
unfold elt in *.
induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
Qed.
Instance diff_ok s1 s2 `(Ok s1, Ok s2) : Ok (diff s1 s2).
Proof.
unfold diff. destruct compare_height; auto_tc.
Qed.
Lemma diff_list_spec x l1 l2 acc :
sort X.lt (rev l1) ->
sort X.lt (rev l2) ->
(InA X.eq x (diff_list l1 l2 acc) <->
(InA X.eq x l1 /\ ~InA X.eq x l2) \/ InA X.eq x acc).
Proof.
revert l2 acc.
induction l1 as [|x1 l1 IH1].
- intros l2 acc; simpl. inA. tauto.
- induction l2 as [|x2 l2 IH2]; intros acc.
* intros; simpl. rewrite rev_append_rev. inA. tauto.
* simpl. intros U V.
destruct (sorted_app_inv _ _ U) as (U1 & U2 & U3); auto.
destruct (sorted_app_inv _ _ V) as (V1 & V2 & V3); auto.
case X.compare_spec; intro C.
+ rewrite IH1; auto. f_equiv. inA. intuition; try order.
assert (X.lt x x1) by (apply U3; inA). order.
+ rewrite (IH2 acc); auto. f_equiv. inA. intuition; try order.
assert (X.lt x x1) by (apply U3; inA). order.
+ rewrite IH1; auto. inA. intuition; try order.
left; split; auto. destruct 1. order.
assert (X.lt x x2) by (apply V3; inA). order.
Qed.
Lemma linear_diff_spec s1 s2 x `(Ok s1, Ok s2) :
InT x (linear_diff s1 s2) <-> InT x s1 /\ ~InT x s2.
Proof.
unfold linear_diff.
rewrite !rev_elements_rev, treeify_spec, diff_list_spec
by (rewrite rev_involutive; auto_tc).
rewrite !InA_rev, InA_nil, !elements_spec1 by auto_tc. tauto.
Qed.
Lemma fold_remove_spec s1 s2 x `(Ok s2) :
InT x (fold remove s1 s2) <-> InT x s2 /\ ~InT x s1.
Proof.
rewrite fold_spec, <- fold_left_rev_right.
rewrite <- (elements_spec1 s1), <- InA_rev by auto_tc.
unfold elt in *.
induction (rev (elements s1)); simpl; intros.
- rewrite InA_nil. intuition.
- unfold flip in *. rewrite remove_spec, IHl, InA_cons. tauto.
clear IHl. induction l; simpl; auto_tc.
Qed.
Lemma diff_spec s1 s2 y `{Ok s1, Ok s2} :
InT y (diff s1 s2) <-> InT y s1 /\ ~InT y s2.
Proof.
unfold diff. destruct compare_height.
- now apply linear_diff_spec.
- rewrite filter_spec, Bool.negb_true_iff,
<- Bool.not_true_iff_false, mem_spec;
intuition.
intros x1 x2 EQ. f_equal. now apply mem_proper.
- now apply fold_remove_spec.
Qed.
End MakeRaw.
(** * Balancing properties
We now prove that all operations preserve a red-black invariant,
and that trees have hence a logarithmic depth.
*)
Module BalanceProps(X:Orders.OrderedType)(Import M : MakeRaw X).
Local Notation Rd := (Node Red).
Local Notation Bk := (Node Black).
Import M.MX.
(** ** Red-Black invariants *)
(** In a red-black tree :
- a red node has no red children
- the black depth at each node is the same along all paths.
The black depth is here an argument of the predicate. *)
Inductive rbt : nat -> tree -> Prop :=
| RB_Leaf : rbt 0 Leaf
| RB_Rd n l k r :
notred l -> notred r -> rbt n l -> rbt n r -> rbt n (Rd l k r)
| RB_Bk n l k r : rbt n l -> rbt n r -> rbt (S n) (Bk l k r).
(** A red-red tree is almost a red-black tree, except that it has
a _red_ root node which _may_ have red children. Note that a
red-red tree is hence non-empty, and all its strict subtrees
are red-black. *)
Inductive rrt (n:nat) : tree -> Prop :=
| RR_Rd l k r : rbt n l -> rbt n r -> rrt n (Rd l k r).
(** An almost-red-black tree is almost a red-black tree, except that
it's permitted to have two red nodes in a row at the very root (only).
We implement this notion by saying that a quasi-red-black tree
is either a red-black tree or a red-red tree. *)
Inductive arbt (n:nat)(t:tree) : Prop :=
| ARB_RB : rbt n t -> arbt n t
| ARB_RR : rrt n t -> arbt n t.
(** The main exported invariant : being a red-black tree for some
black depth. *)
Class Rbt (t:tree) := RBT : exists d, rbt d t.
(** ** Basic tactics and results about red-black *)
Scheme rbt_ind := Induction for rbt Sort Prop.
Local Hint Constructors rbt rrt arbt : core.
Local Hint Extern 0 (notred _) => (exact I) : core.
Ltac invrb := intros; invtree rrt; invtree rbt; try contradiction.
Ltac desarb := match goal with H:arbt _ _ |- _ => destruct H end.
Ltac nonzero n := destruct n as [|n]; [try split; invrb|].
Lemma rr_nrr_rb n t :
rrt n t -> notredred t -> rbt n t.
Proof.
destruct 1 as [l x r Hl Hr].
destruct l, r; descolor; invrb; auto.
Qed.
Local Hint Resolve rr_nrr_rb : core.
Lemma arb_nrr_rb n t :
arbt n t -> notredred t -> rbt n t.
Proof.
destruct 1; auto.
Qed.
Lemma arb_nr_rb n t :
arbt n t -> notred t -> rbt n t.
Proof.
destruct 1; destruct t; descolor; invrb; auto.
Qed.
Local Hint Resolve arb_nrr_rb arb_nr_rb : core.
(** ** A Red-Black tree has indeed a logarithmic depth *)
Definition redcarac s := rcase (fun _ _ _ => 1) (fun _ => 0) s.
Lemma rb_maxdepth s n : rbt n s -> maxdepth s <= 2*n + redcarac s.
Proof.
induction 1.
- simpl; auto.
- replace (redcarac l) with 0 in * by now destree l.
replace (redcarac r) with 0 in * by now destree r.
simpl maxdepth. simpl redcarac.
rewrite Nat.add_succ_r, <- Nat.succ_le_mono.
now apply Nat.max_lub.
- simpl. rewrite <- Nat.succ_le_mono.
apply Nat.max_lub; eapply Nat.le_trans; eauto;
[destree l | destree r]; simpl;
rewrite !Nat.add_0_r, ?Nat.add_1_r; auto with arith.
Qed.
Lemma rb_mindepth s n : rbt n s -> n + redcarac s <= mindepth s.
Proof.
induction 1; simpl.
- trivial.
- rewrite Nat.add_succ_r.
apply -> Nat.succ_le_mono.
replace (redcarac l) with 0 in * by now destree l.
replace (redcarac r) with 0 in * by now destree r.
now apply Nat.min_glb.
- apply -> Nat.succ_le_mono. rewrite Nat.add_0_r.
apply Nat.min_glb; eauto with arith.
Qed.
Lemma maxdepth_upperbound s : Rbt s ->
maxdepth s <= 2 * Nat.log2 (S (cardinal s)).
Proof.
intros (n,H).
eapply Nat.le_trans; [eapply rb_maxdepth; eauto|].
transitivity (2*(n+redcarac s)).
- rewrite Nat.mul_add_distr_l. apply Nat.add_le_mono_l.
rewrite <- Nat.mul_1_l at 1. apply Nat.mul_le_mono_r.
auto with arith.
- apply Nat.mul_le_mono_l.
transitivity (mindepth s).
+ now apply rb_mindepth.
+ apply mindepth_log_cardinal.
Qed.
Lemma maxdepth_lowerbound s : s<>Leaf ->
Nat.log2 (cardinal s) < maxdepth s.
Proof.
apply maxdepth_log_cardinal.
Qed.
(** ** Singleton *)
Lemma singleton_rb x : Rbt (singleton x).
Proof.
unfold singleton. exists 1; auto.
Qed.
(** ** [makeBlack] and [makeRed] *)
Lemma makeBlack_rb n t : arbt n t -> Rbt (makeBlack t).
Proof.
destruct t as [|[|] l x r].
- exists 0; auto.
- destruct 1; invrb; exists (S n); simpl; auto.
- exists n; auto.
Qed.
Lemma makeRed_rr t n :
rbt (S n) t -> notred t -> rrt n (makeRed t).
Proof.
destruct t as [|[|] l x r]; invrb; simpl; auto.
Qed.
(** ** Balancing *)
Lemma lbal_rb n l k r :
arbt n l -> rbt n r -> rbt (S n) (lbal l k r).
Proof.
case lbal_match; intros; desarb; invrb; auto.
Qed.
Lemma rbal_rb n l k r :
rbt n l -> arbt n r -> rbt (S n) (rbal l k r).
Proof.
case rbal_match; intros; desarb; invrb; auto.
Qed.
Lemma rbal'_rb n l k r :
rbt n l -> arbt n r -> rbt (S n) (rbal' l k r).
Proof.
case rbal'_match; intros; desarb; invrb; auto.
Qed.
Lemma lbalS_rb n l x r :
arbt n l -> rbt (S n) r -> notred r -> rbt (S n) (lbalS l x r).
Proof.
intros Hl Hr Hr'.
destruct r as [|[|] rl rx rr]; invrb. clear Hr'.
revert Hl.
case lbalS_match.
- destruct 1; invrb; auto.
- intros. apply rbal'_rb; auto.
Qed.
Lemma lbalS_arb n l x r :
arbt n l -> rbt (S n) r -> arbt (S n) (lbalS l x r).
Proof.
case lbalS_match.
- destruct 1; invrb; auto.
- clear l. intros l Hl Hl' Hr.
destruct r as [|[|] rl rx rr]; invrb.
* destruct rl as [|[|] rll rlx rlr]; invrb.
right; auto using rbal'_rb, makeRed_rr.
* left; apply rbal'_rb; auto.
Qed.
Lemma rbalS_rb n l x r :
rbt (S n) l -> notred l -> arbt n r -> rbt (S n) (rbalS l x r).
Proof.
intros Hl Hl' Hr.
destruct l as [|[|] ll lx lr]; invrb. clear Hl'.
revert Hr.
case rbalS_match.
- destruct 1; invrb; auto.
- intros. apply lbal_rb; auto.
Qed.
Lemma rbalS_arb n l x r :
rbt (S n) l -> arbt n r -> arbt (S n) (rbalS l x r).
Proof.
case rbalS_match.
- destruct 2; invrb; auto.
- clear r. intros r Hr Hr' Hl.
destruct l as [|[|] ll lx lr]; invrb.
* destruct lr as [|[|] lrl lrx lrr]; invrb.
right; auto using lbal_rb, makeRed_rr.
* left; apply lbal_rb; auto.
Qed.
(** ** Insertion *)
(** The next lemmas combine simultaneous results about rbt and arbt.
A first solution here: statement with [if ... then ... else] *)
Definition ifred s (A B:Prop) := rcase (fun _ _ _ => A) (fun _ => B) s.
Lemma ifred_notred s A B : notred s -> (ifred s A B <-> B).
Proof.
destruct s; descolor; simpl; intuition.
Qed.
Lemma ifred_or s A B : ifred s A B -> A\/B.
Proof.
destruct s; descolor; simpl; intuition.
Qed.
Lemma ins_rr_rb x s n : rbt n s ->
ifred s (rrt n (ins x s)) (rbt n (ins x s)).
Proof.
induction 1 as [ | n l k r | n l k r Hl IHl Hr IHr ].
- simpl; auto.
- simpl. rewrite ifred_notred in * by trivial.
elim_compare x k; auto.
- rewrite ifred_notred by trivial.
unfold ins; fold ins. (* simpl is too much here ... *)
elim_compare x k.
* auto.
* apply lbal_rb; trivial. apply ifred_or in IHl; intuition.
* apply rbal_rb; trivial. apply ifred_or in IHr; intuition.
Qed.
Lemma ins_arb x s n : rbt n s -> arbt n (ins x s).
Proof.
intros H. apply (ins_rr_rb x), ifred_or in H. intuition.
Qed.
Instance add_rb x s : Rbt s -> Rbt (add x s).
Proof.
intros (n,H). unfold add. now apply (makeBlack_rb n), ins_arb.
Qed.
(** ** Deletion *)
(** A second approach here: statement with ... /\ ... *)
Lemma append_arb_rb n l r : rbt n l -> rbt n r ->
(arbt n (append l r)) /\
(notred l -> notred r -> rbt n (append l r)).
Proof.
revert r n.
append_tac l r.
- split; auto.
- split; auto.
- (* Red / Red *)
intros n. invrb.
case (IHlr n); auto; clear IHlr.
case append_rr_match.
+ intros a x b _ H; split; invrb.
assert (rbt n (Rd a x b)) by auto. invrb. auto.
+ split; invrb; auto.
- (* Red / Black *)
split; invrb. destruct (IHlr n) as (_,IH); auto.
- (* Black / Red *)
split; invrb. destruct (IHrl n) as (_,IH); auto.
- (* Black / Black *)
nonzero n.
invrb.
destruct (IHlr n) as (IH,_); auto; clear IHlr.
revert IH.
case append_bb_match.
+ intros a x b IH; split; destruct IH; invrb; auto.
+ split; [left | invrb]; auto using lbalS_rb.
Qed.
(** A third approach : Lemma ... with ... *)
Lemma del_arb s x n : rbt (S n) s -> isblack s -> arbt n (del x s)
with del_rb s x n : rbt n s -> notblack s -> rbt n (del x s).
Proof.
{ revert n.
induct s x; try destruct c; try contradiction; invrb.
- apply append_arb_rb; assumption.
- assert (IHl' := del_rb l x). clear IHr del_arb del_rb.
destruct l as [|[|] ll lx lr]; auto.
nonzero n. apply lbalS_arb; auto.
- assert (IHr' := del_rb r x). clear IHl del_arb del_rb.
destruct r as [|[|] rl rx rr]; auto.
nonzero n. apply rbalS_arb; auto. }
{ revert n.
induct s x; try assumption; try destruct c; try contradiction; invrb.
- apply append_arb_rb; assumption.
- assert (IHl' := del_arb l x). clear IHr del_arb del_rb.
destruct l as [|[|] ll lx lr]; auto.
nonzero n. destruct n as [|n]; [invrb|]; apply lbalS_rb; auto.
- assert (IHr' := del_arb r x). clear IHl del_arb del_rb.
destruct r as [|[|] rl rx rr]; auto.
nonzero n. apply rbalS_rb; auto. }
Qed.
Instance remove_rb s x : Rbt s -> Rbt (remove x s).
Proof.
intros (n,H). unfold remove.
destruct s as [|[|] l y r].
- apply (makeBlack_rb n). auto.
- apply (makeBlack_rb n). left. apply del_rb; simpl; auto.
- nonzero n. apply (makeBlack_rb n). apply del_arb; simpl; auto.
Qed.
(** ** Treeify *)
Definition treeify_rb_invariant size depth (f:treeify_t) :=
forall acc,
size <= length acc ->
rbt depth (fst (f acc)) /\
size + length (snd (f acc)) = length acc.
Lemma treeify_zero_rb : treeify_rb_invariant 0 0 treeify_zero.
Proof.
intros acc _; simpl; auto.
Qed.
Lemma treeify_one_rb : treeify_rb_invariant 1 0 treeify_one.
Proof.
intros [|x acc]; simpl; auto; inversion 1.
Qed.
Lemma treeify_cont_rb f g size1 size2 size d :
treeify_rb_invariant size1 d f ->
treeify_rb_invariant size2 d g ->
size = S (size1 + size2) ->
treeify_rb_invariant size (S d) (treeify_cont f g).
Proof.
intros Hf Hg H acc Hacc.
unfold treeify_cont.
specialize (Hf acc).
destruct (f acc) as (l, acc1). simpl in *.
destruct Hf as (Hf1, Hf2). { subst. eauto with arith. }
destruct acc1 as [|x acc2]; simpl in *.
- exfalso. revert Hacc. apply Nat.lt_nge. rewrite H, <- Hf2.
auto with arith.
- specialize (Hg acc2).
destruct (g acc2) as (r, acc3). simpl in *.
destruct Hg as (Hg1, Hg2).
{ revert Hacc.
rewrite H, <- Hf2, Nat.add_succ_r, <- Nat.succ_le_mono.
apply Nat.add_le_mono_l. }
split; auto.
now rewrite H, <- Hf2, <- Hg2, Nat.add_succ_r, Nat.add_assoc.
Qed.
Lemma treeify_aux_rb n :
exists d, forall (b:bool),
treeify_rb_invariant (ifpred b (Pos.to_nat n)) d (treeify_aux b n).
Proof.
induction n as [n (d,IHn)|n (d,IHn)| ].
- exists (S d). intros b.
eapply treeify_cont_rb; [ apply (IHn false) | apply (IHn b) | ].
rewrite Pos2Nat.inj_xI.
assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H.
destruct b; simpl; intros; rewrite Nat.add_0_r; trivial.
now rewrite <- Nat.add_succ_r, Nat.succ_pred; trivial.
- exists (S d). intros b.
eapply treeify_cont_rb; [ apply (IHn b) | apply (IHn true) | ].
rewrite Pos2Nat.inj_xO.
assert (H := Pos2Nat.is_pos n). apply Nat.neq_0_lt_0 in H.
rewrite <- Nat.add_succ_r, Nat.succ_pred by trivial.
destruct b; simpl; intros; rewrite Nat.add_0_r; trivial.
symmetry. now apply Nat.add_pred_l.
- exists 0; destruct b;
[ apply treeify_zero_rb | apply treeify_one_rb ].
Qed.
(** The black depth of [treeify l] is actually a log2, but
we don't need to mention that. *)
Instance treeify_rb l : Rbt (treeify l).
Proof.
unfold treeify.
destruct (treeify_aux_rb (plength l)) as (d,H).
exists d.
apply H.
now rewrite plength_spec.
Qed.
(** ** Filtering *)
Instance filter_rb f s : Rbt (filter f s).
Proof.
unfold filter; auto_tc.
Qed.
Instance partition_rb1 f s : Rbt (fst (partition f s)).
Proof.
unfold partition. destruct partition_aux. simpl. auto_tc.
Qed.
Instance partition_rb2 f s : Rbt (snd (partition f s)).
Proof.
unfold partition. destruct partition_aux. simpl. auto_tc.
Qed.
(** ** Union, intersection, difference *)
Instance fold_add_rb s1 s2 : Rbt s2 -> Rbt (fold add s1 s2).
Proof.
intros. rewrite fold_spec, <- fold_left_rev_right. unfold elt in *.
induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
Qed.
Instance fold_remove_rb s1 s2 : Rbt s2 -> Rbt (fold remove s1 s2).
Proof.
intros. rewrite fold_spec, <- fold_left_rev_right. unfold elt in *.
induction (rev (elements s1)); simpl; unfold flip in *; auto_tc.
Qed.
Lemma union_rb s1 s2 : Rbt s1 -> Rbt s2 -> Rbt (union s1 s2).
Proof.
intros. unfold union, linear_union. destruct compare_height; auto_tc.
Qed.
Lemma inter_rb s1 s2 : Rbt s1 -> Rbt s2 -> Rbt (inter s1 s2).
Proof.
intros. unfold inter, linear_inter. destruct compare_height; auto_tc.
Qed.
Lemma diff_rb s1 s2 : Rbt s1 -> Rbt s2 -> Rbt (diff s1 s2).
Proof.
intros. unfold diff, linear_diff. destruct compare_height; auto_tc.
Qed.
End BalanceProps.
(** * Final Encapsulation
Now, in order to really provide a functor implementing [S], we
need to encapsulate everything into a type of binary search trees.
They also happen to be well-balanced, but this has no influence
on the correctness of operations, so we won't state this here,
see [BalanceProps] if you need more than just the MSet interface.
*)
Module Type MSetInterface_S_Ext := MSetInterface.S <+ MSetRemoveMin.
Module Make (X: Orders.OrderedType) <:
MSetInterface_S_Ext with Module E := X.
Module Raw. Include MakeRaw X. End Raw.
Include MSetInterface.Raw2Sets X Raw.
Definition opt_ok (x:option (elt * Raw.t)) :=
match x with Some (_,s) => Raw.Ok s | None => True end.
Definition mk_opt_t (x: option (elt * Raw.t))(P: opt_ok x) :
option (elt * t) :=
match x as o return opt_ok o -> option (elt * t) with
| Some (k,s') => fun P : Raw.Ok s' => Some (k, Mkt s')
| None => fun _ => None
end P.
Definition remove_min s : option (elt * t) :=
mk_opt_t (Raw.remove_min (this s)) (Raw.remove_min_ok s).
Lemma remove_min_spec1 s x s' :
remove_min s = Some (x,s') ->
min_elt s = Some x /\ Equal (remove x s) s'.
Proof.
destruct s as (s,Hs).
unfold remove_min, mk_opt_t, min_elt, remove, Equal, In; simpl.
generalize (fun x s' => @Raw.remove_min_spec1 s x s' Hs).
set (P := Raw.remove_min_ok s). clearbody P.
destruct (Raw.remove_min s) as [(x0,s0)|]; try easy.
intros H U. injection U as -> <-. simpl.
destruct (H x s0); auto. subst; intuition.
Qed.
Lemma remove_min_spec2 s : remove_min s = None -> Empty s.
Proof.
destruct s as (s,Hs).
unfold remove_min, mk_opt_t, Empty, In; simpl.
generalize (Raw.remove_min_spec2 s).
set (P := Raw.remove_min_ok s). clearbody P.
destruct (Raw.remove_min s) as [(x0,s0)|]; now intuition.
Qed.
End Make.
¤ Dauer der Verarbeitung: 0.73 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|