products/sources/formale sprachen/Coq/theories/QArith image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: doc.pdf   Sprache: Coq

Untersuchung Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Field.
Require Import QArith.
Require Import Znumtheory.
Require Import Eqdep_dec.

(** [Qc] : A canonical representation of rational numbers.
   based on the setoid representation [Q]. *)


Record Qc : Set := Qcmake { this :> Q ; canon : Qred this = this }.

Declare Scope Qc_scope.
Delimit Scope Qc_scope with Qc.
Bind Scope Qc_scope with Qc.
Arguments Qcmake this%Q _.
Open Scope Qc_scope.

(** An alternative statement of [Qred q = q] via [Z.gcd] *)

Lemma Qred_identity :
  forall q:Q, Z.gcd (Qnum q) (QDen q) = 1%Z -> Qred q = q.
Proof.
  intros (a,b) H; simpl in *.
  rewrite <- Z.ggcd_gcd in H.
  generalize (Z.ggcd_correct_divisors a (Zpos b)).
  destruct Z.ggcd as (g,(aa,bb)); simpl in *; subst.
  rewrite !Z.mul_1_l. now intros (<-,<-).
Qed.

Lemma Qred_identity2 :
  forall q:Q, Qred q = q -> Z.gcd (Qnum q) (QDen q) = 1%Z.
Proof.
  intros (a,b) H; simpl in *.
  generalize (Z.gcd_nonneg a (Zpos b)) (Z.ggcd_correct_divisors a (Zpos b)).
  rewrite <- Z.ggcd_gcd.
  destruct Z.ggcd as (g,(aa,bb)); simpl in *.
  injection H as <- <-. intros H (_,H').
  destruct g as [|g|g]; [ discriminate | | now elim H ].
  destruct bb as [|b|b]; simpl in *; try discriminate.
  injection H' as H'. f_equal.
  apply Pos.mul_reg_r with b. now rewrite Pos.mul_1_l.
Qed.

Lemma Qred_iff : forall q:Q, Qred q = q <-> Z.gcd (Qnum q) (QDen q) = 1%Z.
Proof.
  splitintros.
  apply Qred_identity2; auto.
  apply Qred_identity; auto.
Qed.

(** Coercion from [Qc] to [Q] and equality *)

Lemma Qc_is_canon : forall q q' : Qc, q == q' -> q = q'.
Proof.
  intros (q,hq) (q',hq') H. simpl in *.
  assert (H' := Qred_complete _ _ H).
  rewrite hq, hq' in H'. subst q'. f_equal.
  apply eq_proofs_unicity. intros.  repeat decide equality.
Qed.
Hint Resolve Qc_is_canon : core.

Theorem Qc_decomp: forall q q': Qc, (q:Q) = q' -> q = q'.
Proof.
  introsapply Qc_is_canon. now rewrite H.
Qed.

(** [Q2Qc] : a conversion from [Q] to [Qc]. *)

Lemma Qred_involutive : forall q:Q, Qred (Qred q) = Qred q.
Proof.
  introsapply Qred_complete.
  apply Qred_correct.
Qed.

Definition Q2Qc (q:Q) : Qc := Qcmake (Qred q) (Qred_involutive q).
Arguments Q2Qc q%Q.

Lemma Q2Qc_eq_iff (q q' : Q) : Q2Qc q = Q2Qc q' <-> q == q'.
Proof.
 splitintro H.
 - now injection H as H%Qred_eq_iff.
 - apply Qc_is_canon. simplnow rewrite H.
Qed.

Notation " 0 " := (Q2Qc 0) : Qc_scope.
Notation " 1 " := (Q2Qc 1) : Qc_scope.

Definition Qcle (x y : Qc) := (x <= y)%Q.
Definition Qclt (x y : Qc) := (x < y)%Q.
Notation Qcgt := (fun x y : Qc => Qlt y x).
Notation Qcge := (fun x y : Qc => Qle y x).
Infix "<" := Qclt : Qc_scope.
Infix "<=" := Qcle : Qc_scope.
Infix ">" := Qcgt : Qc_scope.
Infix ">=" := Qcge : Qc_scope.
Notation "x <= y <= z" := (x<=y/\y<=z) : Qc_scope.
Notation "x < y < z" := (x<y/\y<z) : Qc_scope.

Definition Qccompare (p q : Qc) := (Qcompare p q).
Notation "p ?= q" := (Qccompare p q) : Qc_scope.

Lemma Qceq_alt : forall p q, (p = q) <-> (p ?= q) = Eq.
Proof.
  unfold Qccompare.
  introsrewrite <- Qeq_alt.
  splitautonow intros <-.
Qed.

Lemma Qclt_alt : forall p q, (p<q) <-> (p?=q = Lt).
Proof.
  introsexact (Qlt_alt p q).
Qed.

Lemma Qcgt_alt : forall p q, (p>q) <-> (p?=q = Gt).
Proof.
  introsexact (Qgt_alt p q).
Qed.

Lemma Qcle_alt : forall p q, (p<=q) <-> (p?=q <> Gt).
Proof.
  introsexact (Qle_alt p q).
Qed.

Lemma Qcge_alt : forall p q, (p>=q) <-> (p?=q <> Lt).
Proof.
  introsexact (Qge_alt p q).
Qed.

(** equality on [Qc] is decidable: *)

Theorem Qc_eq_dec : forall x y:Qc, {x=y} + {x<>y}.
Proof.
  intros.
  destruct (Qeq_dec x y) as [H|H]; auto.
  right; contradict H; subst; auto with qarith.
Defined.

(** The addition, multiplication and opposite are defined
   in the straightforward way: *)


Definition Qcplus (x y : Qc) := Q2Qc (x+y).
Infix "+" := Qcplus : Qc_scope.
Definition Qcmult (x y : Qc) := Q2Qc (x*y).
Infix "*" := Qcmult : Qc_scope.
Definition Qcopp (x : Qc) := Q2Qc (-x).
Notation "- x" := (Qcopp x) : Qc_scope.
Definition Qcminus (x y : Qc) := x+-y.
Infix "-" := Qcminus : Qc_scope.
Definition Qcinv (x : Qc) := Q2Qc (/x).
Notation "/ x" := (Qcinv x) : Qc_scope.
Definition Qcdiv (x y : Qc) := x*/y.
Infix "/" := Qcdiv : Qc_scope.

(** [0] and [1] are apart *)

Lemma Q_apart_0_1 : 1 <> 0.
Proof.
  unfold Q2Qc.
  intros H; discriminate H.
Qed.

Ltac qc := match goal with
 | q:Qc |- _ => destruct q; qc
 | _ => apply Qc_is_canon; simplrewrite !Qred_correct
end.

Opaque Qred.

(** Addition is associative: *)

Theorem Qcplus_assoc : forall x y z, x+(y+z)=(x+y)+z.
Proof.
  intros; qc; apply Qplus_assoc.
Qed.

(** [0] is a neutral element for addition: *)

Lemma Qcplus_0_l : forall x, 0+x = x.
Proof.
  intros; qc; apply Qplus_0_l.
Qed.

Lemma Qcplus_0_r : forall x, x+0 = x.
Proof.
  intros; qc; apply Qplus_0_r.
Qed.

(** Commutativity of addition: *)

Theorem Qcplus_comm : forall x y, x+y = y+x.
Proof.
  intros; qc; apply Qplus_comm.
Qed.

(** Properties of [Qopp] *)

Lemma Qcopp_involutive : forall q, - -q = q.
Proof.
  intros; qc; apply Qopp_involutive.
Qed.

Theorem Qcplus_opp_r : forall q, q+(-q) = 0.
Proof.
  intros; qc; apply Qplus_opp_r.
Qed.

(** Multiplication is associative: *)

Theorem Qcmult_assoc : forall n m p, n*(m*p)=(n*m)*p.
Proof.
  intros; qc; apply Qmult_assoc.
Qed.

(** [0] is absorbing for multiplication: *)

Lemma Qcmult_0_l : forall n, 0*n = 0.
Proof.
  intros; qc; split.
Qed.

Theorem Qcmult_0_r : forall n, n*0=0.
Proof.
  intros; qc; rewrite Qmult_comm; split.
Qed.

(** [1] is a neutral element for multiplication: *)

Lemma Qcmult_1_l : forall n, 1*n = n.
Proof.
  intros; qc; apply Qmult_1_l.
Qed.

Theorem Qcmult_1_r : forall n, n*1=n.
Proof.
  intros; qc; apply Qmult_1_r.
Qed.

(** Commutativity of multiplication *)

Theorem Qcmult_comm : forall x y, x*y=y*x.
Proof.
  intros; qc; apply Qmult_comm.
Qed.

(** Distributivity *)

Theorem Qcmult_plus_distr_r : forall x y z, x*(y+z)=(x*y)+(x*z).
Proof.
  intros; qc; apply Qmult_plus_distr_r.
Qed.

Theorem Qcmult_plus_distr_l : forall x y z, (x+y)*z=(x*z)+(y*z).
Proof.
  intros; qc; apply Qmult_plus_distr_l.
Qed.

(** Integrality *)

Theorem Qcmult_integral : forall x y, x*y=0 -> x=0 \/ y=0.
Proof.
  intros.
  destruct (Qmult_integral x y); try qc; auto.
  injection H as H.
  rewrite <- (Qred_correct (x*y)).
  rewrite <- (Qred_correct 0).
  rewrite H; auto with qarith.
Qed.

Theorem Qcmult_integral_l : forall x y, ~ x = 0 -> x*y = 0 -> y = 0.
Proof.
  introsdestruct (Qcmult_integral _ _ H0); tauto.
Qed.

(** Inverse and division. *)

Theorem Qcmult_inv_r : forall x, x<>0 -> x*(/x) = 1.
Proof.
  intros; qc; apply Qmult_inv_r; auto.
Qed.

Theorem Qcmult_inv_l : forall x, x<>0 -> (/x)*x = 1.
Proof.
  intros.
  rewrite Qcmult_comm.
  apply Qcmult_inv_r; auto.
Qed.

Lemma Qcinv_mult_distr : forall p q, / (p * q) = /p * /q.
Proof.
  intros; qc; apply Qinv_mult_distr.
Qed.

Theorem Qcdiv_mult_l : forall x y, y<>0 -> (x*y)/y = x.
Proof.
  unfold Qcdiv.
  intros.
  rewrite <- Qcmult_assoc.
  rewrite Qcmult_inv_r; auto.
  apply Qcmult_1_r.
Qed.

Theorem Qcmult_div_r : forall x y, ~ y = 0 -> y*(x/y) = x.
Proof.
  unfold Qcdiv.
  intros.
  rewrite Qcmult_assoc.
  rewrite Qcmult_comm.
  rewrite Qcmult_assoc.
  rewrite Qcmult_inv_l; auto.
  apply Qcmult_1_l.
Qed.

(** Properties of order upon Qc. *)

Lemma Qcle_refl : forall x, x<=x.
Proof.
  unfold Qcle; introssimplapply Qle_refl.
Qed.

Lemma Qcle_antisym : forall x y, x<=y -> y<=x -> x=y.
Proof.
  unfold Qcle; introssimpl in *.
  apply Qc_is_canon; apply Qle_antisym; auto.
Qed.

Lemma Qcle_trans : forall x y z, x<=y -> y<=z -> x<=z.
Proof.
  unfold Qcle; intros; eapply Qle_trans; eauto.
Qed.

Lemma Qclt_not_eq : forall x y, x<y -> x<>y.
Proof.
  unfold Qclt; introssimpl in *.
  introdestruct (Qlt_not_eq _ _ H).
  subst; auto with qarith.
Qed.

(** Large = strict or equal *)

Lemma Qclt_le_weak : forall x y, x<y -> x<=y.
Proof.
  unfold Qcle, Qclt; introsapply Qlt_le_weak; auto.
Qed.

Lemma Qcle_lt_trans : forall x y z, x<=y -> y<z -> x<z.
Proof.
  unfold Qcle, Qclt; intros; eapply Qle_lt_trans; eauto.
Qed.

Lemma Qclt_le_trans : forall x y z, x<y -> y<=z -> x<z.
Proof.
  unfold Qcle, Qclt; intros; eapply Qlt_le_trans; eauto.
Qed.

Lemma Qclt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
  unfold Qclt; intros; eapply Qlt_trans; eauto.
Qed.

(** [x<y] iff [~(y<=x)] *)

Lemma Qcnot_lt_le : forall x y, ~ x<y -> y<=x.
Proof.
  unfold Qcle, Qclt; introsapply Qnot_lt_le; auto.
Qed.

Lemma Qcnot_le_lt : forall x y, ~ x<=y -> y<x.
Proof.
  unfold Qcle, Qclt; introsapply Qnot_le_lt; auto.
Qed.

Lemma Qclt_not_le : forall x y, x<y -> ~ y<=x.
Proof.
  unfold Qcle, Qclt; introsapply Qlt_not_le; auto.
Qed.

Lemma Qcle_not_lt : forall x y, x<=y -> ~ y<x.
Proof.
  unfold Qcle, Qclt; introsapply Qle_not_lt; auto.
Qed.

Lemma Qcle_lt_or_eq : forall x y, x<=y -> x<y \/ x=y.
Proof.
  unfold Qcle, Qclt; intros x y H.
  destruct (Qle_lt_or_eq _ _ H); [left|right]; trivial.
  now apply Qc_is_canon.
Qed.

(** Some decidability results about orders. *)

Lemma Qc_dec : forall x y, {x<y} + {y<x} + {x=y}.
Proof.
  unfold Qclt, Qcle; intros.
  destruct (Q_dec x y) as [H|H].
  leftauto.
  rightapply Qc_is_canon; auto.
Defined.

Lemma Qclt_le_dec : forall x y, {x<y} + {y<=x}.
Proof.
  unfold Qclt, Qcle; introsapply Qlt_le_dec; auto.
Defined.

(** Compatibility of operations with respect to order. *)

Lemma Qcopp_le_compat : forall p q, p<=q -> -q <= -p.
Proof.
  unfold Qcle, Qcopp; introssimpl in *.
  repeat rewrite Qred_correct.
  apply Qopp_le_compat; auto.
Qed.

Lemma Qcle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
  unfold Qcle, Qcminus; introssimpl in *.
  repeat rewrite Qred_correct.
  apply Qle_minus_iff; auto.
Qed.

Lemma Qclt_minus_iff : forall p q, p < q <-> 0 < q+-p.
Proof.
  unfold Qclt, Qcplus, Qcopp; introssimpl in *.
  repeat rewrite Qred_correct.
  apply Qlt_minus_iff; auto.
Qed.

Lemma Qcplus_le_compat :
  forall x y z t, x<=y -> z<=t -> x+z <= y+t.
Proof.
  unfold Qcplus, Qcle; introssimpl in *.
  repeat rewrite Qred_correct.
  apply Qplus_le_compat; auto.
Qed.

Lemma Qcmult_le_compat_r : forall x y z, x <= y -> 0 <= z -> x*z <= y*z.
Proof.
  unfold Qcmult, Qcle; introssimpl in *.
  repeat rewrite Qred_correct.
  apply Qmult_le_compat_r; auto.
Qed.

Lemma Qcmult_lt_0_le_reg_r : forall x y z, 0 <  z  -> x*z <= y*z -> x <= y.
Proof.
  unfold Qcmult, Qcle, Qclt; introssimpl in *.
  rewrite !Qred_correct in * |-.
  eapply Qmult_lt_0_le_reg_r; eauto.
Qed.

Lemma Qcmult_lt_compat_r : forall x y z, 0 < z  -> x < y -> x*z < y*z.
Proof.
  unfold Qcmult, Qclt; introssimpl in *.
  rewrite !Qred_correct in *.
  eapply Qmult_lt_compat_r; eauto.
Qed.

(** Rational to the n-th power *)

Fixpoint Qcpower (q:Qc)(n:nat) : Qc :=
  match n with
    | O => 1
    | S n => q * (Qcpower q n)
  end.

Notation " q ^ n " := (Qcpower q n) : Qc_scope.

Lemma Qcpower_1 : forall n, 1^n = 1.
Proof.
  induction n; simplauto with qarith.
  rewrite IHn; auto with qarith.
Qed.

Lemma Qcpower_0 : forall n, n<>O -> 0^n = 0.
Proof.
  destruct n; simpl.
  destruct 1; auto.
  intros.
  now apply Qc_is_canon.
Qed.

Lemma Qcpower_pos : forall p n, 0 <= p -> 0 <= p^n.
Proof.
  induction n; simplauto with qarith.
  easy.
  intros.
  apply Qcle_trans with (0*(p^n)).
  easy.
  apply Qcmult_le_compat_r; auto.
Qed.

(** And now everything is easier concerning tactics: *)

(** A ring tactic for rational numbers *)

Definition Qc_eq_bool (x y : Qc) :=
  if Qc_eq_dec x y then true else false.

Lemma Qc_eq_bool_correct : forall x y : Qc, Qc_eq_bool x y = true -> x=y.
Proof.
  intros x y; unfold Qc_eq_bool; case (Qc_eq_dec x y); simplauto.
  intros _ H; inversion H.
Qed.

Definition Qcrt : ring_theory 0 1 Qcplus Qcmult Qcminus Qcopp (eq(A:=Qc)).
Proof.
  constructor.
  exact Qcplus_0_l.
  exact Qcplus_comm.
  exact Qcplus_assoc.
  exact Qcmult_1_l.
  exact Qcmult_comm.
  exact Qcmult_assoc.
  exact Qcmult_plus_distr_l.
  reflexivity.
  exact Qcplus_opp_r.
Qed.

Definition Qcft :
  field_theory 0%Qc 1%Qc Qcplus Qcmult Qcminus Qcopp Qcdiv Qcinv (eq(A:=Qc)).
Proof.
  constructor.
  exact Qcrt.
  exact Q_apart_0_1.
  reflexivity.
  exact Qcmult_inv_l.
Qed.

Add Field Qcfield : Qcft.

(** A field tactic for rational numbers *)

Example test_field : (forall x y : Qc, y<>0 -> (x/y)*y = x)%Qc.
Proof.
intros.
field.
auto.
Qed.

¤ Diese beiden folgenden Angebotsgruppen bietet das Unternehmen0.22Angebot  Wie Sie bei der Firma Beratungs- und Dienstleistungen beauftragen können  ¤





Druckansicht
unsichere Verbindung
Druckansicht
Hier finden Sie eine Liste der Produkte des Unternehmens

Mittel




Lebenszyklus

Die hierunter aufgelisteten Ziele sind für diese Firma wichtig


Ziele

Entwicklung einer Software für die statische Quellcodeanalyse


Bot Zugriff