theory Examples imports Complex_Main begin
declare [[eta_contract = false]]
text\<open>membership, intersection\<close>
text\<open>difference and empty set\<close>
text\<open>complement, union and universal set\<close>
lemma "(x \ A \ B) = (x \ A \ x \ B)"
by blast
text\<open>
@{thm[display] IntI[no_vars]}
\rulename{IntI}
@{thm[display] IntD1[no_vars]}
\rulename{IntD1}
@{thm[display] IntD2[no_vars]}
\rulename{IntD2}
\<close>
lemma "(x \ -A) = (x \ A)"
by blast
text\<open>
@{thm[display] Compl_iff[no_vars]}
\rulename{Compl_iff}
\<close>
lemma "- (A \ B) = -A \ -B"
by blast
text\<open>
@{thm[display] Compl_Un[no_vars]}
\rulename{Compl_Un}
\<close>
lemma "A-A = {}"
by blast
text\<open>
@{thm[display] Diff_disjoint[no_vars]}
\rulename{Diff_disjoint}
\<close>
lemma "A \ -A = UNIV"
by blast
text\<open>
@{thm[display] Compl_partition[no_vars]}
\rulename{Compl_partition}
\<close>
text\<open>subset relation\<close>
text\<open>
@{thm[display] subsetI[no_vars]}
\rulename{subsetI}
@{thm[display] subsetD[no_vars]}
\rulename{subsetD}
\<close>
lemma "((A \ B) \ C) = (A \ C \ B \ C)"
by blast
text\<open>
@{thm[display] Un_subset_iff[no_vars]}
\rulename{Un_subset_iff}
\<close>
lemma "(A \ -B) = (B \ -A)"
by blast
lemma "(A <= -B) = (B <= -A)"
oops
text\<open>ASCII version: blast fails because of overloading because
it doesn't have to be sets\
lemma "((A:: 'a set) <= -B) = (B <= -A)"
by blast
text\<open>A type constraint lets it work\<close>
text\<open>An issue here: how do we discuss the distinction between ASCII and
symbol notation? Here the latter disambiguates.\<close>
text\<open>
set extensionality
@{thm[display] set_eqI[no_vars]}
\rulename{set_eqI}
@{thm[display] equalityI[no_vars]}
\rulename{equalityI}
@{thm[display] equalityE[no_vars]}
\rulename{equalityE}
\<close>
text\<open>finite sets: insertion and membership relation\<close>
text\<open>finite set notation\<close>
lemma "insert x A = {x} \ A"
by blast
text\<open>
@{thm[display] insert_is_Un[no_vars]}
\rulename{insert_is_Un}
\<close>
lemma "{a,b} \ {c,d} = {a,b,c,d}"
by blast
lemma "{a,b} \ {b,c} = {b}"
apply auto
oops
text\<open>fails because it isn't valid\<close>
lemma "{a,b} \ {b,c} = (if a=c then {a,b} else {b})"
apply simp
by blast
text\<open>or just force or auto. blast alone can't handle the if-then-else\<close>
text\<open>next: some comprehension examples\<close>
lemma "(a \ {z. P z}) = P a"
by blast
text\<open>
@{thm[display] mem_Collect_eq[no_vars]}
\rulename{mem_Collect_eq}
\<close>
lemma "{x. x \ A} = A"
by blast
text\<open>
@{thm[display] Collect_mem_eq[no_vars]}
\rulename{Collect_mem_eq}
\<close>
lemma "{x. P x \ x \ A} = {x. P x} \ A"
by blast
lemma "{x. P x \ Q x} = -{x. P x} \ {x. Q x}"
by blast
definition prime :: "nat set" where
"prime == {p. 1m. m dvd p \ m=1 \ m=p)}"
lemma "{p*q | p q. p\prime \ q\prime} =
{z. \<exists>p q. z = p*q \<and> p\<in>prime \<and> q\<in>prime}"
by (rule refl)
text\<open>binders\<close>
text\<open>bounded quantifiers\<close>
lemma "(\x\A. P x) = (\x. x\A \ P x)"
by blast
text\<open>
@{thm[display] bexI[no_vars]}
\rulename{bexI}
\<close>
text\<open>
@{thm[display] bexE[no_vars]}
\rulename{bexE}
\<close>
lemma "(\x\A. P x) = (\x. x\A \ P x)"
by blast
text\<open>
@{thm[display] ballI[no_vars]}
\rulename{ballI}
\<close>
text\<open>
@{thm[display] bspec[no_vars]}
\rulename{bspec}
\<close>
text\<open>indexed unions and variations\<close>
lemma "(\x. B x) = (\x\UNIV. B x)"
by blast
text\<open>
@{thm[display] UN_iff[no_vars]}
\rulename{UN_iff}
\<close>
text\<open>
@{thm[display] Union_iff[no_vars]}
\rulename{Union_iff}
\<close>
lemma "(\x\A. B x) = {y. \x\A. y \ B x}"
by blast
lemma "\S = (\x\S. x)"
by blast
text\<open>
@{thm[display] UN_I[no_vars]}
\rulename{UN_I}
\<close>
text\<open>
@{thm[display] UN_E[no_vars]}
\rulename{UN_E}
\<close>
text\<open>indexed intersections\<close>
lemma "(\x. B x) = {y. \x. y \ B x}"
by blast
text\<open>
@{thm[display] INT_iff[no_vars]}
\rulename{INT_iff}
\<close>
text\<open>
@{thm[display] Inter_iff[no_vars]}
\rulename{Inter_iff}
\<close>
text\<open>mention also card, Pow, etc.\<close>
text\<open>
@{thm[display] card_Un_Int[no_vars]}
\rulename{card_Un_Int}
@{thm[display] card_Pow[no_vars]}
\rulename{card_Pow}
@{thm[display] n_subsets[no_vars]}
\rulename{n_subsets}
\<close>
end
¤ Dauer der Verarbeitung: 0.20 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|