(* Title: HOL/Algebra/IntRing.thy
Author: Stephan Hohe, TU Muenchen
Author: Clemens Ballarin
*)
theory IntRing
imports "HOL-Computational_Algebra.Primes" QuotRing Lattice
begin
section \<open>The Ring of Integers\<close>
subsection \<open>Some properties of \<^typ>\<open>int\<close>\<close>
lemma dvds_eq_abseq:
fixes k :: int
shows "l dvd k \ k dvd l \ \l\ = \k\"
by (metis dvd_if_abs_eq lcm.commute lcm_proj1_iff_int)
subsection \<open>\<open>\<Z>\<close>: The Set of Integers as Algebraic Structure\<close>
abbreviation int_ring :: "int ring" ("\")
where "int_ring \ \carrier = UNIV, mult = (*), one = 1, zero = 0, add = (+)\"
lemma int_Zcarr [intro!, simp]: "k \ carrier \"
by simp
lemma int_is_cring: "cring \"
proof (rule cringI)
show "abelian_group \"
by (rule abelian_groupI) (auto intro: left_minus)
show "Group.comm_monoid \"
by (simp add: Group.monoid.intro monoid.monoid_comm_monoidI)
qed (auto simp: distrib_right)
subsection \<open>Interpretations\<close>
text \<open>Since definitions of derived operations are global, their
interpretation needs to be done as early as possible --- that is,
with as few assumptions as possible.\<close>
interpretation int: monoid \<Z>
rewrites "carrier \ = UNIV"
and "mult \ x y = x * y"
and "one \ = 1"
and "pow \ x n = x^n"
proof -
\<comment> \<open>Specification\<close>
show "monoid \" by standard auto
then interpret int: monoid \<Z> .
\<comment> \<open>Carrier\<close>
show "carrier \ = UNIV" by simp
\<comment> \<open>Operations\<close>
{ fix x y show "mult \ x y = x * y" by simp }
show "one \ = 1" by simp
show "pow \ x n = x^n" by (induct n) simp_all
qed
interpretation int: comm_monoid \<Z>
rewrites "finprod \ f A = prod f A"
proof -
\<comment> \<open>Specification\<close>
show "comm_monoid \" by standard auto
then interpret int: comm_monoid \<Z> .
\<comment> \<open>Operations\<close>
{ fix x y have "mult \ x y = x * y" by simp }
note mult = this
have one: "one \ = 1" by simp
show "finprod \ f A = prod f A"
by (induct A rule: infinite_finite_induct, auto)
qed
interpretation int: abelian_monoid \<Z>
rewrites int_carrier_eq: "carrier \ = UNIV"
and int_zero_eq: "zero \ = 0"
and int_add_eq: "add \ x y = x + y"
and int_finsum_eq: "finsum \ f A = sum f A"
proof -
\<comment> \<open>Specification\<close>
show "abelian_monoid \" by standard auto
then interpret int: abelian_monoid \<Z> .
\<comment> \<open>Carrier\<close>
show "carrier \ = UNIV" by simp
\<comment> \<open>Operations\<close>
{ fix x y show "add \ x y = x + y" by simp }
note add = this
show zero: "zero \ = 0"
by simp
show "finsum \ f A = sum f A"
by (induct A rule: infinite_finite_induct, auto)
qed
interpretation int: abelian_group \<Z>
(* The equations from the interpretation of abelian_monoid need to be repeated.
Since the morphisms through which the abelian structures are interpreted are
not the identity, the equations of these interpretations are not inherited. *)
(* FIXME *)
rewrites "carrier \ = UNIV"
and "zero \ = 0"
and "add \ x y = x + y"
and "finsum \ f A = sum f A"
and int_a_inv_eq: "a_inv \ x = - x"
and int_a_minus_eq: "a_minus \ x y = x - y"
proof -
\<comment> \<open>Specification\<close>
show "abelian_group \"
proof (rule abelian_groupI)
fix x
assume "x \ carrier \"
then show "\y \ carrier \. y \\<^bsub>\\<^esub> x = \\<^bsub>\\<^esub>"
by simp arith
qed auto
then interpret int: abelian_group \<Z> .
\<comment> \<open>Operations\<close>
{ fix x y have "add \ x y = x + y" by simp }
note add = this
have zero: "zero \ = 0" by simp
{
fix x
have "add \ (- x) x = zero \"
by (simp add: add zero)
then show "a_inv \ x = - x"
by (simp add: int.minus_equality)
}
note a_inv = this
show "a_minus \ x y = x - y"
by (simp add: int.minus_eq add a_inv)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq)+
interpretation int: "domain" \<Z>
rewrites "carrier \ = UNIV"
and "zero \ = 0"
and "add \ x y = x + y"
and "finsum \ f A = sum f A"
and "a_inv \ x = - x"
and "a_minus \ x y = x - y"
proof -
show "domain \"
by unfold_locales (auto simp: distrib_right distrib_left)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq int_a_minus_eq)+
text \<open>Removal of occurrences of \<^term>\<open>UNIV\<close> in interpretation result
--- experimental.\<close>
lemma UNIV:
"x \ UNIV \ True"
"A \ UNIV \ True"
"(\x \ UNIV. P x) \ (\x. P x)"
"(\x \ UNIV. P x) \ (\x. P x)"
"(True \ Q) \ Q"
"(True \ PROP R) \ PROP R"
by simp_all
interpretation int (* FIXME [unfolded UNIV] *) :
partial_order "\carrier = UNIV::int set, eq = (=), le = (\)\"
rewrites "carrier \carrier = UNIV::int set, eq = (=), le = (\)\ = UNIV"
and "le \carrier = UNIV::int set, eq = (=), le = (\)\ x y = (x \ y)"
and "lless \carrier = UNIV::int set, eq = (=), le = (\)\ x y = (x < y)"
proof -
show "partial_order \carrier = UNIV::int set, eq = (=), le = (\)\"
by standard simp_all
show "carrier \carrier = UNIV::int set, eq = (=), le = (\)\ = UNIV"
by simp
show "le \carrier = UNIV::int set, eq = (=), le = (\)\ x y = (x \ y)"
by simp
show "lless \carrier = UNIV::int set, eq = (=), le = (\)\ x y = (x < y)"
by (simp add: lless_def) auto
qed
interpretation int (* FIXME [unfolded UNIV] *) :
lattice "\carrier = UNIV::int set, eq = (=), le = (\)\"
rewrites "join \carrier = UNIV::int set, eq = (=), le = (\)\ x y = max x y"
and "meet \carrier = UNIV::int set, eq = (=), le = (\)\ x y = min x y"
proof -
let ?Z = "\carrier = UNIV::int set, eq = (=), le = (\)\"
show "lattice ?Z"
apply unfold_locales
apply (simp_all add: least_def Upper_def greatest_def Lower_def)
apply arith+
done
then interpret int: lattice "?Z" .
show "join ?Z x y = max x y"
by (metis int.le_iff_meet iso_tuple_UNIV_I join_comm linear max.absorb_iff2 max_def)
show "meet ?Z x y = min x y"
using int.meet_le int.meet_left int.meet_right by auto
qed
interpretation int (* [unfolded UNIV] *) :
total_order "\carrier = UNIV::int set, eq = (=), le = (\)\"
by standard clarsimp
subsection \<open>Generated Ideals of \<open>\<Z>\<close>\<close>
lemma int_Idl: "Idl\<^bsub>\\<^esub> {a} = {x * a | x. True}"
by (simp_all add: cgenideal_def int.cgenideal_eq_genideal[symmetric])
lemma multiples_principalideal: "principalideal {x * a | x. True } \"
by (metis UNIV_I int.cgenideal_eq_genideal int.cgenideal_is_principalideal int_Idl)
lemma prime_primeideal:
assumes prime: "Factorial_Ring.prime p"
shows "primeideal (Idl\<^bsub>\\<^esub> {p}) \"
proof (rule primeidealI)
show "ideal (Idl\<^bsub>\\<^esub> {p}) \"
by (rule int.genideal_ideal, simp)
show "cring \"
by (rule int_is_cring)
have False if "UNIV = {v::int. \x. v = x * p}"
proof -
from that
obtain i where "1 = i * p"
by (blast intro: elim: )
then show False
using prime by (auto simp add: abs_mult zmult_eq_1_iff)
qed
then show "carrier \ \ Idl\<^bsub>\\<^esub> {p}"
by (auto simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
have "p dvd a \ p dvd b" if "a * b = x * p" for a b x
by (simp add: prime prime_dvd_multD that)
then show "\a b. \a \ carrier \; b \ carrier \; a \\<^bsub>\\<^esub> b \ Idl\<^bsub>\\<^esub> {p}\
\<Longrightarrow> a \<in> Idl\<^bsub>\<Z>\<^esub> {p} \<or> b \<in> Idl\<^bsub>\<Z>\<^esub> {p}"
by (auto simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def dvd_def mult.commute)
qed
subsection \<open>Ideals and Divisibility\<close>
lemma int_Idl_subset_ideal: "Idl\<^bsub>\\<^esub> {k} \ Idl\<^bsub>\\<^esub> {l} = (k \ Idl\<^bsub>\\<^esub> {l})"
by (rule int.Idl_subset_ideal') simp_all
lemma Idl_subset_eq_dvd: "Idl\<^bsub>\\<^esub> {k} \ Idl\<^bsub>\\<^esub> {l} \ l dvd k"
by (subst int_Idl_subset_ideal) (auto simp: dvd_def int_Idl)
lemma dvds_eq_Idl: "l dvd k \ k dvd l \ Idl\<^bsub>\\<^esub> {k} = Idl\<^bsub>\\<^esub> {l}"
proof -
have a: "l dvd k \ (Idl\<^bsub>\\<^esub> {k} \ Idl\<^bsub>\\<^esub> {l})"
by (rule Idl_subset_eq_dvd[symmetric])
have b: "k dvd l \ (Idl\<^bsub>\\<^esub> {l} \ Idl\<^bsub>\\<^esub> {k})"
by (rule Idl_subset_eq_dvd[symmetric])
have "l dvd k \ k dvd l \ Idl\<^bsub>\\<^esub> {k} \ Idl\<^bsub>\\<^esub> {l} \ Idl\<^bsub>\\<^esub> {l} \ Idl\<^bsub>\\<^esub> {k}"
by (subst a, subst b, simp)
also have "Idl\<^bsub>\\<^esub> {k} \ Idl\<^bsub>\\<^esub> {l} \ Idl\<^bsub>\\<^esub> {l} \ Idl\<^bsub>\\<^esub> {k} \ Idl\<^bsub>\\<^esub> {k} = Idl\<^bsub>\\<^esub> {l}"
by blast
finally show ?thesis .
qed
lemma Idl_eq_abs: "Idl\<^bsub>\\<^esub> {k} = Idl\<^bsub>\\<^esub> {l} \ \l\ = \k\"
apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done
subsection \<open>Ideals and the Modulus\<close>
definition ZMod :: "int \ int \ int set"
where "ZMod k r = (Idl\<^bsub>\\<^esub> {k}) +>\<^bsub>\\<^esub> r"
lemmas ZMod_defs =
ZMod_def genideal_def
lemma rcos_zfact:
assumes kIl: "k \ ZMod l r"
shows "\x. k = x * l + r"
proof -
from kIl[unfolded ZMod_def] have "\xl\Idl\<^bsub>\\<^esub> {l}. k = xl + r"
by (simp add: a_r_coset_defs)
then obtain xl where xl: "xl \ Idl\<^bsub>\\<^esub> {l}" and k: "k = xl + r"
by auto
from xl obtain x where "xl = x * l"
by (auto simp: int_Idl)
with k have "k = x * l + r"
by simp
then show "\x. k = x * l + r" ..
qed
lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"
proof -
interpret ideal "Idl\<^bsub>\\<^esub> {m}" \
by (rule int.genideal_ideal) fast
from zmods have "b \ ZMod m a"
unfolding ZMod_def by (simp add: a_repr_independenceD)
then have "\x. b = x * m + a"
by (rule rcos_zfact)
then obtain x where "b = x * m + a"
by fast
then have "b mod m = (x * m + a) mod m"
by simp
also have "\ = ((x * m) mod m) + (a mod m)"
by (simp add: mod_add_eq)
also have "\ = a mod m"
by simp
finally have "b mod m = a mod m" .
then show "a mod m = b mod m" ..
qed
lemma ZMod_mod: "ZMod m a = ZMod m (a mod m)"
proof -
interpret ideal "Idl\<^bsub>\\<^esub> {m}" \
by (rule int.genideal_ideal) fast
show ?thesis
unfolding ZMod_def
apply (rule a_repr_independence'[symmetric])
apply (simp add: int_Idl a_r_coset_defs)
proof -
have "a = m * (a div m) + (a mod m)"
by (simp add: mult_div_mod_eq [symmetric])
then have "a = (a div m) * m + (a mod m)"
by simp
then show "\h. (\x. h = x * m) \ a = h + a mod m"
by fast
qed simp
qed
lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a = ZMod m b"
proof -
have "ZMod m a = ZMod m (a mod m)"
by (rule ZMod_mod)
also have "\ = ZMod m (b mod m)"
by (simp add: modeq[symmetric])
also have "\ = ZMod m b"
by (rule ZMod_mod[symmetric])
finally show ?thesis .
qed
corollary ZMod_eq_mod: "ZMod m a = ZMod m b \ a mod m = b mod m"
apply (rule iffI)
apply (erule ZMod_imp_zmod)
apply (erule zmod_imp_ZMod)
done
subsection \<open>Factorization\<close>
definition ZFact :: "int \ int set ring"
where "ZFact k = \ Quot (Idl\<^bsub>\\<^esub> {k})"
lemmas ZFact_defs = ZFact_def FactRing_def
lemma ZFact_is_cring: "cring (ZFact k)"
by (simp add: ZFact_def ideal.quotient_is_cring int.cring_axioms int.genideal_ideal)
lemma ZFact_zero: "carrier (ZFact 0) = (\a. {{a}})"
by (simp add: ZFact_defs A_RCOSETS_defs r_coset_def int.genideal_zero)
lemma ZFact_one: "carrier (ZFact 1) = {UNIV}"
unfolding ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps int.genideal_one
proof
have "\a b::int. \x. b = x + a"
by presburger
then show "(\a::int. {\h. {h + a}}) \ {UNIV}"
by force
then show "{UNIV} \ (\a::int. {\h. {h + a}})"
by (metis (no_types, lifting) UNIV_I UN_I singletonD singletonI subset_iff)
qed
lemma ZFact_prime_is_domain:
assumes pprime: "Factorial_Ring.prime p"
shows "domain (ZFact p)"
by (simp add: ZFact_def pprime prime_primeideal primeideal.quotient_is_domain)
end
¤ Dauer der Verarbeitung: 0.23 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|