(* Title: HOL/Analysis/Convex.thy
Author: L C Paulson, University of Cambridge
Author: Robert Himmelmann, TU Muenchen
Author: Bogdan Grechuk, University of Edinburgh
Author: Armin Heller, TU Muenchen
Author: Johannes Hoelzl, TU Muenchen
*)
section \<open>Convex Sets and Functions\<close>
theory Convex
imports
Affine
"HOL-Library.Set_Algebras"
begin
subsection \<open>Convex Sets\<close>
definition\<^marker>\<open>tag important\<close> convex :: "'a::real_vector set \<Rightarrow> bool"
where "convex s \ (\x\s. \y\s. \u\0. \v\0. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s)"
lemma convexI:
assumes "\x y u v. x \ s \ y \ s \ 0 \ u \ 0 \ v \ u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s"
shows "convex s"
using assms unfolding convex_def by fast
lemma convexD:
assumes "convex s" and "x \ s" and "y \ s" and "0 \ u" and "0 \ v" and "u + v = 1"
shows "u *\<^sub>R x + v *\<^sub>R y \ s"
using assms unfolding convex_def by fast
lemma convex_alt: "convex s \ (\x\s. \y\s. \u. 0 \ u \ u \ 1 \ ((1 - u) *\<^sub>R x + u *\<^sub>R y) \ s)"
(is "_ \ ?alt")
proof
show "convex s" if alt: ?alt
proof -
{
fix x y and u v :: real
assume mem: "x \ s" "y \ s"
assume "0 \ u" "0 \ v"
moreover
assume "u + v = 1"
then have "u = 1 - v" by auto
ultimately have "u *\<^sub>R x + v *\<^sub>R y \ s"
using alt [rule_format, OF mem] by auto
}
then show ?thesis
unfolding convex_def by auto
qed
show ?alt if "convex s"
using that by (auto simp: convex_def)
qed
lemma convexD_alt:
assumes "convex s" "a \ s" "b \ s" "0 \ u" "u \ 1"
shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \ s"
using assms unfolding convex_alt by auto
lemma mem_convex_alt:
assumes "convex S" "x \ S" "y \ S" "u \ 0" "v \ 0" "u + v > 0"
shows "((u/(u+v)) *\<^sub>R x + (v/(u+v)) *\<^sub>R y) \ S"
using assms
by (simp add: convex_def zero_le_divide_iff add_divide_distrib [symmetric])
lemma convex_empty[intro,simp]: "convex {}"
unfolding convex_def by simp
lemma convex_singleton[intro,simp]: "convex {a}"
unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
lemma convex_UNIV[intro,simp]: "convex UNIV"
unfolding convex_def by auto
lemma convex_Inter: "(\s. s\f \ convex s) \ convex(\f)"
unfolding convex_def by auto
lemma convex_Int: "convex s \ convex t \ convex (s \ t)"
unfolding convex_def by auto
lemma convex_INT: "(\i. i \ A \ convex (B i)) \ convex (\i\A. B i)"
unfolding convex_def by auto
lemma convex_Times: "convex s \ convex t \ convex (s \ t)"
unfolding convex_def by auto
lemma convex_halfspace_le: "convex {x. inner a x \ b}"
unfolding convex_def
by (auto simp: inner_add intro!: convex_bound_le)
lemma convex_halfspace_ge: "convex {x. inner a x \ b}"
proof -
have *: "{x. inner a x \ b} = {x. inner (-a) x \ -b}"
by auto
show ?thesis
unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
qed
lemma convex_halfspace_abs_le: "convex {x. \inner a x\ \ b}"
proof -
have *: "{x. \inner a x\ \ b} = {x. inner a x \ b} \ {x. -b \ inner a x}"
by auto
show ?thesis
unfolding * by (simp add: convex_Int convex_halfspace_ge convex_halfspace_le)
qed
lemma convex_hyperplane: "convex {x. inner a x = b}"
proof -
have *: "{x. inner a x = b} = {x. inner a x \ b} \ {x. inner a x \ b}"
by auto
show ?thesis using convex_halfspace_le convex_halfspace_ge
by (auto intro!: convex_Int simp: *)
qed
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
unfolding convex_def
by (auto simp: convex_bound_lt inner_add)
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
using convex_halfspace_lt[of "-a" "-b"] by auto
lemma convex_halfspace_Re_ge: "convex {x. Re x \ b}"
using convex_halfspace_ge[of b "1::complex"] by simp
lemma convex_halfspace_Re_le: "convex {x. Re x \ b}"
using convex_halfspace_le[of "1::complex" b] by simp
lemma convex_halfspace_Im_ge: "convex {x. Im x \ b}"
using convex_halfspace_ge[of b \<i>] by simp
lemma convex_halfspace_Im_le: "convex {x. Im x \ b}"
using convex_halfspace_le[of \<i> b] by simp
lemma convex_halfspace_Re_gt: "convex {x. Re x > b}"
using convex_halfspace_gt[of b "1::complex"] by simp
lemma convex_halfspace_Re_lt: "convex {x. Re x < b}"
using convex_halfspace_lt[of "1::complex" b] by simp
lemma convex_halfspace_Im_gt: "convex {x. Im x > b}"
using convex_halfspace_gt[of b \<i>] by simp
lemma convex_halfspace_Im_lt: "convex {x. Im x < b}"
using convex_halfspace_lt[of \<i> b] by simp
lemma convex_real_interval [iff]:
fixes a b :: "real"
shows "convex {a..}" and "convex {..b}"
and "convex {a<..}" and "convex {..
and "convex {a..b}" and "convex {a<..b}"
and "convex {a.. and "convex {a<..
proof -
have "{a..} = {x. a \ inner 1 x}"
by auto
then show 1: "convex {a..}"
by (simp only: convex_halfspace_ge)
have "{..b} = {x. inner 1 x \ b}"
by auto
then show 2: "convex {..b}"
by (simp only: convex_halfspace_le)
have "{a<..} = {x. a < inner 1 x}"
by auto
then show 3: "convex {a<..}"
by (simp only: convex_halfspace_gt)
have "{..
by auto
then show 4: "convex {..
by (simp only: convex_halfspace_lt)
have "{a..b} = {a..} \ {..b}"
by auto
then show "convex {a..b}"
by (simp only: convex_Int 1 2)
have "{a<..b} = {a<..} \ {..b}"
by auto
then show "convex {a<..b}"
by (simp only: convex_Int 3 2)
have "{a.. {..
by auto
then show "convex {a..
by (simp only: convex_Int 1 4)
have "{a<.. {..
by auto
then show "convex {a<..
by (simp only: convex_Int 3 4)
qed
lemma convex_Reals: "convex \"
by (simp add: convex_def scaleR_conv_of_real)
subsection\<^marker>\<open>tag unimportant\<close> \<open>Explicit expressions for convexity in terms of arbitrary sums\<close>
lemma convex_sum:
fixes C :: "'a::real_vector set"
assumes "finite S"
and "convex C"
and "(\ i \ S. a i) = 1"
assumes "\i. i \ S \ a i \ 0"
and "\i. i \ S \ y i \ C"
shows "(\ j \ S. a j *\<^sub>R y j) \ C"
using assms(1,3,4,5)
proof (induct arbitrary: a set: finite)
case empty
then show ?case by simp
next
case (insert i S) note IH = this(3)
have "a i + sum a S = 1"
and "0 \ a i"
and "\j\S. 0 \ a j"
and "y i \ C"
and "\j\S. y j \ C"
using insert.hyps(1,2) insert.prems by simp_all
then have "0 \ sum a S"
by (simp add: sum_nonneg)
have "a i *\<^sub>R y i + (\j\S. a j *\<^sub>R y j) \ C"
proof (cases "sum a S = 0")
case True
with \<open>a i + sum a S = 1\<close> have "a i = 1"
by simp
from sum_nonneg_0 [OF \<open>finite S\<close> _ True] \<open>\<forall>j\<in>S. 0 \<le> a j\<close> have "\<forall>j\<in>S. a j = 0"
by simp
show ?thesis using \<open>a i = 1\<close> and \<open>\<forall>j\<in>S. a j = 0\<close> and \<open>y i \<in> C\<close>
by simp
next
case False
with \<open>0 \<le> sum a S\<close> have "0 < sum a S"
by simp
then have "(\j\S. (a j / sum a S) *\<^sub>R y j) \ C"
using \<open>\<forall>j\<in>S. 0 \<le> a j\<close> and \<open>\<forall>j\<in>S. y j \<in> C\<close>
by (simp add: IH sum_divide_distrib [symmetric])
from \<open>convex C\<close> and \<open>y i \<in> C\<close> and this and \<open>0 \<le> a i\<close>
and \<open>0 \<le> sum a S\<close> and \<open>a i + sum a S = 1\<close>
have "a i *\<^sub>R y i + sum a S *\<^sub>R (\j\S. (a j / sum a S) *\<^sub>R y j) \ C"
by (rule convexD)
then show ?thesis
by (simp add: scaleR_sum_right False)
qed
then show ?case using \<open>finite S\<close> and \<open>i \<notin> S\<close>
by simp
qed
lemma convex:
"convex S \ (\(k::nat) u x. (\i. 1\i \ i\k \ 0 \ u i \ x i \S) \ (sum u {1..k} = 1)
\<longrightarrow> sum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> S)"
proof safe
fix k :: nat
fix u :: "nat \ real"
fix x
assume "convex S"
"\i. 1 \ i \ i \ k \ 0 \ u i \ x i \ S"
"sum u {1..k} = 1"
with convex_sum[of "{1 .. k}" S] show "(\j\{1 .. k}. u j *\<^sub>R x j) \ S"
by auto
next
assume *: "\k u x. (\ i :: nat. 1 \ i \ i \ k \ 0 \ u i \ x i \ S) \ sum u {1..k} = 1
\<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> S"
{
fix \<mu> :: real
fix x y :: 'a
assume xy: "x \ S" "y \ S"
assume mu: "\ \ 0" "\ \ 1"
let ?u = "\i. if (i :: nat) = 1 then \ else 1 - \"
let ?x = "\i. if (i :: nat) = 1 then x else y"
have "{1 :: nat .. 2} \ - {x. x = 1} = {2}"
by auto
then have card: "card ({1 :: nat .. 2} \ - {x. x = 1}) = 1"
by simp
then have "sum ?u {1 .. 2} = 1"
using sum.If_cases[of "{(1 :: nat) .. 2}" "\ x. x = 1" "\ x. \" "\ x. 1 - \"]
by auto
with *[rule_format, of "2" ?u ?x] have S: "(\j \ {1..2}. ?u j *\<^sub>R ?x j) \ S"
using mu xy by auto
have grarr: "(\j \ {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \) *\<^sub>R y"
using sum.atLeast_Suc_atMost[of "Suc (Suc 0)" 2 "\ j. (1 - \) *\<^sub>R y"] by auto
from sum.atLeast_Suc_atMost[of "Suc 0" 2 "\ j. ?u j *\<^sub>R ?x j", simplified this]
have "(\j \ {1..2}. ?u j *\<^sub>R ?x j) = \ *\<^sub>R x + (1 - \) *\<^sub>R y"
by auto
then have "(1 - \) *\<^sub>R y + \ *\<^sub>R x \ S"
using S by (auto simp: add.commute)
}
then show "convex S"
unfolding convex_alt by auto
qed
lemma convex_explicit:
fixes S :: "'a::real_vector set"
shows "convex S \
(\<forall>t u. finite t \<and> t \<subseteq> S \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> sum u t = 1 \<longrightarrow> sum (\<lambda>x. u x *\<^sub>R x) t \<in> S)"
proof safe
fix t
fix u :: "'a \ real"
assume "convex S"
and "finite t"
and "t \ S" "\x\t. 0 \ u x" "sum u t = 1"
then show "(\x\t. u x *\<^sub>R x) \ S"
using convex_sum[of t S u "\ x. x"] by auto
next
assume *: "\t. \ u. finite t \ t \ S \ (\x\t. 0 \ u x) \
sum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> S"
show "convex S"
unfolding convex_alt
proof safe
fix x y
fix \<mu> :: real
assume **: "x \ S" "y \ S" "0 \ \" "\ \ 1"
show "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ S"
proof (cases "x = y")
case False
then show ?thesis
using *[rule_format, of "{x, y}" "\ z. if z = x then 1 - \ else \"] **
by auto
next
case True
then show ?thesis
using *[rule_format, of "{x, y}" "\ z. 1"] **
by (auto simp: field_simps real_vector.scale_left_diff_distrib)
qed
qed
qed
lemma convex_finite:
assumes "finite S"
shows "convex S \ (\u. (\x\S. 0 \ u x) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S \ S)"
(is "?lhs = ?rhs")
proof
{ have if_distrib_arg: "\P f g x. (if P then f else g) x = (if P then f x else g x)"
by simp
fix T :: "'a set" and u :: "'a \ real"
assume sum: "\u. (\x\S. 0 \ u x) \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) \ S"
assume *: "\x\T. 0 \ u x" "sum u T = 1"
assume "T \ S"
then have "S \ T = T" by auto
with sum[THEN spec[where x="\x. if x\T then u x else 0"]] * have "(\x\T. u x *\<^sub>R x) \ S"
by (auto simp: assms sum.If_cases if_distrib if_distrib_arg) }
moreover assume ?rhs
ultimately show ?lhs
unfolding convex_explicit by auto
qed (auto simp: convex_explicit assms)
subsection \<open>Convex Functions on a Set\<close>
definition\<^marker>\<open>tag important\<close> convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
where "convex_on S f \
(\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
lemma convex_onI [intro?]:
assumes "\t x y. t > 0 \ t < 1 \ x \ A \ y \ A \
f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
shows "convex_on A f"
unfolding convex_on_def
proof clarify
fix x y
fix u v :: real
assume A: "x \ A" "y \ A" "u \ 0" "v \ 0" "u + v = 1"
from A(5) have [simp]: "v = 1 - u"
by (simp add: algebra_simps)
from A(1-4) show "f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y"
using assms[of u y x]
by (cases "u = 0 \ u = 1") (auto simp: algebra_simps)
qed
lemma convex_on_linorderI [intro?]:
fixes A :: "('a::{linorder,real_vector}) set"
assumes "\t x y. t > 0 \ t < 1 \ x \ A \ y \ A \ x < y \
f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
shows "convex_on A f"
proof
fix x y
fix t :: real
assume A: "x \ A" "y \ A" "t > 0" "t < 1"
with assms [of t x y] assms [of "1 - t" y x]
show "f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \ (1 - t) * f x + t * f y"
by (cases x y rule: linorder_cases) (auto simp: algebra_simps)
qed
lemma convex_onD:
assumes "convex_on A f"
shows "\t x y. t \ 0 \ t \ 1 \ x \ A \ y \ A \
f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
using assms by (auto simp: convex_on_def)
lemma convex_onD_Icc:
assumes "convex_on {x..y} f" "x \ (y :: _ :: {real_vector,preorder})"
shows "\t. t \ 0 \ t \ 1 \
f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y"
using assms(2) by (intro convex_onD [OF assms(1)]) simp_all
lemma convex_on_subset: "convex_on t f \ S \ t \ convex_on S f"
unfolding convex_on_def by auto
lemma convex_on_add [intro]:
assumes "convex_on S f"
and "convex_on S g"
shows "convex_on S (\x. f x + g x)"
proof -
{
fix x y
assume "x \ S" "y \ S"
moreover
fix u v :: real
assume "0 \ u" "0 \ v" "u + v = 1"
ultimately
have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \ (u * f x + v * f y) + (u * g x + v * g y)"
using assms unfolding convex_on_def by (auto simp: add_mono)
then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \ u * (f x + g x) + v * (f y + g y)"
by (simp add: field_simps)
}
then show ?thesis
unfolding convex_on_def by auto
qed
lemma convex_on_cmul [intro]:
fixes c :: real
assumes "0 \ c"
and "convex_on S f"
shows "convex_on S (\x. c * f x)"
proof -
have *: "u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
for u c fx v fy :: real
by (simp add: field_simps)
show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
unfolding convex_on_def and * by auto
qed
lemma convex_lower:
assumes "convex_on S f"
and "x \ S"
and "y \ S"
and "0 \ u"
and "0 \ v"
and "u + v = 1"
shows "f (u *\<^sub>R x + v *\<^sub>R y) \ max (f x) (f y)"
proof -
let ?m = "max (f x) (f y)"
have "u * f x + v * f y \ u * max (f x) (f y) + v * max (f x) (f y)"
using assms(4,5) by (auto simp: mult_left_mono add_mono)
also have "\ = max (f x) (f y)"
using assms(6) by (simp add: distrib_right [symmetric])
finally show ?thesis
using assms unfolding convex_on_def by fastforce
qed
lemma convex_on_dist [intro]:
fixes S :: "'a::real_normed_vector set"
shows "convex_on S (\x. dist a x)"
proof (auto simp: convex_on_def dist_norm)
fix x y
assume "x \ S" "y \ S"
fix u v :: real
assume "0 \ u"
assume "0 \ v"
assume "u + v = 1"
have "a = u *\<^sub>R a + v *\<^sub>R a"
unfolding scaleR_left_distrib[symmetric] and \<open>u + v = 1\<close> by simp
then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
by (auto simp: algebra_simps)
show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \ u * norm (a - x) + v * norm (a - y)"
unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> by auto
qed
subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetic operations on sets preserve convexity\<close>
lemma convex_linear_image:
assumes "linear f"
and "convex S"
shows "convex (f ` S)"
proof -
interpret f: linear f by fact
from \<open>convex S\<close> show "convex (f ` S)"
by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric])
qed
lemma convex_linear_vimage:
assumes "linear f"
and "convex S"
shows "convex (f -` S)"
proof -
interpret f: linear f by fact
from \<open>convex S\<close> show "convex (f -` S)"
by (simp add: convex_def f.add f.scaleR)
qed
lemma convex_scaling:
assumes "convex S"
shows "convex ((\x. c *\<^sub>R x) ` S)"
proof -
have "linear (\x. c *\<^sub>R x)"
by (simp add: linearI scaleR_add_right)
then show ?thesis
using \<open>convex S\<close> by (rule convex_linear_image)
qed
lemma convex_scaled:
assumes "convex S"
shows "convex ((\x. x *\<^sub>R c) ` S)"
proof -
have "linear (\x. x *\<^sub>R c)"
by (simp add: linearI scaleR_add_left)
then show ?thesis
using \<open>convex S\<close> by (rule convex_linear_image)
qed
lemma convex_negations:
assumes "convex S"
shows "convex ((\x. - x) ` S)"
proof -
have "linear (\x. - x)"
by (simp add: linearI)
then show ?thesis
using \<open>convex S\<close> by (rule convex_linear_image)
qed
lemma convex_sums:
assumes "convex S"
and "convex T"
shows "convex (\x\ S. \y \ T. {x + y})"
proof -
have "linear (\(x, y). x + y)"
by (auto intro: linearI simp: scaleR_add_right)
with assms have "convex ((\(x, y). x + y) ` (S \ T))"
by (intro convex_linear_image convex_Times)
also have "((\(x, y). x + y) ` (S \ T)) = (\x\ S. \y \ T. {x + y})"
by auto
finally show ?thesis .
qed
lemma convex_differences:
assumes "convex S" "convex T"
shows "convex (\x\ S. \y \ T. {x - y})"
proof -
have "{x - y| x y. x \ S \ y \ T} = {x + y |x y. x \ S \ y \ uminus ` T}"
by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff)
then show ?thesis
using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
qed
lemma convex_translation:
"convex ((+) a ` S)" if "convex S"
proof -
have "(\ x\ {a}. \y \ S. {x + y}) = (+) a ` S"
by auto
then show ?thesis
using convex_sums [OF convex_singleton [of a] that] by auto
qed
lemma convex_translation_subtract:
"convex ((\b. b - a) ` S)" if "convex S"
using convex_translation [of S "- a"] that by (simp cong: image_cong_simp)
lemma convex_affinity:
assumes "convex S"
shows "convex ((\x. a + c *\<^sub>R x) ` S)"
proof -
have "(\x. a + c *\<^sub>R x) ` S = (+) a ` (*\<^sub>R) c ` S"
by auto
then show ?thesis
using convex_translation[OF convex_scaling[OF assms], of a c] by auto
qed
lemma convex_on_sum:
fixes a :: "'a \ real"
and y :: "'a \ 'b::real_vector"
and f :: "'b \ real"
assumes "finite s" "s \ {}"
and "convex_on C f"
and "convex C"
and "(\ i \ s. a i) = 1"
and "\i. i \ s \ a i \ 0"
and "\i. i \ s \ y i \ C"
shows "f (\ i \ s. a i *\<^sub>R y i) \ (\ i \ s. a i * f (y i))"
using assms
proof (induct s arbitrary: a rule: finite_ne_induct)
case (singleton i)
then have ai: "a i = 1"
by auto
then show ?case
by auto
next
case (insert i s)
then have "convex_on C f"
by simp
from this[unfolded convex_on_def, rule_format]
have conv: "\x y \. x \ C \ y \ C \ 0 \ \ \ \ \ 1 \
f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
by simp
show ?case
proof (cases "a i = 1")
case True
then have "(\ j \ s. a j) = 0"
using insert by auto
then have "\j. j \ s \ a j = 0"
using insert by (fastforce simp: sum_nonneg_eq_0_iff)
then show ?thesis
using insert by auto
next
case False
from insert have yai: "y i \ C" "a i \ 0"
by auto
have fis: "finite (insert i s)"
using insert by auto
then have ai1: "a i \ 1"
using sum_nonneg_leq_bound[of "insert i s" a] insert by simp
then have "a i < 1"
using False by auto
then have i0: "1 - a i > 0"
by auto
let ?a = "\j. a j / (1 - a i)"
have a_nonneg: "?a j \ 0" if "j \ s" for j
using i0 insert that by fastforce
have "(\ j \ insert i s. a j) = 1"
using insert by auto
then have "(\ j \ s. a j) = 1 - a i"
using sum.insert insert by fastforce
then have "(\ j \ s. a j) / (1 - a i) = 1"
using i0 by auto
then have a1: "(\ j \ s. ?a j) = 1"
unfolding sum_divide_distrib by simp
have "convex C" using insert by auto
then have asum: "(\ j \ s. ?a j *\<^sub>R y j) \ C"
using insert convex_sum [OF \<open>finite s\<close> \<open>convex C\<close> a1 a_nonneg] by auto
have asum_le: "f (\ j \ s. ?a j *\<^sub>R y j) \ (\ j \ s. ?a j * f (y j))"
using a_nonneg a1 insert by blast
have "f (\ j \ insert i s. a j *\<^sub>R y j) = f ((\ j \ s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
using sum.insert[of s i "\ j. a j *\<^sub>R y j", OF \finite s\ \i \ s\] insert
by (auto simp only: add.commute)
also have "\ = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\ j \ s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
using i0 by auto
also have "\ = f ((1 - a i) *\<^sub>R (\ j \ s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"
using scaleR_right.sum[of "inverse (1 - a i)" "\ j. a j *\<^sub>R y j" s, symmetric]
by (auto simp: algebra_simps)
also have "\ = f ((1 - a i) *\<^sub>R (\ j \ s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"
by (auto simp: divide_inverse)
also have "\ \ (1 - a i) *\<^sub>R f ((\ j \ s. ?a j *\<^sub>R y j)) + a i * f (y i)"
using conv[of "y i" "(\ j \ s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1]
by (auto simp: add.commute)
also have "\ \ (1 - a i) * (\ j \ s. ?a j * f (y j)) + a i * f (y i)"
using add_right_mono [OF mult_left_mono [of _ _ "1 - a i",
OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"]
by simp
also have "\ = (\ j \ s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)"
unfolding sum_distrib_left[of "1 - a i" "\ j. ?a j * f (y j)"]
using i0 by auto
also have "\ = (\ j \ s. a j * f (y j)) + a i * f (y i)"
using i0 by auto
also have "\ = (\ j \ insert i s. a j * f (y j))"
using insert by auto
finally show ?thesis
by simp
qed
qed
lemma convex_on_alt:
fixes C :: "'a::real_vector set"
shows "convex_on C f \
(\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow>
f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"
proof safe
fix x y
fix \<mu> :: real
assume *: "convex_on C f" "x \ C" "y \ C" "0 \ \" "\ \ 1"
from this[unfolded convex_on_def, rule_format]
have "0 \ u \ 0 \ v \ u + v = 1 \ f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y" for u v
by auto
from this [of "\" "1 - \", simplified] *
show "f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y"
by auto
next
assume *: "\x\C. \y\C. \\. 0 \ \ \ \ \ 1 \
f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
{
fix x y
fix u v :: real
assume **: "x \ C" "y \ C" "u \ 0" "v \ 0" "u + v = 1"
then have[simp]: "1 - u = v" by auto
from *[rule_format, of x y u]
have "f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y"
using ** by auto
}
then show "convex_on C f"
unfolding convex_on_def by auto
qed
lemma convex_on_diff:
fixes f :: "real \ real"
assumes f: "convex_on I f"
and I: "x \ I" "y \ I"
and t: "x < t" "t < y"
shows "(f x - f t) / (x - t) \ (f x - f y) / (x - y)"
and "(f x - f y) / (x - y) \ (f t - f y) / (t - y)"
proof -
define a where "a \ (t - y) / (x - y)"
with t have "0 \ a" "0 \ 1 - a"
by (auto simp: field_simps)
with f \<open>x \<in> I\<close> \<open>y \<in> I\<close> have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y"
by (auto simp: convex_on_def)
have "a * x + (1 - a) * y = a * (x - y) + y"
by (simp add: field_simps)
also have "\ = t"
unfolding a_def using \<open>x < t\<close> \<open>t < y\<close> by simp
finally have "f t \ a * f x + (1 - a) * f y"
using cvx by simp
also have "\ = a * (f x - f y) + f y"
by (simp add: field_simps)
finally have "f t - f y \ a * (f x - f y)"
by simp
with t show "(f x - f t) / (x - t) \ (f x - f y) / (x - y)"
by (simp add: le_divide_eq divide_le_eq field_simps a_def)
with t show "(f x - f y) / (x - y) \ (f t - f y) / (t - y)"
by (simp add: le_divide_eq divide_le_eq field_simps)
qed
lemma pos_convex_function:
fixes f :: "real \ real"
assumes "convex C"
and leq: "\x y. x \ C \ y \ C \ f' x * (y - x) \ f y - f x"
shows "convex_on C f"
unfolding convex_on_alt
using assms
proof safe
fix x y \<mu> :: real
let ?x = "\ *\<^sub>R x + (1 - \) *\<^sub>R y"
assume *: "convex C" "x \ C" "y \ C" "\ \ 0" "\ \ 1"
then have "1 - \ \ 0" by auto
then have xpos: "?x \ C"
using * unfolding convex_alt by fastforce
have geq: "\ * (f x - f ?x) + (1 - \) * (f y - f ?x) \
\<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"
using add_mono [OF mult_left_mono [OF leq [OF xpos *(2)] \<open>\<mu> \<ge> 0\<close>]
mult_left_mono [OF leq [OF xpos *(3)] \<open>1 - \<mu> \<ge> 0\<close>]]
by auto
then have "\ * f x + (1 - \) * f y - f ?x \ 0"
by (auto simp: field_simps)
then show "f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y"
by auto
qed
lemma atMostAtLeast_subset_convex:
fixes C :: "real set"
assumes "convex C"
and "x \ C" "y \ C" "x < y"
shows "{x .. y} \ C"
proof safe
fix z assume z: "z \ {x .. y}"
have less: "z \ C" if *: "x < z" "z < y"
proof -
let ?\<mu> = "(y - z) / (y - x)"
have "0 \ ?\" "?\ \ 1"
using assms * by (auto simp: field_simps)
then have comb: "?\ * x + (1 - ?\) * y \ C"
using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>]
by (simp add: algebra_simps)
have "?\ * x + (1 - ?\) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
by (auto simp: field_simps)
also have "\ = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
using assms by (simp only: add_divide_distrib) (auto simp: field_simps)
also have "\ = z"
using assms by (auto simp: field_simps)
finally show ?thesis
using comb by auto
qed
show "z \ C"
using z less assms by (auto simp: le_less)
qed
lemma f''_imp_f':
fixes f :: "real \ real"
assumes "convex C"
and f': "\x. x \ C \ DERIV f x :> (f' x)"
and f'': "\x. x \ C \ DERIV f' x :> (f'' x)"
and pos: "\x. x \ C \ f'' x \ 0"
and x: "x \ C"
and y: "y \ C"
shows "f' x * (y - x) \ f y - f x"
using assms
proof -
have less_imp: "f y - f x \ f' x * (y - x)" "f' y * (x - y) \ f x - f y"
if *: "x \ C" "y \ C" "y > x" for x y :: real
proof -
from * have ge: "y - x > 0" "y - x \ 0"
by auto
from * have le: "x - y < 0" "x - y \ 0"
by auto
then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>],
THEN f', THEN MVT2[OF \x < y\, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
by auto
then have "z1 \ C"
using atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>
by fastforce
from z1 have z1': "f x - f y = (x - y) * f' z1"
by (simp add: field_simps)
obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"
using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>],
THEN f'', THEN MVT2[OF \<open>x < z1\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
by auto
obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"
using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>],
THEN f'', THEN MVT2[OF \<open>z1 < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
by auto
have "f' y - (f x - f y) / (x - y) = f' y - f' z1"
using * z1' by auto
also have "\ = (y - z1) * f'' z3"
using z3 by auto
finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3"
by simp
have A': "y - z1 \ 0"
using z1 by auto
have "z3 \ C"
using z3 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>
by fastforce
then have B': "f'' z3 \ 0"
using assms by auto
from A' B' have "(y - z1) * f'' z3 \ 0"
by auto
from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0"
by auto
from mult_right_mono_neg[OF this le(2)]
have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \ 0 * (x - y)"
by (simp add: algebra_simps)
then have "f' y * (x - y) - (f x - f y) \ 0"
using le by auto
then have res: "f' y * (x - y) \ f x - f y"
by auto
have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"
using * z1 by auto
also have "\ = (z1 - x) * f'' z2"
using z2 by auto
finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2"
by simp
have A: "z1 - x \ 0"
using z1 by auto
have "z2 \ C"
using z2 z1 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>
by fastforce
then have B: "f'' z2 \ 0"
using assms by auto
from A B have "(z1 - x) * f'' z2 \ 0"
by auto
with cool have "(f y - f x) / (y - x) - f' x \ 0"
by auto
from mult_right_mono[OF this ge(2)]
have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \ 0 * (y - x)"
by (simp add: algebra_simps)
then have "f y - f x - f' x * (y - x) \ 0"
using ge by auto
then show "f y - f x \ f' x * (y - x)" "f' y * (x - y) \ f x - f y"
using res by auto
qed
show ?thesis
proof (cases "x = y")
case True
with x y show ?thesis by auto
next
case False
with less_imp x y show ?thesis
by (auto simp: neq_iff)
qed
qed
lemma f''_ge0_imp_convex:
fixes f :: "real \ real"
assumes conv: "convex C"
and f': "\x. x \ C \ DERIV f x :> (f' x)"
and f'': "\x. x \ C \ DERIV f' x :> (f'' x)"
and pos: "\x. x \ C \ f'' x \ 0"
shows "convex_on C f"
using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function
by fastforce
lemma minus_log_convex:
fixes b :: real
assumes "b > 1"
shows "convex_on {0 <..} (\ x. - log b x)"
proof -
have "\z. z > 0 \ DERIV (log b) z :> 1 / (ln b * z)"
using DERIV_log by auto
then have f': "\z. z > 0 \ DERIV (\ z. - log b z) z :> - 1 / (ln b * z)"
by (auto simp: DERIV_minus)
have "\z::real. z > 0 \ DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
from this[THEN DERIV_cmult, of _ "- 1 / ln b"]
have "\z::real. z > 0 \
DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
by auto
then have f''0: "\z::real. z > 0 \
DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
unfolding inverse_eq_divide by (auto simp: mult.assoc)
have f''_ge0: "\z::real. z > 0 \ 1 / (ln b * z * z) \ 0"
using \<open>b > 1\<close> by (auto intro!: less_imp_le)
from f''_ge0_imp_convex[OF convex_real_interval(3), unfolded greaterThan_iff, OF f' f''0 f''_ge0]
show ?thesis
by auto
qed
subsection\<^marker>\<open>tag unimportant\<close> \<open>Convexity of real functions\<close>
lemma convex_on_realI:
assumes "connected A"
and "\x. x \ A \ (f has_real_derivative f' x) (at x)"
and "\x y. x \ A \ y \ A \ x \ y \ f' x \ f' y"
shows "convex_on A f"
proof (rule convex_on_linorderI)
fix t x y :: real
assume t: "t > 0" "t < 1"
assume xy: "x \ A" "y \ A" "x < y"
define z where "z = (1 - t) * x + t * y"
with \<open>connected A\<close> and xy have ivl: "{x..y} \<subseteq> A"
using connected_contains_Icc by blast
from xy t have xz: "z > x"
by (simp add: z_def algebra_simps)
have "y - z = (1 - t) * (y - x)"
by (simp add: z_def algebra_simps)
also from xy t have "\ > 0"
by (intro mult_pos_pos) simp_all
finally have yz: "z < y"
by simp
from assms xz yz ivl t have "\\. \ > x \ \ < z \ f z - f x = (z - x) * f' \"
by (intro MVT2) (auto intro!: assms(2))
then obtain \<xi> where \<xi>: "\<xi> > x" "\<xi> < z" "f' \<xi> = (f z - f x) / (z - x)"
by auto
from assms xz yz ivl t have "\\. \ > z \ \ < y \ f y - f z = (y - z) * f' \"
by (intro MVT2) (auto intro!: assms(2))
then obtain \<eta> where \<eta>: "\<eta> > z" "\<eta> < y" "f' \<eta> = (f y - f z) / (y - z)"
by auto
from \<eta>(3) have "(f y - f z) / (y - z) = f' \<eta>" ..
also from \<xi> \<eta> ivl have "\<xi> \<in> A" "\<eta> \<in> A"
by auto
with \<xi> \<eta> have "f' \<eta> \<ge> f' \<xi>"
by (intro assms(3)) auto
also from \<xi>(3) have "f' \<xi> = (f z - f x) / (z - x)" .
finally have "(f y - f z) * (z - x) \ (f z - f x) * (y - z)"
using xz yz by (simp add: field_simps)
also have "z - x = t * (y - x)"
by (simp add: z_def algebra_simps)
also have "y - z = (1 - t) * (y - x)"
by (simp add: z_def algebra_simps)
finally have "(f y - f z) * t \ (f z - f x) * (1 - t)"
using xy by simp
then show "(1 - t) * f x + t * f y \ f ((1 - t) *\<^sub>R x + t *\<^sub>R y)"
by (simp add: z_def algebra_simps)
qed
lemma convex_on_inverse:
assumes "A \ {0<..}"
shows "convex_on A (inverse :: real \ real)"
proof (rule convex_on_subset[OF _ assms], intro convex_on_realI[of _ _ "\x. -inverse (x^2)"])
fix u v :: real
assume "u \ {0<..}" "v \ {0<..}" "u \ v"
with assms show "-inverse (u^2) \ -inverse (v^2)"
by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all)
qed (insert assms, auto intro!: derivative_eq_intros simp: field_split_simps power2_eq_square)
lemma convex_onD_Icc':
assumes "convex_on {x..y} f" "c \ {x..y}"
defines "d \ y - x"
shows "f c \ (f y - f x) / d * (c - x) + f x"
proof (cases x y rule: linorder_cases)
case less
then have d: "d > 0"
by (simp add: d_def)
from assms(2) less have A: "0 \ (c - x) / d" "(c - x) / d \ 1"
by (simp_all add: d_def field_split_simps)
have "f c = f (x + (c - x) * 1)"
by simp
also from less have "1 = ((y - x) / d)"
by (simp add: d_def)
also from d have "x + (c - x) * \ = (1 - (c - x) / d) *\<^sub>R x + ((c - x) / d) *\<^sub>R y"
by (simp add: field_simps)
also have "f \ \ (1 - (c - x) / d) * f x + (c - x) / d * f y"
using assms less by (intro convex_onD_Icc) simp_all
also from d have "\ = (f y - f x) / d * (c - x) + f x"
by (simp add: field_simps)
finally show ?thesis .
qed (insert assms(2), simp_all)
lemma convex_onD_Icc'':
assumes "convex_on {x..y} f" "c \ {x..y}"
defines "d \ y - x"
shows "f c \ (f x - f y) / d * (y - c) + f y"
proof (cases x y rule: linorder_cases)
case less
then have d: "d > 0"
by (simp add: d_def)
from assms(2) less have A: "0 \ (y - c) / d" "(y - c) / d \ 1"
by (simp_all add: d_def field_split_simps)
have "f c = f (y - (y - c) * 1)"
by simp
also from less have "1 = ((y - x) / d)"
by (simp add: d_def)
also from d have "y - (y - c) * \ = (1 - (1 - (y - c) / d)) *\<^sub>R x + (1 - (y - c) / d) *\<^sub>R y"
by (simp add: field_simps)
also have "f \ \ (1 - (1 - (y - c) / d)) * f x + (1 - (y - c) / d) * f y"
using assms less by (intro convex_onD_Icc) (simp_all add: field_simps)
also from d have "\ = (f x - f y) / d * (y - c) + f y"
by (simp add: field_simps)
finally show ?thesis .
qed (insert assms(2), simp_all)
lemma convex_translation_eq [simp]:
"convex ((+) a ` s) \ convex s"
by (metis convex_translation translation_galois)
lemma convex_translation_subtract_eq [simp]:
"convex ((\b. b - a) ` s) \ convex s"
using convex_translation_eq [of "- a"] by (simp cong: image_cong_simp)
lemma convex_linear_image_eq [simp]:
fixes f :: "'a::real_vector \ 'b::real_vector"
shows "\linear f; inj f\ \ convex (f ` s) \ convex s"
by (metis (no_types) convex_linear_image convex_linear_vimage inj_vimage_image_eq)
lemma fst_snd_linear: "linear (\(x,y). x + y)"
unfolding linear_iff by (simp add: algebra_simps)
lemma vector_choose_size:
assumes "0 \ c"
obtains x :: "'a::{real_normed_vector, perfect_space}" where "norm x = c"
proof -
obtain a::'a where "a \ 0"
using UNIV_not_singleton UNIV_eq_I set_zero singletonI by fastforce
then show ?thesis
by (rule_tac x="scaleR (c / norm a) a" in that) (simp add: assms)
qed
lemma vector_choose_dist:
assumes "0 \ c"
obtains y :: "'a::{real_normed_vector, perfect_space}" where "dist x y = c"
by (metis add_diff_cancel_left' assms dist_commute dist_norm vector_choose_size)
lemma sum_delta'':
fixes s::"'a::real_vector set"
assumes "finite s"
shows "(\x\s. (if y = x then f x else 0) *\<^sub>R x) = (if y\s then (f y) *\<^sub>R y else 0)"
proof -
have *: "\x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)"
by auto
show ?thesis
unfolding * using sum.delta[OF assms, of y "\x. f x *\<^sub>R x"] by auto
qed
lemma dist_triangle_eq:
fixes x y z :: "'a::real_inner"
shows "dist x z = dist x y + dist y z \
norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"
proof -
have *: "x - y + (y - z) = x - z" by auto
show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *]
by (auto simp:norm_minus_commute)
qed
subsection \<open>Cones\<close>
definition\<^marker>\<open>tag important\<close> cone :: "'a::real_vector set \<Rightarrow> bool"
where "cone s \ (\x\s. \c\0. c *\<^sub>R x \ s)"
lemma cone_empty[intro, simp]: "cone {}"
unfolding cone_def by auto
lemma cone_univ[intro, simp]: "cone UNIV"
unfolding cone_def by auto
lemma cone_Inter[intro]: "\s\f. cone s \ cone (\f)"
unfolding cone_def by auto
lemma subspace_imp_cone: "subspace S \ cone S"
by (simp add: cone_def subspace_scale)
subsubsection \<open>Conic hull\<close>
lemma cone_cone_hull: "cone (cone hull S)"
unfolding hull_def by auto
lemma cone_hull_eq: "cone hull S = S \ cone S"
by (metis cone_cone_hull hull_same)
lemma mem_cone:
assumes "cone S" "x \ S" "c \ 0"
shows "c *\<^sub>R x \ S"
using assms cone_def[of S] by auto
lemma cone_contains_0:
assumes "cone S"
shows "S \ {} \ 0 \ S"
using assms mem_cone by fastforce
lemma cone_0: "cone {0}"
unfolding cone_def by auto
lemma cone_Union[intro]: "(\s\f. cone s) \ cone (\f)"
unfolding cone_def by blast
lemma cone_iff:
assumes "S \ {}"
shows "cone S \ 0 \ S \ (\c. c > 0 \ ((*\<^sub>R) c) ` S = S)"
proof -
{
assume "cone S"
{
fix c :: real
assume "c > 0"
{
fix x
assume "x \ S"
then have "x \ ((*\<^sub>R) c) ` S"
unfolding image_def
using \<open>cone S\<close> \<open>c>0\<close> mem_cone[of S x "1/c"]
exI[of "(\t. t \ S \ x = c *\<^sub>R t)" "(1 / c) *\<^sub>R x"]
by auto
}
moreover
{
fix x
assume "x \ ((*\<^sub>R) c) ` S"
then have "x \ S"
using \<open>0 < c\<close> \<open>cone S\<close> mem_cone by fastforce
}
ultimately have "((*\<^sub>R) c) ` S = S" by blast
}
then have "0 \ S \ (\c. c > 0 \ ((*\<^sub>R) c) ` S = S)"
using \<open>cone S\<close> cone_contains_0[of S] assms by auto
}
moreover
{
assume a: "0 \ S \ (\c. c > 0 \ ((*\<^sub>R) c) ` S = S)"
{
fix x
assume "x \ S"
fix c1 :: real
assume "c1 \ 0"
then have "c1 = 0 \ c1 > 0" by auto
then have "c1 *\<^sub>R x \ S" using a \x \ S\ by auto
}
then have "cone S" unfolding cone_def by auto
}
ultimately show ?thesis by blast
qed
lemma cone_hull_empty: "cone hull {} = {}"
by (metis cone_empty cone_hull_eq)
lemma cone_hull_empty_iff: "S = {} \ cone hull S = {}"
by (metis bot_least cone_hull_empty hull_subset xtrans(5))
lemma cone_hull_contains_0: "S \ {} \ 0 \ cone hull S"
using cone_cone_hull[of S] cone_contains_0[of "cone hull S"] cone_hull_empty_iff[of S]
by auto
lemma mem_cone_hull:
assumes "x \ S" "c \ 0"
shows "c *\<^sub>R x \ cone hull S"
by (metis assms cone_cone_hull hull_inc mem_cone)
proposition cone_hull_expl: "cone hull S = {c *\<^sub>R x | c x. c \ 0 \ x \ S}"
(is "?lhs = ?rhs")
proof -
{
fix x
assume "x \ ?rhs"
then obtain cx :: real and xx where x: "x = cx *\<^sub>R xx" "cx \ 0" "xx \ S"
by auto
fix c :: real
assume c: "c \ 0"
then have "c *\<^sub>R x = (c * cx) *\<^sub>R xx"
using x by (simp add: algebra_simps)
moreover
have "c * cx \ 0" using c x by auto
ultimately
have "c *\<^sub>R x \ ?rhs" using x by auto
}
then have "cone ?rhs"
unfolding cone_def by auto
then have "?rhs \ Collect cone"
unfolding mem_Collect_eq by auto
{
fix x
assume "x \ S"
then have "1 *\<^sub>R x \ ?rhs"
using zero_le_one by blast
then have "x \ ?rhs" by auto
}
then have "S \ ?rhs" by auto
then have "?lhs \ ?rhs"
using \<open>?rhs \<in> Collect cone\<close> hull_minimal[of S "?rhs" "cone"] by auto
moreover
{
fix x
assume "x \ ?rhs"
then obtain cx :: real and xx where x: "x = cx *\<^sub>R xx" "cx \ 0" "xx \ S"
by auto
then have "xx \ cone hull S"
using hull_subset[of S] by auto
then have "x \ ?lhs"
using x cone_cone_hull[of S] cone_def[of "cone hull S"] by auto
}
ultimately show ?thesis by auto
qed
lemma convex_cone:
"convex s \ cone s \ (\x\s. \y\s. (x + y) \ s) \ (\x\s. \c\0. (c *\<^sub>R x) \ s)"
(is "?lhs = ?rhs")
proof -
{
fix x y
assume "x\s" "y\s" and ?lhs
then have "2 *\<^sub>R x \s" "2 *\<^sub>R y \ s"
unfolding cone_def by auto
then have "x + y \ s"
using \<open>?lhs\<close>[unfolded convex_def, THEN conjunct1]
apply (erule_tac x="2*\<^sub>R x" in ballE)
apply (erule_tac x="2*\<^sub>R y" in ballE)
apply (erule_tac x="1/2" in allE, simp)
apply (erule_tac x="1/2" in allE, auto)
done
}
then show ?thesis
unfolding convex_def cone_def by blast
qed
subsection\<^marker>\<open>tag unimportant\<close> \<open>Connectedness of convex sets\<close>
lemma convex_connected:
fixes S :: "'a::real_normed_vector set"
assumes "convex S"
shows "connected S"
proof (rule connectedI)
fix A B
assume "open A" "open B" "A \ B \ S = {}" "S \ A \ B"
moreover
assume "A \ S \ {}" "B \ S \ {}"
then obtain a b where a: "a \ A" "a \ S" and b: "b \ B" "b \ S" by auto
define f where [abs_def]: "f u = u *\<^sub>R a + (1 - u) *\<^sub>R b" for u
then have "continuous_on {0 .. 1} f"
by (auto intro!: continuous_intros)
then have "connected (f ` {0 .. 1})"
by (auto intro!: connected_continuous_image)
note connectedD[OF this, of A B]
moreover have "a \ A \ f ` {0 .. 1}"
using a by (auto intro!: image_eqI[of _ _ 1] simp: f_def)
moreover have "b \ B \ f ` {0 .. 1}"
using b by (auto intro!: image_eqI[of _ _ 0] simp: f_def)
moreover have "f ` {0 .. 1} \ S"
using \<open>convex S\<close> a b unfolding convex_def f_def by auto
ultimately show False by auto
qed
corollary%unimportant connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"
by (simp add: convex_connected)
lemma convex_prod:
assumes "\i. i \ Basis \ convex {x. P i x}"
shows "convex {x. \i\Basis. P i (x\i)}"
using assms unfolding convex_def
by (auto simp: inner_add_left)
lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (\i\Basis. 0 \ x\i)}"
by (rule convex_prod) (simp flip: atLeast_def)
subsection \<open>Convex hull\<close>
lemma convex_convex_hull [iff]: "convex (convex hull s)"
unfolding hull_def
using convex_Inter[of "{t. convex t \ s \ t}"]
by auto
lemma convex_hull_subset:
"s \ convex hull t \ convex hull s \ convex hull t"
by (simp add: subset_hull)
lemma convex_hull_eq: "convex hull s = s \ convex s"
by (metis convex_convex_hull hull_same)
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Convex hull is "preserved" by a linear function\<close>
lemma convex_hull_linear_image:
assumes f: "linear f"
shows "f ` (convex hull s) = convex hull (f ` s)"
proof
show "convex hull (f ` s) \ f ` (convex hull s)"
by (intro hull_minimal image_mono hull_subset convex_linear_image assms convex_convex_hull)
show "f ` (convex hull s) \ convex hull (f ` s)"
proof (unfold image_subset_iff_subset_vimage, rule hull_minimal)
show "s \ f -` (convex hull (f ` s))"
by (fast intro: hull_inc)
show "convex (f -` (convex hull (f ` s)))"
by (intro convex_linear_vimage [OF f] convex_convex_hull)
qed
qed
lemma in_convex_hull_linear_image:
assumes "linear f"
and "x \ convex hull s"
shows "f x \ convex hull (f ` s)"
using convex_hull_linear_image[OF assms(1)] assms(2) by auto
lemma convex_hull_Times:
"convex hull (s \ t) = (convex hull s) \ (convex hull t)"
proof
show "convex hull (s \ t) \ (convex hull s) \ (convex hull t)"
by (intro hull_minimal Sigma_mono hull_subset convex_Times convex_convex_hull)
have "(x, y) \ convex hull (s \ t)" if x: "x \ convex hull s" and y: "y \ convex hull t" for x y
proof (rule hull_induct [OF x], rule hull_induct [OF y])
fix x y assume "x \ s" and "y \ t"
then show "(x, y) \ convex hull (s \ t)"
by (simp add: hull_inc)
next
fix x let ?S = "((\y. (0, y)) -` (\p. (- x, 0) + p) ` (convex hull s \ t))"
have "convex ?S"
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have "?S = {y. (x, y) \ convex hull (s \ t)}"
by (auto simp: image_def Bex_def)
finally show "convex {y. (x, y) \ convex hull (s \ t)}" .
next
show "convex {x. (x, y) \ convex hull s \ t}"
proof -
fix y let ?S = "((\x. (x, 0)) -` (\p. (0, - y) + p) ` (convex hull s \ t))"
have "convex ?S"
by (intro convex_linear_vimage convex_translation convex_convex_hull,
simp add: linear_iff)
also have "?S = {x. (x, y) \ convex hull (s \ t)}"
by (auto simp: image_def Bex_def)
finally show "convex {x. (x, y) \ convex hull (s \ t)}" .
qed
qed
then show "(convex hull s) \ (convex hull t) \ convex hull (s \ t)"
unfolding subset_eq split_paired_Ball_Sigma by blast
qed
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Stepping theorems for convex hulls of finite sets\<close>
lemma convex_hull_empty[simp]: "convex hull {} = {}"
by (rule hull_unique) auto
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
by (rule hull_unique) auto
lemma convex_hull_insert:
fixes S :: "'a::real_vector set"
assumes "S \ {}"
shows "convex hull (insert a S) =
{x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and> b \<in> (convex hull S) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}"
(is "_ = ?hull")
proof (intro equalityI hull_minimal subsetI)
fix x
assume "x \ insert a S"
then have "\u\0. \v\0. u + v = 1 \ (\b. b \ convex hull S \ x = u *\<^sub>R a + v *\<^sub>R b)"
unfolding insert_iff
proof
assume "x = a"
then show ?thesis
by (rule_tac x=1 in exI) (use assms hull_subset in fastforce)
next
assume "x \ S"
with hull_subset[of S convex] show ?thesis
by force
qed
then show "x \ ?hull"
by simp
next
fix x
assume "x \ ?hull"
then obtain u v b where obt: "u\0" "v\0" "u + v = 1" "b \ convex hull S" "x = u *\<^sub>R a + v *\<^sub>R b"
by auto
have "a \ convex hull insert a S" "b \ convex hull insert a S"
using hull_mono[of S "insert a S" convex] hull_mono[of "{a}" "insert a S" convex] and obt(4)
by auto
then show "x \ convex hull insert a S"
unfolding obt(5) using obt(1-3)
by (rule convexD [OF convex_convex_hull])
next
show "convex ?hull"
proof (rule convexI)
fix x y u v
assume as: "(0::real) \ u" "0 \ v" "u + v = 1" and x: "x \ ?hull" and y: "y \ ?hull"
from x obtain u1 v1 b1 where
obt1: "u1\0" "v1\0" "u1 + v1 = 1" "b1 \ convex hull S" and xeq: "x = u1 *\<^sub>R a + v1 *\<^sub>R b1"
by auto
from y obtain u2 v2 b2 where
obt2: "u2\0" "v2\0" "u2 + v2 = 1" "b2 \ convex hull S" and yeq: "y = u2 *\<^sub>R a + v2 *\<^sub>R b2"
by auto
have *: "\(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x"
by (auto simp: algebra_simps)
have "\b \ convex hull S. u *\<^sub>R x + v *\<^sub>R y =
(u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)"
proof (cases "u * v1 + v * v2 = 0")
case True
have *: "\(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x"
by (auto simp: algebra_simps)
have eq0: "u * v1 = 0" "v * v2 = 0"
using True mult_nonneg_nonneg[OF \<open>u\<ge>0\<close> \<open>v1\<ge>0\<close>] mult_nonneg_nonneg[OF \<open>v\<ge>0\<close> \<open>v2\<ge>0\<close>]
by arith+
then have "u * u1 + v * u2 = 1"
using as(3) obt1(3) obt2(3) by auto
then show ?thesis
using "*" eq0 as obt1(4) xeq yeq by auto
next
case False
have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)"
using as(3) obt1(3) obt2(3) by (auto simp: field_simps)
also have "\ = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)"
using as(3) obt1(3) obt2(3) by (auto simp: field_simps)
also have "\ = u * v1 + v * v2"
by simp
finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto
let ?b = "((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2"
have zeroes: "0 \ u * v1 + v * v2" "0 \ u * v1" "0 \ u * v1 + v * v2" "0 \ v * v2"
using as(1,2) obt1(1,2) obt2(1,2) by auto
show ?thesis
proof
show "u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (?b - (u * u1) *\<^sub>R ?b - (v * u2) *\<^sub>R ?b)"
unfolding xeq yeq * **
using False by (auto simp: scaleR_left_distrib scaleR_right_distrib)
show "?b \ convex hull S"
using False zeroes obt1(4) obt2(4)
by (auto simp: convexD [OF convex_convex_hull] scaleR_left_distrib scaleR_right_distrib add_divide_distrib[symmetric] zero_le_divide_iff)
qed
qed
then obtain b where b: "b \ convex hull S"
"u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" ..
have u1: "u1 \ 1"
unfolding obt1(3)[symmetric] and not_le using obt1(2) by auto
have u2: "u2 \ 1"
unfolding obt2(3)[symmetric] and not_le using obt2(2) by auto
have "u1 * u + u2 * v \ max u1 u2 * u + max u1 u2 * v"
proof (rule add_mono)
show "u1 * u \ max u1 u2 * u" "u2 * v \ max u1 u2 * v"
by (simp_all add: as mult_right_mono)
qed
also have "\ \ 1"
unfolding distrib_left[symmetric] and as(3) using u1 u2 by auto
finally have le1: "u1 * u + u2 * v \ 1" .
show "u *\<^sub>R x + v *\<^sub>R y \ ?hull"
proof (intro CollectI exI conjI)
show "0 \ u * u1 + v * u2"
by (simp add: as(1) as(2) obt1(1) obt2(1))
show "0 \ 1 - u * u1 - v * u2"
by (simp add: le1 diff_diff_add mult.commute)
qed (use b in \<open>auto simp: algebra_simps\<close>)
qed
qed
lemma convex_hull_insert_alt:
"convex hull (insert a S) =
(if S = {} then {a}
else {(1 - u) *\<^sub>R a + u *\<^sub>R x |x u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> convex hull S})"
apply (auto simp: convex_hull_insert)
using diff_eq_eq apply fastforce
using diff_add_cancel diff_ge_0_iff_ge by blast
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Explicit expression for convex hull\<close>
proposition convex_hull_indexed:
fixes S :: "'a::real_vector set"
shows "convex hull S =
{y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> S) \<and>
(sum u {1..k} = 1) \<and> (\<Sum>i = 1..k. u i *\<^sub>R x i) = y}"
(is "?xyz = ?hull")
proof (rule hull_unique [OF _ convexI])
show "S \ ?hull"
by (clarsimp, rule_tac x=1 in exI, rule_tac x="\x. 1" in exI, auto)
next
fix T
assume "S \ T" "convex T"
then show "?hull \ T"
by (blast intro: convex_sum)
next
fix x y u v
assume uv: "0 \ u" "0 \ v" "u + v = (1::real)"
assume xy: "x \ ?hull" "y \ ?hull"
from xy obtain k1 u1 x1 where
x [rule_format]: "\i\{1::nat..k1}. 0\u1 i \ x1 i \ S"
"sum u1 {Suc 0..k1} = 1" "(\i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x"
by auto
from xy obtain k2 u2 x2 where
y [rule_format]: "\i\{1::nat..k2}. 0\u2 i \ x2 i \ S"
"sum u2 {Suc 0..k2} = 1" "(\i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y"
by auto
have *: "\P (x::'a) y s t i. (if P i then s else t) *\<^sub>R (if P i then x else y) = (if P i then s *\<^sub>R x else t *\<^sub>R y)"
"{1..k1 + k2} \ {1..k1} = {1..k1}" "{1..k1 + k2} \ - {1..k1} = (\i. i + k1) ` {1..k2}"
by auto
have inj: "inj_on (\i. i + k1) {1..k2}"
unfolding inj_on_def by auto
let ?uu = "\i. if i \ {1..k1} then u * u1 i else v * u2 (i - k1)"
let ?xx = "\i. if i \ {1..k1} then x1 i else x2 (i - k1)"
show "u *\<^sub>R x + v *\<^sub>R y \ ?hull"
proof (intro CollectI exI conjI ballI)
show "0 \ ?uu i" "?xx i \ S" if "i \ {1..k1+k2}" for i
using that by (auto simp add: le_diff_conv uv(1) x(1) uv(2) y(1))
show "(\i = 1..k1 + k2. ?uu i) = 1" "(\i = 1..k1 + k2. ?uu i *\<^sub>R ?xx i) = u *\<^sub>R x + v *\<^sub>R y"
unfolding * sum.If_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]]
sum.reindex[OF inj] Collect_mem_eq o_def
unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_distrib_left[symmetric]
by (simp_all add: sum_distrib_left[symmetric] x(2,3) y(2,3) uv(3))
qed
qed
lemma convex_hull_finite:
fixes S :: "'a::real_vector set"
assumes "finite S"
shows "convex hull S = {y. \u. (\x\S. 0 \ u x) \ sum u S = 1 \ sum (\x. u x *\<^sub>R x) S = y}"
(is "?HULL = _")
proof (rule hull_unique [OF _ convexI]; clarify)
fix x
assume "x \ S"
then show "\u. (\x\S. 0 \ u x) \ sum u S = 1 \ (\x\S. u x *\<^sub>R x) = x"
by (rule_tac x="\y. if x=y then 1 else 0" in exI) (auto simp: sum.delta'[OF assms] sum_delta''[OF assms])
next
fix u v :: real
assume uv: "0 \ u" "0 \ v" "u + v = 1"
fix ux assume ux [rule_format]: "\x\S. 0 \ ux x" "sum ux S = (1::real)"
fix uy assume uy [rule_format]: "\x\S. 0 \ uy x" "sum uy S = (1::real)"
have "0 \ u * ux x + v * uy x" if "x\S" for x
by (simp add: that uv ux(1) uy(1))
moreover
have "(\x\S. u * ux x + v * uy x) = 1"
unfolding sum.distrib and sum_distrib_left[symmetric] ux(2) uy(2)
using uv(3) by auto
moreover
have "(\x\S. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\x\S. ux x *\<^sub>R x) + v *\<^sub>R (\x\S. uy x *\<^sub>R x)"
unfolding scaleR_left_distrib sum.distrib scaleR_scaleR[symmetric] scaleR_right.sum [symmetric]
by auto
ultimately
show "\uc. (\x\S. 0 \ uc x) \ sum uc S = 1 \
(\<Sum>x\<in>S. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>S. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>S. uy x *\<^sub>R x)"
by (rule_tac x="\x. u * ux x + v * uy x" in exI, auto)
qed (use assms in \<open>auto simp: convex_explicit\<close>)
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Another formulation\<close>
text "Formalized by Lars Schewe."
lemma convex_hull_explicit:
fixes p :: "'a::real_vector set"
shows "convex hull p =
{y. \<exists>S u. finite S \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}"
(is "?lhs = ?rhs")
proof -
{
fix x
assume "x\?lhs"
then obtain k u y where
obt: "\i\{1::nat..k}. 0 \ u i \ y i \ p" "sum u {1..k} = 1" "(\i = 1..k. u i *\<^sub>R y i) = x"
unfolding convex_hull_indexed by auto
have fin: "finite {1..k}" by auto
have fin': "\v. finite {i \ {1..k}. y i = v}" by auto
{
fix j
assume "j\{1..k}"
then have "y j \ p \ 0 \ sum u {i. Suc 0 \ i \ i \ k \ y i = y j}"
using obt(1)[THEN bspec[where x=j]] and obt(2)
by (metis (no_types, lifting) One_nat_def atLeastAtMost_iff mem_Collect_eq obt(1) sum_nonneg)
}
moreover
have "(\v\y ` {1..k}. sum u {i \ {1..k}. y i = v}) = 1"
unfolding sum.image_gen[OF fin, symmetric] using obt(2) by auto
moreover have "(\v\y ` {1..k}. sum u {i \ {1..k}. y i = v} *\<^sub>R v) = x"
using sum.image_gen[OF fin, of "\i. u i *\<^sub>R y i" y, symmetric]
unfolding scaleR_left.sum using obt(3) by auto
ultimately
have "\S u. finite S \ S \ p \ (\x\S. 0 \ u x) \ sum u S = 1 \ (\v\S. u v *\<^sub>R v) = x"
apply (rule_tac x="y ` {1..k}" in exI)
apply (rule_tac x="\v. sum u {i\{1..k}. y i = v}" in exI, auto)
done
then have "x\?rhs" by auto
}
moreover
{
fix y
assume "y\?rhs"
then obtain S u where
obt: "finite S" "S \ p" "\x\S. 0 \ u x" "sum u S = 1" "(\v\S. u v *\<^sub>R v) = y"
by auto
obtain f where f: "inj_on f {1..card S}" "f ` {1..card S} = S"
using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
{
fix i :: nat
assume "i\{1..card S}"
then have "f i \ S"
using f(2) by blast
then have "0 \ u (f i)" "f i \ p" using obt(2,3) by auto
}
moreover have *: "finite {1..card S}" by auto
{
fix y
assume "y\S"
then obtain i where "i\{1..card S}" "f i = y"
using f using image_iff[of y f "{1..card S}"]
by auto
then have "{x. Suc 0 \ x \ x \ card S \ f x = y} = {i}"
using f(1) inj_onD by fastforce
then have "card {x. Suc 0 \ x \ x \ card S \ f x = y} = 1" by auto
then have "(\x\{x \ {1..card S}. f x = y}. u (f x)) = u y"
"(\x\{x \ {1..card S}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
by (auto simp: sum_constant_scaleR)
}
then have "(\x = 1..card S. u (f x)) = 1" "(\i = 1..card S. u (f i) *\<^sub>R f i) = y"
unfolding sum.image_gen[OF *(1), of "\x. u (f x) *\<^sub>R f x" f]
and sum.image_gen[OF *(1), of "\x. u (f x)" f]
unfolding f
using sum.cong [of S S "\y. (\x\{x \ {1..card S}. f x = y}. u (f x) *\<^sub>R f x)" "\v. u v *\<^sub>R v"]
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.54 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|