(* Title: HOL/Analysis/Improper_Integral.thy
Author: LC Paulson (ported from HOL Light)
*)
section \<open>Continuity of the indefinite integral; improper integral theorem\<close>
theory "Improper_Integral"
imports Equivalence_Lebesgue_Henstock_Integration
begin
subsection \<open>Equiintegrability\<close>
text\<open>The definition here only really makes sense for an elementary set.
We just use compact intervals in applications below.\<close>
definition\<^marker>\<open>tag important\<close> equiintegrable_on (infixr "equiintegrable'_on" 46)
where "F equiintegrable_on I \
(\<forall>f \<in> F. f integrable_on I) \<and>
(\<forall>e > 0. \<exists>\<gamma>. gauge \<gamma> \<and>
(\<forall>f \<D>. f \<in> F \<and> \<D> tagged_division_of I \<and> \<gamma> fine \<D>
\<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < e))"
lemma equiintegrable_on_integrable:
"\F equiintegrable_on I; f \ F\ \ f integrable_on I"
using equiintegrable_on_def by metis
lemma equiintegrable_on_sing [simp]:
"{f} equiintegrable_on cbox a b \ f integrable_on cbox a b"
by (simp add: equiintegrable_on_def has_integral_integral has_integral integrable_on_def)
lemma equiintegrable_on_subset: "\F equiintegrable_on I; G \ F\ \ G equiintegrable_on I"
unfolding equiintegrable_on_def Ball_def
by (erule conj_forward imp_forward all_forward ex_forward | blast)+
lemma equiintegrable_on_Un:
assumes "F equiintegrable_on I" "G equiintegrable_on I"
shows "(F \ G) equiintegrable_on I"
unfolding equiintegrable_on_def
proof (intro conjI impI allI)
show "\f\F \ G. f integrable_on I"
using assms unfolding equiintegrable_on_def by blast
show "\\. gauge \ \
(\<forall>f \<D>. f \<in> F \<union> G \<and>
\<D> tagged_division_of I \<and> \<gamma> fine \<D> \<longrightarrow>
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>)"
if "\ > 0" for \
proof -
obtain \<gamma>1 where "gauge \<gamma>1"
and \<gamma>1: "\<And>f \<D>. f \<in> F \<and> \<D> tagged_division_of I \<and> \<gamma>1 fine \<D>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>"
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by auto
obtain \<gamma>2 where "gauge \<gamma>2"
and \<gamma>2: "\<And>f \<D>. f \<in> G \<and> \<D> tagged_division_of I \<and> \<gamma>2 fine \<D>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>"
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by auto
have "gauge (\x. \1 x \ \2 x)"
using \<open>gauge \<gamma>1\<close> \<open>gauge \<gamma>2\<close> by blast
moreover have "\f \. f \ F \ G \ \ tagged_division_of I \ (\x. \1 x \ \2 x) fine \ \
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>"
using \<gamma>1 \<gamma>2 by (auto simp: fine_Int)
ultimately show ?thesis
by (intro exI conjI) assumption+
qed
qed
lemma equiintegrable_on_insert:
assumes "f integrable_on cbox a b" "F equiintegrable_on cbox a b"
shows "(insert f F) equiintegrable_on cbox a b"
by (metis assms equiintegrable_on_Un equiintegrable_on_sing insert_is_Un)
lemma equiintegrable_cmul:
assumes F: "F equiintegrable_on I"
shows "(\c \ {-k..k}. \f \ F. {(\x. c *\<^sub>R f x)}) equiintegrable_on I"
unfolding equiintegrable_on_def
proof (intro conjI impI allI ballI)
show "f integrable_on I"
if "f \ (\c\{- k..k}. \f\F. {\x. c *\<^sub>R f x})"
for f :: "'a \ 'b"
using that assms equiintegrable_on_integrable integrable_cmul by blast
show "\\. gauge \ \ (\f \. f \ (\c\{- k..k}. \f\F. {\x. c *\<^sub>R f x}) \ \ tagged_division_of I
\<and> \<gamma> fine \<D> \<longrightarrow> norm ((\<Sum>(x, K)\<in>\<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>)"
if "\ > 0" for \
proof -
obtain \<gamma> where "gauge \<gamma>"
and \<gamma>: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of I; \<gamma> fine \<D>\<rbrakk>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon> / (\<bar>k\<bar> + 1)"
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def
by (metis add.commute add.right_neutral add_strict_mono divide_pos_pos norm_eq_zero real_norm_def zero_less_norm_iff zero_less_one)
moreover have "norm ((\(x, K)\\. content K *\<^sub>R c *\<^sub>R (f x)) - integral I (\x. c *\<^sub>R f x)) < \"
if c: "c \ {- k..k}"
and "f \ F" "\ tagged_division_of I" "\ fine \"
for \<D> c f
proof -
have "norm ((\x\\. case x of (x, K) \ content K *\<^sub>R c *\<^sub>R f x) - integral I (\x. c *\<^sub>R f x))
= \<bar>c\<bar> * norm ((\<Sum>x\<in>\<D>. case x of (x, K) \<Rightarrow> content K *\<^sub>R f x) - integral I f)"
by (simp add: algebra_simps scale_sum_right case_prod_unfold flip: norm_scaleR)
also have "\ \ (\k\ + 1) * norm ((\x\\. case x of (x, K) \ content K *\<^sub>R f x) - integral I f)"
using c by (auto simp: mult_right_mono)
also have "\ < (\k\ + 1) * (\ / (\k\ + 1))"
by (rule mult_strict_left_mono) (use \<gamma> less_eq_real_def that in auto)
also have "\ = \"
by auto
finally show ?thesis .
qed
ultimately show ?thesis
by (rule_tac x="\" in exI) auto
qed
qed
lemma equiintegrable_add:
assumes F: "F equiintegrable_on I" and G: "G equiintegrable_on I"
shows "(\f \ F. \g \ G. {(\x. f x + g x)}) equiintegrable_on I"
unfolding equiintegrable_on_def
proof (intro conjI impI allI ballI)
show "f integrable_on I"
if "f \ (\f\F. \g\G. {\x. f x + g x})" for f
using that equiintegrable_on_integrable assms by (auto intro: integrable_add)
show "\\. gauge \ \ (\f \. f \ (\f\F. \g\G. {\x. f x + g x}) \ \ tagged_division_of I
\<and> \<gamma> fine \<D> \<longrightarrow> norm ((\<Sum>(x, K)\<in>\<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>)"
if "\ > 0" for \
proof -
obtain \<gamma>1 where "gauge \<gamma>1"
and \<gamma>1: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of I; \<gamma>1 fine \<D>\<rbrakk>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral I f) < \<epsilon>/2"
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by (meson half_gt_zero_iff)
obtain \<gamma>2 where "gauge \<gamma>2"
and \<gamma>2: "\<And>g \<D>. \<lbrakk>g \<in> G; \<D> tagged_division_of I; \<gamma>2 fine \<D>\<rbrakk>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g x) - integral I g) < \<epsilon>/2"
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by (meson half_gt_zero_iff)
have "gauge (\x. \1 x \ \2 x)"
using \<open>gauge \<gamma>1\<close> \<open>gauge \<gamma>2\<close> by blast
moreover have "norm ((\(x,K) \ \. content K *\<^sub>R h x) - integral I h) < \"
if h: "h \ (\f\F. \g\G. {\x. f x + g x})"
and \<D>: "\<D> tagged_division_of I" and fine: "(\<lambda>x. \<gamma>1 x \<inter> \<gamma>2 x) fine \<D>"
for h \<D>
proof -
obtain f g where "f \ F" "g \ G" and heq: "h = (\x. f x + g x)"
using h by blast
then have int: "f integrable_on I" "g integrable_on I"
using F G equiintegrable_on_def by blast+
have "norm ((\(x,K) \ \. content K *\<^sub>R h x) - integral I h)
= norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x + content K *\<^sub>R g x) - (integral I f + integral I g))"
by (simp add: heq algebra_simps integral_add int)
also have "\ = norm (((\(x,K) \ \. content K *\<^sub>R f x) - integral I f + (\(x,K) \ \. content K *\<^sub>R g x) - integral I g))"
by (simp add: sum.distrib algebra_simps case_prod_unfold)
also have "\ \ norm ((\(x,K) \ \. content K *\<^sub>R f x) - integral I f) + norm ((\(x,K) \ \. content K *\<^sub>R g x) - integral I g)"
by (metis (mono_tags) add_diff_eq norm_triangle_ineq)
also have "\ < \/2 + \/2"
using \<gamma>1 [OF \<open>f \<in> F\<close> \<D>] \<gamma>2 [OF \<open>g \<in> G\<close> \<D>] fine by (simp add: fine_Int)
finally show ?thesis by simp
qed
ultimately show ?thesis
by meson
qed
qed
lemma equiintegrable_minus:
assumes "F equiintegrable_on I"
shows "(\f \ F. {(\x. - f x)}) equiintegrable_on I"
by (force intro: equiintegrable_on_subset [OF equiintegrable_cmul [OF assms, of 1]])
lemma equiintegrable_diff:
assumes F: "F equiintegrable_on I" and G: "G equiintegrable_on I"
shows "(\f \ F. \g \ G. {(\x. f x - g x)}) equiintegrable_on I"
by (rule equiintegrable_on_subset [OF equiintegrable_add [OF F equiintegrable_minus [OF G]]]) auto
lemma equiintegrable_sum:
fixes F :: "('a::euclidean_space \ 'b::euclidean_space) set"
assumes "F equiintegrable_on cbox a b"
shows "(\I \ Collect finite. \c \ {c. (\i \ I. c i \ 0) \ sum c I = 1}.
\<Union>f \<in> I \<rightarrow> F. {(\<lambda>x. sum (\<lambda>i::'j. c i *\<^sub>R f i x) I)}) equiintegrable_on cbox a b"
(is "?G equiintegrable_on _")
unfolding equiintegrable_on_def
proof (intro conjI impI allI ballI)
show "f integrable_on cbox a b" if "f \ ?G" for f
using that assms by (auto simp: equiintegrable_on_def intro!: integrable_sum integrable_cmul)
show "\\. gauge \
\<and> (\<forall>g \<D>. g \<in> ?G \<and> \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D>
\<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g x) - integral (cbox a b) g) < \<epsilon>)"
if "\ > 0" for \
proof -
obtain \<gamma> where "gauge \<gamma>"
and \<gamma>: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox a b) f) < \<epsilon> / 2"
using assms \<open>\<epsilon> > 0\<close> unfolding equiintegrable_on_def by (meson half_gt_zero_iff)
moreover have "norm ((\(x,K) \ \. content K *\<^sub>R g x) - integral (cbox a b) g) < \"
if g: "g \ ?G"
and \<D>: "\<D> tagged_division_of cbox a b"
and fine: "\ fine \"
for \<D> g
proof -
obtain I c f where "finite I" and 0: "\i::'j. i \ I \ 0 \ c i"
and 1: "sum c I = 1" and f: "f \ I \ F" and geq: "g = (\x. \i\I. c i *\<^sub>R f i x)"
using g by auto
have fi_int: "f i integrable_on cbox a b" if "i \ I" for i
by (metis Pi_iff assms equiintegrable_on_def f that)
have *: "integral (cbox a b) (\x. c i *\<^sub>R f i x) = (\(x, K)\\. integral K (\x. c i *\<^sub>R f i x))"
if "i \ I" for i
proof -
have "f i integrable_on cbox a b"
by (metis Pi_iff assms equiintegrable_on_def f that)
then show ?thesis
by (intro \<D> integrable_cmul integral_combine_tagged_division_topdown)
qed
have "finite \"
using \<D> by blast
have swap: "(\(x,K)\\. content K *\<^sub>R (\i\I. c i *\<^sub>R f i x))
= (\<Sum>i\<in>I. c i *\<^sub>R (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f i x))"
by (simp add: scale_sum_right case_prod_unfold algebra_simps) (rule sum.swap)
have "norm ((\(x, K)\\. content K *\<^sub>R g x) - integral (cbox a b) g)
= norm ((\<Sum>i\<in>I. c i *\<^sub>R ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f i x) - integral (cbox a b) (f i))))"
unfolding geq swap
by (simp add: scaleR_right.sum algebra_simps integral_sum fi_int integrable_cmul \<open>finite I\<close> sum_subtractf flip: sum_diff)
also have "\ \ (\i\I. c i * \ / 2)"
proof (rule sum_norm_le)
show "norm (c i *\<^sub>R ((\(xa, K)\\. content K *\<^sub>R f i xa) - integral (cbox a b) (f i))) \ c i * \ / 2"
if "i \ I" for i
proof -
have "norm ((\(x, K)\\. content K *\<^sub>R f i x) - integral (cbox a b) (f i)) \ \/2"
using \<gamma> [OF _ \<D> fine, of "f i"] funcset_mem [OF f] that by auto
then show ?thesis
using that by (auto simp: 0 mult.assoc intro: mult_left_mono)
qed
qed
also have "\ < \"
using 1 \<open>\<epsilon> > 0\<close> by (simp add: flip: sum_divide_distrib sum_distrib_right)
finally show ?thesis .
qed
ultimately show ?thesis
by (rule_tac x="\" in exI) auto
qed
qed
corollary equiintegrable_sum_real:
fixes F :: "(real \ 'b::euclidean_space) set"
assumes "F equiintegrable_on {a..b}"
shows "(\I \ Collect finite. \c \ {c. (\i \ I. c i \ 0) \ sum c I = 1}.
\<Union>f \<in> I \<rightarrow> F. {(\<lambda>x. sum (\<lambda>i. c i *\<^sub>R f i x) I)})
equiintegrable_on {a..b}"
using equiintegrable_sum [of F a b] assms by auto
text\<open> Basic combining theorems for the interval of integration.\<close>
lemma equiintegrable_on_null [simp]:
"content(cbox a b) = 0 \ F equiintegrable_on cbox a b"
unfolding equiintegrable_on_def
by (metis diff_zero gauge_trivial integrable_on_null integral_null norm_zero sum_content_null)
text\<open> Main limit theorem for an equiintegrable sequence.\<close>
theorem equiintegrable_limit:
fixes g :: "'a :: euclidean_space \ 'b :: banach"
assumes feq: "range f equiintegrable_on cbox a b"
and to_g: "\x. x \ cbox a b \ (\n. f n x) \ g x"
shows "g integrable_on cbox a b \ (\n. integral (cbox a b) (f n)) \ integral (cbox a b) g"
proof -
have "Cauchy (\n. integral(cbox a b) (f n))"
proof (clarsimp simp add: Cauchy_def)
fix e::real
assume "0 < e"
then have e3: "0 < e/3"
by simp
then obtain \<gamma> where "gauge \<gamma>"
and \<gamma>: "\<And>n \<D>. \<lbrakk>\<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk>
\<Longrightarrow> norm((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) < e/3"
using feq unfolding equiintegrable_on_def
by (meson image_eqI iso_tuple_UNIV_I)
obtain \<D> where \<D>: "\<D> tagged_division_of (cbox a b)" and "\<gamma> fine \<D>" "finite \<D>"
by (meson \<open>gauge \<gamma>\<close> fine_division_exists tagged_division_of_finite)
with \<gamma> have \<delta>T: "\<And>n. dist ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x)) (integral (cbox a b) (f n)) < e/3"
by (force simp: dist_norm)
have "(\n. \(x,K)\\. content K *\<^sub>R f n x) \ (\(x,K)\\. content K *\<^sub>R g x)"
using \<D> to_g by (auto intro!: tendsto_sum tendsto_scaleR)
then have "Cauchy (\n. \(x,K)\\. content K *\<^sub>R f n x)"
by (meson convergent_eq_Cauchy)
with e3 obtain M where
M: "\m n. \m\M; n\M\ \ dist (\(x,K)\\. content K *\<^sub>R f m x) (\(x,K)\\. content K *\<^sub>R f n x)
< e/3"
unfolding Cauchy_def by blast
have "\m n. \m\M; n\M;
dist (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f m x) (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) < e/3\<rbrakk>
\<Longrightarrow> dist (integral (cbox a b) (f m)) (integral (cbox a b) (f n)) < e"
by (metis \<delta>T dist_commute dist_triangle_third [OF _ _ \<delta>T])
then show "\M. \m\M. \n\M. dist (integral (cbox a b) (f m)) (integral (cbox a b) (f n)) < e"
using M by auto
qed
then obtain L where L: "(\n. integral (cbox a b) (f n)) \ L"
by (meson convergent_eq_Cauchy)
have "(g has_integral L) (cbox a b)"
proof (clarsimp simp: has_integral)
fix e::real assume "0 < e"
then have e2: "0 < e/2"
by simp
then obtain \<gamma> where "gauge \<gamma>"
and \<gamma>: "\<And>n \<D>. \<lbrakk>\<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk>
\<Longrightarrow> norm((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) < e/2"
using feq unfolding equiintegrable_on_def
by (meson image_eqI iso_tuple_UNIV_I)
moreover
have "norm ((\(x,K)\\. content K *\<^sub>R g x) - L) < e"
if "\ tagged_division_of cbox a b" "\ fine \" for \
proof -
have "norm ((\(x,K)\\. content K *\<^sub>R g x) - L) \ e/2"
proof (rule Lim_norm_ubound)
show "(\n. (\(x,K)\\. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) \ (\(x,K)\\. content K *\<^sub>R g x) - L"
using to_g that L
by (intro tendsto_diff tendsto_sum) (auto simp: tag_in_interval tendsto_scaleR)
show "\\<^sub>F n in sequentially.
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f n x) - integral (cbox a b) (f n)) \<le> e/2"
by (intro eventuallyI less_imp_le \<gamma> that)
qed auto
with \<open>0 < e\<close> show ?thesis
by linarith
qed
ultimately
show "\\. gauge \ \
(\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow>
norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - L) < e)"
by meson
qed
with L show ?thesis
by (simp add: \<open>(\<lambda>n. integral (cbox a b) (f n)) \<longlonglongrightarrow> L\<close> has_integral_integrable_integral)
qed
lemma equiintegrable_reflect:
assumes "F equiintegrable_on cbox a b"
shows "(\f. f \ uminus) ` F equiintegrable_on cbox (-b) (-a)"
proof -
have \<section>: "\<exists>\<gamma>. gauge \<gamma> \<and>
(\<forall>f \<D>. f \<in> (\<lambda>f. f \<circ> uminus) ` F \<and> \<D> tagged_division_of cbox (- b) (- a) \<and> \<gamma> fine \<D> \<longrightarrow>
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox (- b) (- a)) f) < e)"
if "gauge \" and
\<gamma>: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk> \<Longrightarrow>
norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox a b) f) < e" for e \<gamma>
proof (intro exI, safe)
show "gauge (\x. uminus ` \ (-x))"
by (metis \<open>gauge \<gamma>\<close> gauge_reflect)
show "norm ((\(x,K) \ \. content K *\<^sub>R (f \ uminus) x) - integral (cbox (- b) (- a)) (f \ uminus)) < e"
if "f \ F" and tag: "\ tagged_division_of cbox (- b) (- a)"
and fine: "(\x. uminus ` \ (- x)) fine \" for f \
proof -
have 1: "(\(x,K). (- x, uminus ` K)) ` \ tagged_partial_division_of cbox a b"
if "\ tagged_partial_division_of cbox (- b) (- a)"
proof -
have "- y \ cbox a b"
if "\x K. (x,K) \ \ \ x \ K \ K \ cbox (- b) (- a) \ (\a b. K = cbox a b)"
"(x, Y) \ \" "y \ Y" for x Y y
proof -
have "y \ uminus ` cbox a b"
using that by auto
then show "- y \ cbox a b"
by force
qed
with that show ?thesis
by (fastforce simp: tagged_partial_division_of_def interior_negations image_iff)
qed
have 2: "\K. (\x. (x,K) \ (\(x,K). (- x, uminus ` K)) ` \) \ x \ K"
if "\{K. \x. (x,K) \ \} = cbox (- b) (- a)" "x \ cbox a b" for x
proof -
have xm: "x \ uminus ` \{A. \a. (a, A) \ \}"
by (simp add: that)
then obtain a X where "-x \ X" "(a, X) \ \"
by auto
then show ?thesis
by (metis (no_types, lifting) add.inverse_inverse image_iff pair_imageI)
qed
have 3: "\x X y. \\ tagged_partial_division_of cbox (- b) (- a); (x, X) \ \; y \ X\ \ - y \ cbox a b"
by (metis (no_types, lifting) equation_minus_iff imageE subsetD tagged_partial_division_ofD(3) uminus_interval_vector)
have tag': "(\(x,K). (- x, uminus ` K)) ` \ tagged_division_of cbox a b"
using tag by (auto simp: tagged_division_of_def dest: 1 2 3)
have fine': "\ fine (\(x,K). (- x, uminus ` K)) ` \"
using fine by (fastforce simp: fine_def)
have inj: "inj_on (\(x,K). (- x, uminus ` K)) \"
unfolding inj_on_def by force
have eq: "content (uminus ` I) = content I"
if I: "(x, I) \ \" and fnz: "f (- x) \ 0" for x I
proof -
obtain a b where "I = cbox a b"
using tag I that by (force simp: tagged_division_of_def tagged_partial_division_of_def)
then show ?thesis
using content_image_affinity_cbox [of "-1" 0] by auto
qed
have "(\(x,K) \ (\(x,K). (- x, uminus ` K)) ` \. content K *\<^sub>R f x) =
(\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f (- x))"
by (auto simp add: eq sum.reindex [OF inj] intro!: sum.cong)
then show ?thesis
using \<gamma> [OF \<open>f \<in> F\<close> tag' fine'] integral_reflect
by (metis (mono_tags, lifting) Henstock_Kurzweil_Integration.integral_cong comp_apply split_def sum.cong)
qed
qed
show ?thesis
using assms
apply (auto simp: equiintegrable_on_def)
subgoal for f
by (metis (mono_tags, lifting) comp_apply integrable_eq integrable_reflect)
using \<section> by fastforce
qed
subsection\<open>Subinterval restrictions for equiintegrable families\<close>
text\<open>First, some technical lemmas about minimizing a "flat" part of a sum over a division.\<close>
lemma lemma0:
assumes "i \ Basis"
shows "content (cbox u v) / (interval_upperbound (cbox u v) \ i - interval_lowerbound (cbox u v) \ i) =
(if content (cbox u v) = 0 then 0
else \<Prod>j \<in> Basis - {i}. interval_upperbound (cbox u v) \<bullet> j - interval_lowerbound (cbox u v) \<bullet> j)"
proof (cases "content (cbox u v) = 0")
case True
then show ?thesis by simp
next
case False
then show ?thesis
using prod.subset_diff [of "{i}" Basis] assms
by (force simp: content_cbox_if divide_simps split: if_split_asm)
qed
lemma content_division_lemma1:
assumes div: "\ division_of S" and S: "S \ cbox a b" and i: "i \ Basis"
and mt: "\K. K \ \ \ content K \ 0"
and disj: "(\K \ \. K \ {x. x \ i = a \ i} \ {}) \ (\K \ \. K \ {x. x \ i = b \ i} \ {})"
shows "(b \ i - a \ i) * (\K\\. content K / (interval_upperbound K \ i - interval_lowerbound K \ i))
\<le> content(cbox a b)" (is "?lhs \<le> ?rhs")
proof -
have "finite \"
using div by blast
define extend where
"extend \ \K. cbox (\j \ Basis. if j = i then (a \ i) *\<^sub>R i else (interval_lowerbound K \ j) *\<^sub>R j)
(\<Sum>j \<in> Basis. if j = i then (b \<bullet> i) *\<^sub>R i else (interval_upperbound K \<bullet> j) *\<^sub>R j)"
have div_subset_cbox: "\K. K \ \ \ K \ cbox a b"
using S div by auto
have "\K. K \ \ \ K \ {}"
using div by blast
have extend_cbox: "\K. K \ \ \ \a b. extend K = cbox a b"
using extend_def by blast
have extend: "extend K \ {}" "extend K \ cbox a b" if K: "K \ \" for K
proof -
obtain u v where K: "K = cbox u v" "K \ {}" "K \ cbox a b"
using K cbox_division_memE [OF _ div] by (meson div_subset_cbox)
with i show "extend K \ cbox a b"
by (auto simp: extend_def subset_box box_ne_empty)
have "a \ i \ b \ i"
using K by (metis bot.extremum_uniqueI box_ne_empty(1) i)
with K show "extend K \ {}"
by (simp add: extend_def i box_ne_empty)
qed
have int_extend_disjoint:
"interior(extend K1) \ interior(extend K2) = {}" if K: "K1 \ \" "K2 \ \" "K1 \ K2" for K1 K2
proof -
obtain u v where K1: "K1 = cbox u v" "K1 \ {}" "K1 \ cbox a b"
using K cbox_division_memE [OF _ div] by (meson div_subset_cbox)
obtain w z where K2: "K2 = cbox w z" "K2 \ {}" "K2 \ cbox a b"
using K cbox_division_memE [OF _ div] by (meson div_subset_cbox)
have cboxes: "cbox u v \ \" "cbox w z \ \" "cbox u v \ cbox w z"
using K1 K2 that by auto
with div have "interior (cbox u v) \ interior (cbox w z) = {}"
by blast
moreover
have "\x. x \ box u v \ x \ box w z"
if "x \ interior (extend K1)" "x \ interior (extend K2)" for x
proof -
have "a \ i < x \ i" "x \ i < b \ i"
and ux: "\k. k \ Basis - {i} \ u \ k < x \ k"
and xv: "\k. k \ Basis - {i} \ x \ k < v \ k"
and wx: "\k. k \ Basis - {i} \ w \ k < x \ k"
and xz: "\k. k \ Basis - {i} \ x \ k < z \ k"
using that K1 K2 i by (auto simp: extend_def box_ne_empty mem_box)
have "box u v \ {}" "box w z \ {}"
using cboxes interior_cbox by (auto simp: content_eq_0_interior dest: mt)
then obtain q s
where q: "\k. k \ Basis \ w \ k < q \ k \ q \ k < z \ k"
and s: "\k. k \ Basis \ u \ k < s \ k \ s \ k < v \ k"
by (meson all_not_in_conv mem_box(1))
show ?thesis using disj
proof
assume "\K\\. K \ {x. x \ i = a \ i} \ {}"
then have uva: "(cbox u v) \ {x. x \ i = a \ i} \ {}"
and wza: "(cbox w z) \ {x. x \ i = a \ i} \ {}"
using cboxes by (auto simp: content_eq_0_interior)
then obtain r t where "r \ i = a \ i" and r: "\k. k \ Basis \ w \ k \ r \ k \ r \ k \ z \ k"
and "t \ i = a \ i" and t: "\k. k \ Basis \ u \ k \ t \ k \ t \ k \ v \ k"
by (fastforce simp: mem_box)
have u: "u \ i < q \ i"
using i K2(1) K2(3) \<open>t \<bullet> i = a \<bullet> i\<close> q s t [OF i] by (force simp: subset_box)
have w: "w \ i < s \ i"
using i K1(1) K1(3) \<open>r \<bullet> i = a \<bullet> i\<close> s r [OF i] by (force simp: subset_box)
define \<xi> where "\<xi> \<equiv> (\<Sum>j \<in> Basis. if j = i then min (q \<bullet> i) (s \<bullet> i) *\<^sub>R i else (x \<bullet> j) *\<^sub>R j)"
have [simp]: "\ \ j = (if j = i then min (q \ j) (s \ j) else x \ j)" if "j \ Basis" for j
unfolding \<xi>_def
by (intro sum_if_inner that \<open>i \<in> Basis\<close>)
show ?thesis
proof (intro exI conjI)
have "min (q \ i) (s \ i) < v \ i"
using i s by fastforce
with \<open>i \<in> Basis\<close> s u ux xv
show "\ \ box u v"
by (force simp: mem_box)
have "min (q \ i) (s \ i) < z \ i"
using i q by force
with \<open>i \<in> Basis\<close> q w wx xz
show "\ \ box w z"
by (force simp: mem_box)
qed
next
assume "\K\\. K \ {x. x \ i = b \ i} \ {}"
then have uva: "(cbox u v) \ {x. x \ i = b \ i} \ {}"
and wza: "(cbox w z) \ {x. x \ i = b \ i} \ {}"
using cboxes by (auto simp: content_eq_0_interior)
then obtain r t where "r \ i = b \ i" and r: "\k. k \ Basis \ w \ k \ r \ k \ r \ k \ z \ k"
and "t \ i = b \ i" and t: "\k. k \ Basis \ u \ k \ t \ k \ t \ k \ v \ k"
by (fastforce simp: mem_box)
have z: "s \ i < z \ i"
using K1(1) K1(3) \<open>r \<bullet> i = b \<bullet> i\<close> r [OF i] i s by (force simp: subset_box)
have v: "q \ i < v \ i"
using K2(1) K2(3) \<open>t \<bullet> i = b \<bullet> i\<close> t [OF i] i q by (force simp: subset_box)
define \<xi> where "\<xi> \<equiv> (\<Sum>j \<in> Basis. if j = i then max (q \<bullet> i) (s \<bullet> i) *\<^sub>R i else (x \<bullet> j) *\<^sub>R j)"
have [simp]: "\ \ j = (if j = i then max (q \ j) (s \ j) else x \ j)" if "j \ Basis" for j
unfolding \<xi>_def
by (intro sum_if_inner that \<open>i \<in> Basis\<close>)
show ?thesis
proof (intro exI conjI)
show "\ \ box u v"
using \<open>i \<in> Basis\<close> s by (force simp: mem_box ux v xv)
show "\ \ box w z"
using \<open>i \<in> Basis\<close> q by (force simp: mem_box wx xz z)
qed
qed
qed
ultimately show ?thesis by auto
qed
define interv_diff where "interv_diff \ \K. \i::'a. interval_upperbound K \ i - interval_lowerbound K \ i"
have "?lhs = (\K\\. (b \ i - a \ i) * content K / (interv_diff K i))"
by (simp add: sum_distrib_left interv_diff_def)
also have "\ = sum (content \ extend) \"
proof (rule sum.cong [OF refl])
fix K assume "K \ \"
then obtain u v where K: "K = cbox u v" "cbox u v \ {}" "K \ cbox a b"
using cbox_division_memE [OF _ div] div_subset_cbox by metis
then have uv: "u \ i < v \ i"
using mt [OF \<open>K \<in> \<D>\<close>] \<open>i \<in> Basis\<close> content_eq_0 by fastforce
have "insert i (Basis \ -{i}) = Basis"
using \<open>i \<in> Basis\<close> by auto
then have "(b \ i - a \ i) * content K / (interv_diff K i)
= (b \<bullet> i - a \<bullet> i) * (\<Prod>i \<in> insert i (Basis \<inter> -{i}). v \<bullet> i - u \<bullet> i) / (interv_diff (cbox u v) i)"
using K box_ne_empty(1) content_cbox by fastforce
also have "... = (\x\Basis. if x = i then b \ x - a \ x
else (interval_upperbound (cbox u v) - interval_lowerbound (cbox u v)) \<bullet> x)"
using \<open>i \<in> Basis\<close> K uv by (simp add: prod.If_cases interv_diff_def) (simp add: algebra_simps)
also have "... = (\k\Basis.
(\<Sum>j\<in>Basis. if j = i then (b \<bullet> i - a \<bullet> i) *\<^sub>R i
else ((interval_upperbound (cbox u v) - interval_lowerbound (cbox u v)) \<bullet> j) *\<^sub>R j) \<bullet> k)"
using \<open>i \<in> Basis\<close> by (subst prod.cong [OF refl sum_if_inner]; simp)
also have "... = (\k\Basis.
(\<Sum>j\<in>Basis. if j = i then (b \<bullet> i) *\<^sub>R i else (interval_upperbound (cbox u v) \<bullet> j) *\<^sub>R j) \<bullet> k -
(\<Sum>j\<in>Basis. if j = i then (a \<bullet> i) *\<^sub>R i else (interval_lowerbound (cbox u v) \<bullet> j) *\<^sub>R j) \<bullet> k)"
using \<open>i \<in> Basis\<close>
by (intro prod.cong [OF refl]) (subst sum_if_inner; simp add: algebra_simps)+
also have "... = (content \ extend) K"
using \<open>i \<in> Basis\<close> K box_ne_empty \<open>K \<in> \<D>\<close> extend(1)
by (auto simp add: extend_def content_cbox_if)
finally show "(b \ i - a \ i) * content K / (interv_diff K i) = (content \ extend) K" .
qed
also have "... = sum content (extend ` \)"
proof -
have "\K1 \ \; K2 \ \; K1 \ K2; extend K1 = extend K2\ \ content (extend K1) = 0" for K1 K2
using int_extend_disjoint [of K1 K2] extend_def by (simp add: content_eq_0_interior)
then show ?thesis
by (simp add: comm_monoid_add_class.sum.reindex_nontrivial [OF \<open>finite \<D>\<close>])
qed
also have "... \ ?rhs"
proof (rule subadditive_content_division)
show "extend ` \ division_of \ (extend ` \)"
using int_extend_disjoint by (auto simp: division_of_def \<open>finite \<D>\<close> extend extend_cbox)
show "\ (extend ` \) \ cbox a b"
using extend by fastforce
qed
finally show ?thesis .
qed
proposition sum_content_area_over_thin_division:
assumes div: "\ division_of S" and S: "S \ cbox a b" and i: "i \ Basis"
and "a \ i \ c" "c \ b \ i"
and nonmt: "\K. K \ \ \ K \ {x. x \ i = c} \ {}"
shows "(b \ i - a \ i) * (\K\\. content K / (interval_upperbound K \ i - interval_lowerbound K \ i))
\<le> 2 * content(cbox a b)"
proof (cases "content(cbox a b) = 0")
case True
have "(\K\\. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) = 0"
using S div by (force intro!: sum.neutral content_0_subset [OF True])
then show ?thesis
by (auto simp: True)
next
case False
then have "content(cbox a b) > 0"
using zero_less_measure_iff by blast
then have "a \ i < b \ i" if "i \ Basis" for i
using content_pos_lt_eq that by blast
have "finite \"
using div by blast
define Dlec where "Dlec \ {L \ (\L. L \ {x. x \ i \ c}) ` \. content L \ 0}"
define Dgec where "Dgec \ {L \ (\L. L \ {x. x \ i \ c}) ` \. content L \ 0}"
define a' where "a' \<equiv> (\<Sum>j\<in>Basis. (if j = i then c else a \<bullet> j) *\<^sub>R j)"
define b' where "b' \<equiv> (\<Sum>j\<in>Basis. (if j = i then c else b \<bullet> j) *\<^sub>R j)"
define interv_diff where "interv_diff \ \K. \i::'a. interval_upperbound K \ i - interval_lowerbound K \ i"
have Dlec_cbox: "\K. K \ Dlec \ \a b. K = cbox a b"
using interval_split [OF i] div by (fastforce simp: Dlec_def division_of_def)
then have lec_is_cbox: "\content (L \ {x. x \ i \ c}) \ 0; L \ \\ \ \a b. L \ {x. x \ i \ c} = cbox a b" for L
using Dlec_def by blast
have Dgec_cbox: "\K. K \ Dgec \ \a b. K = cbox a b"
using interval_split [OF i] div by (fastforce simp: Dgec_def division_of_def)
then have gec_is_cbox: "\content (L \ {x. x \ i \ c}) \ 0; L \ \\ \ \a b. L \ {x. x \ i \ c} = cbox a b" for L
using Dgec_def by blast
have zero_left: "\x y. \x \ \; y \ \; x \ y; x \ {x. x \ i \ c} = y \ {x. x \ i \ c}\
\<Longrightarrow> content (y \<inter> {x. x \<bullet> i \<le> c}) = 0"
by (metis division_split_left_inj [OF div] lec_is_cbox content_eq_0_interior)
have zero_right: "\x y. \x \ \; y \ \; x \ y; x \ {x. c \ x \ i} = y \ {x. c \ x \ i}\
\<Longrightarrow> content (y \<inter> {x. c \<le> x \<bullet> i}) = 0"
by (metis division_split_right_inj [OF div] gec_is_cbox content_eq_0_interior)
have "(b' \ i - a \ i) * (\K\Dlec. content K / interv_diff K i) \ content(cbox a b')"
unfolding interv_diff_def
proof (rule content_division_lemma1)
show "Dlec division_of \Dlec"
unfolding division_of_def
proof (intro conjI ballI Dlec_cbox)
show "\K1 K2. \K1 \ Dlec; K2 \ Dlec\ \ K1 \ K2 \ interior K1 \ interior K2 = {}"
by (clarsimp simp: Dlec_def) (use div in auto)
qed (use \<open>finite \<D>\<close> Dlec_def in auto)
show "\Dlec \ cbox a b'"
using Dlec_def div S by (auto simp: b'_def division_of_def mem_box)
show "(\K\Dlec. K \ {x. x \ i = a \ i} \ {}) \ (\K\Dlec. K \ {x. x \ i = b' \ i} \ {})"
using nonmt by (fastforce simp: Dlec_def b'_def i)
qed (use i Dlec_def in auto)
moreover
have "(\K\Dlec. content K / (interv_diff K i)) = (\K\(\K. K \ {x. x \ i \ c}) ` \. content K / interv_diff K i)"
unfolding Dlec_def using \<open>finite \<D>\<close> by (auto simp: sum.mono_neutral_left)
moreover have "... =
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interv_diff K i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K)"
by (simp add: zero_left sum.reindex_nontrivial [OF \<open>finite \<D>\<close>])
moreover have "(b' \ i - a \ i) = (c - a \ i)"
by (simp add: b'_def i)
ultimately
have lec: "(c - a \ i) * (\K\\. ((\K. content K / (interv_diff K i)) \ ((\K. K \ {x. x \ i \ c}))) K)
\<le> content(cbox a b')"
by simp
have "(b \ i - a' \ i) * (\K\Dgec. content K / (interv_diff K i)) \ content(cbox a' b)"
unfolding interv_diff_def
proof (rule content_division_lemma1)
show "Dgec division_of \Dgec"
unfolding division_of_def
proof (intro conjI ballI Dgec_cbox)
show "\K1 K2. \K1 \ Dgec; K2 \ Dgec\ \ K1 \ K2 \ interior K1 \ interior K2 = {}"
by (clarsimp simp: Dgec_def) (use div in auto)
qed (use \<open>finite \<D>\<close> Dgec_def in auto)
show "\Dgec \ cbox a' b"
using Dgec_def div S by (auto simp: a'_def division_of_def mem_box)
show "(\K\Dgec. K \ {x. x \ i = a' \ i} \ {}) \ (\K\Dgec. K \ {x. x \ i = b \ i} \ {})"
using nonmt by (fastforce simp: Dgec_def a'_def i)
qed (use i Dgec_def in auto)
moreover
have "(\K\Dgec. content K / (interv_diff K i)) = (\K\(\K. K \ {x. c \ x \ i}) ` \.
content K / interv_diff K i)"
unfolding Dgec_def using \<open>finite \<D>\<close> by (auto simp: sum.mono_neutral_left)
moreover have "\ =
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interv_diff K i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K)"
by (simp add: zero_right sum.reindex_nontrivial [OF \<open>finite \<D>\<close>])
moreover have "(b \ i - a' \ i) = (b \ i - c)"
by (simp add: a'_def i)
ultimately
have gec: "(b \ i - c) * (\K\\. ((\K. content K / (interv_diff K i)) \ ((\K. K \ {x. x \ i \ c}))) K)
\<le> content(cbox a' b)"
by simp
show ?thesis
proof (cases "c = a \ i \ c = b \ i")
case True
then show ?thesis
proof
assume c: "c = a \ i"
moreover
have "(\j\Basis. (if j = i then a \ i else a \ j) *\<^sub>R j) = a"
using euclidean_representation [of a] sum.cong [OF refl, of Basis "\i. (a \ i) *\<^sub>R i"] by presburger
ultimately have "a' = a"
by (simp add: i a'_def cong: if_cong)
then have "content (cbox a' b) \ 2 * content (cbox a b)" by simp
moreover
have eq: "(\K\\. content (K \ {x. a \ i \ x \ i}) / interv_diff (K \ {x. a \ i \ x \ i}) i)
= (\<Sum>K\<in>\<D>. content K / interv_diff K i)"
(is "sum ?f _ = sum ?g _")
proof (rule sum.cong [OF refl])
fix K assume "K \ \"
then have "a \ i \ x \ i" if "x \ K" for x
by (metis S UnionI div division_ofD(6) i mem_box(2) subsetCE that)
then have "K \ {x. a \ i \ x \ i} = K"
by blast
then show "?f K = ?g K"
by simp
qed
ultimately show ?thesis
using gec c eq interv_diff_def by auto
next
assume c: "c = b \ i"
moreover have "(\j\Basis. (if j = i then b \ i else b \ j) *\<^sub>R j) = b"
using euclidean_representation [of b] sum.cong [OF refl, of Basis "\i. (b \ i) *\<^sub>R i"] by presburger
ultimately have "b' = b"
by (simp add: i b'_def cong: if_cong)
then have "content (cbox a b') \ 2 * content (cbox a b)" by simp
moreover
have eq: "(\K\\. content (K \ {x. x \ i \ b \ i}) / interv_diff (K \ {x. x \ i \ b \ i}) i)
= (\<Sum>K\<in>\<D>. content K / interv_diff K i)"
(is "sum ?f _ = sum ?g _")
proof (rule sum.cong [OF refl])
fix K assume "K \ \"
then have "x \ i \ b \ i" if "x \ K" for x
by (metis S UnionI div division_ofD(6) i mem_box(2) subsetCE that)
then have "K \ {x. x \ i \ b \ i} = K"
by blast
then show "?f K = ?g K"
by simp
qed
ultimately show ?thesis
using lec c eq interv_diff_def by auto
qed
next
case False
have prod_if: "(\k\Basis \ - {i}. f k) = (\k\Basis. f k) / f i" if "f i \ (0::real)" for f
proof -
have "f i * prod f (Basis \ - {i}) = prod f Basis"
using that mk_disjoint_insert [OF i]
by (metis Int_insert_left_if0 finite_Basis finite_insert le_iff_inf order_refl prod.insert subset_Compl_singleton)
then show ?thesis
by (metis nonzero_mult_div_cancel_left that)
qed
have abc: "a \ i < c" "c < b \ i"
using False assms by auto
then have "(\K\\. ((\K. content K / (interv_diff K i)) \ ((\K. K \ {x. x \ i \ c}))) K)
\<le> content(cbox a b') / (c - a \<bullet> i)"
"(\K\\. ((\K. content K / (interv_diff K i)) \ ((\K. K \ {x. x \ i \ c}))) K)
\<le> content(cbox a' b) / (b \<bullet> i - c)"
using lec gec by (simp_all add: field_split_simps)
moreover
have "(\K\\. content K / (interv_diff K i))
\<le> (\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interv_diff K i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K) +
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interv_diff K i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K)"
(is "?lhs \ ?rhs")
proof -
have "?lhs \
(\<Sum>K\<in>\<D>. ((\<lambda>K. content K / (interv_diff K i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<le> c}))) K +
((\<lambda>K. content K / (interv_diff K i)) \<circ> ((\<lambda>K. K \<inter> {x. x \<bullet> i \<ge> c}))) K)"
(is "sum ?f _ \ sum ?g _")
proof (rule sum_mono)
fix K assume "K \ \"
then obtain u v where uv: "K = cbox u v"
using div by blast
obtain u' v' where uv': "cbox u v \ {x. x \ i \ c} = cbox u v'"
"cbox u v \ {x. c \ x \ i} = cbox u' v"
"\k. k \ Basis \ u' \ k = (if k = i then max (u \ i) c else u \ k)"
"\k. k \ Basis \ v' \ k = (if k = i then min (v \ i) c else v \ k)"
using i by (auto simp: interval_split)
have *: "\content (cbox u v') = 0; content (cbox u' v) = 0\ \ content (cbox u v) = 0"
"content (cbox u' v) \ 0 \ content (cbox u v) \ 0"
"content (cbox u v') \ 0 \ content (cbox u v) \ 0"
using i uv uv' by (auto simp: content_eq_0 le_max_iff_disj min_le_iff_disj split: if_split_asm intro: order_trans)
have uniq: "\j. \j \ Basis; \ u \ j \ v \ j\ \ j = i"
by (metis \<open>K \<in> \<D>\<close> box_ne_empty(1) div division_of_def uv)
show "?f K \ ?g K"
using i uv uv' by (auto simp add: interv_diff_def lemma0 dest: uniq * intro!: prod_nonneg)
qed
also have "... = ?rhs"
by (simp add: sum.distrib)
finally show ?thesis .
qed
moreover have "content (cbox a b') / (c - a \ i) = content (cbox a b) / (b \ i - a \ i)"
using i abc
apply (simp add: field_simps a'_def b'_def measure_lborel_cbox_eq inner_diff)
apply (auto simp: if_distrib if_distrib [of "\f. f x" for x] prod.If_cases [of Basis "\x. x = i", simplified] prod_if field_simps)
done
moreover have "content (cbox a' b) / (b \ i - c) = content (cbox a b) / (b \ i - a \ i)"
using i abc
apply (simp add: field_simps a'_def b'_def measure_lborel_cbox_eq inner_diff)
apply (auto simp: if_distrib prod.If_cases [of Basis "\x. x = i", simplified] prod_if field_simps)
done
ultimately
have "(\K\\. content K / (interv_diff K i)) \ 2 * content (cbox a b) / (b \ i - a \ i)"
by linarith
then show ?thesis
using abc interv_diff_def by (simp add: field_split_simps)
qed
qed
proposition bounded_equiintegral_over_thin_tagged_partial_division:
fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
assumes F: "F equiintegrable_on cbox a b" and f: "f \ F" and "0 < \"
and norm_f: "\h x. \h \ F; x \ cbox a b\ \ norm(h x) \ norm(f x)"
obtains \<gamma> where "gauge \<gamma>"
"\c i S h. \c \ cbox a b; i \ Basis; S tagged_partial_division_of cbox a b;
\<gamma> fine S; h \<in> F; \<And>x K. (x,K) \<in> S \<Longrightarrow> (K \<inter> {x. x \<bullet> i = c \<bullet> i} \<noteq> {})\<rbrakk>
\<Longrightarrow> (\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>"
proof (cases "content(cbox a b) = 0")
case True
show ?thesis
proof
show "gauge (\x. ball x 1)"
by (simp add: gauge_trivial)
show "(\(x,K) \ S. norm (integral K h)) < \"
if "S tagged_partial_division_of cbox a b" "(\x. ball x 1) fine S" for S and h:: "'a \ 'b"
proof -
have "(\(x,K) \ S. norm (integral K h)) = 0"
using that True content_0_subset
by (fastforce simp: tagged_partial_division_of_def intro: sum.neutral)
with \<open>0 < \<epsilon>\<close> show ?thesis
by simp
qed
qed
next
case False
then have contab_gt0: "content(cbox a b) > 0"
by (simp add: zero_less_measure_iff)
then have a_less_b: "\i. i \ Basis \ a\i < b\i"
by (auto simp: content_pos_lt_eq)
obtain \<gamma>0 where "gauge \<gamma>0"
and \<gamma>0: "\<And>S h. \<lbrakk>S tagged_partial_division_of cbox a b; \<gamma>0 fine S; h \<in> F\<rbrakk>
\<Longrightarrow> (\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) < \<epsilon>/2"
proof -
obtain \<gamma> where "gauge \<gamma>"
and \<gamma>: "\<And>f \<D>. \<lbrakk>f \<in> F; \<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - integral (cbox a b) f)
< \<epsilon>/(5 * (Suc DIM('b)))"
proof -
have e5: "\/(5 * (Suc DIM('b))) > 0"
using \<open>\<epsilon> > 0\<close> by auto
then show ?thesis
using F that by (auto simp: equiintegrable_on_def)
qed
show ?thesis
proof
show "gauge \"
by (rule \<open>gauge \<gamma>\<close>)
show "(\(x,K) \ S. norm (content K *\<^sub>R h x - integral K h)) < \/2"
if "S tagged_partial_division_of cbox a b" "\ fine S" "h \ F" for S h
proof -
have "(\(x,K) \ S. norm (content K *\<^sub>R h x - integral K h)) \ 2 * real DIM('b) * (\/(5 * Suc DIM('b)))"
proof (rule Henstock_lemma_part2 [of h a b])
show "h integrable_on cbox a b"
using that F equiintegrable_on_def by metis
show "gauge \"
by (rule \<open>gauge \<gamma>\<close>)
qed (use that \<open>\<epsilon> > 0\<close> \<gamma> in auto)
also have "... < \/2"
using \<open>\<epsilon> > 0\<close> by (simp add: divide_simps)
finally show ?thesis .
qed
qed
qed
define \<gamma> where "\<gamma> \<equiv> \<lambda>x. \<gamma>0 x \<inter>
ball x ((\<epsilon>/8 / (norm(f x) + 1)) * (INF m\<in>Basis. b \<bullet> m - a \<bullet> m) / content(cbox a b))"
define interv_diff where "interv_diff \ \K. \i::'a. interval_upperbound K \ i - interval_lowerbound K \ i"
have "8 * content (cbox a b) + norm (f x) * (8 * content (cbox a b)) > 0" for x
by (metis add.right_neutral add_pos_pos contab_gt0 mult_pos_pos mult_zero_left norm_eq_zero zero_less_norm_iff zero_less_numeral)
then have "gauge (\x. ball x
(\<epsilon> * (INF m\<in>Basis. b \<bullet> m - a \<bullet> m) / ((8 * norm (f x) + 8) * content (cbox a b))))"
using \<open>0 < content (cbox a b)\<close> \<open>0 < \<epsilon>\<close> a_less_b
by (auto simp add: gauge_def field_split_simps add_nonneg_eq_0_iff finite_less_Inf_iff)
then have "gauge \"
unfolding \<gamma>_def using \<open>gauge \<gamma>0\<close> gauge_Int by auto
moreover
have "(\(x,K) \ S. norm (integral K h)) < \"
if "c \ cbox a b" "i \ Basis" and S: "S tagged_partial_division_of cbox a b"
and "\ fine S" "h \ F" and ne: "\x K. (x,K) \ S \ K \ {x. x \ i = c \ i} \ {}" for c i S h
proof -
have "cbox c b \ cbox a b"
by (meson mem_box(2) order_refl subset_box(1) that(1))
have "finite S"
using S unfolding tagged_partial_division_of_def by blast
have "\0 fine S" and fineS:
"(\x. ball x (\ * (INF m\Basis. b \ m - a \ m) / ((8 * norm (f x) + 8) * content (cbox a b)))) fine S"
using \<open>\<gamma> fine S\<close> by (auto simp: \<gamma>_def fine_Int)
then have "(\(x,K) \ S. norm (content K *\<^sub>R h x - integral K h)) < \/2"
by (intro \<gamma>0 that fineS)
moreover have "(\(x,K) \ S. norm (integral K h) - norm (content K *\<^sub>R h x - integral K h)) \ \/2"
proof -
have "(\(x,K) \ S. norm (integral K h) - norm (content K *\<^sub>R h x - integral K h))
\<le> (\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x))"
proof (clarify intro!: sum_mono)
fix x K
assume xK: "(x,K) \ S"
have "norm (integral K h) - norm (content K *\<^sub>R h x - integral K h) \ norm (integral K h - (integral K h - content K *\<^sub>R h x))"
by (metis norm_minus_commute norm_triangle_ineq2)
also have "... \ norm (content K *\<^sub>R h x)"
by simp
finally show "norm (integral K h) - norm (content K *\<^sub>R h x - integral K h) \ norm (content K *\<^sub>R h x)" .
qed
also have "... \ (\(x,K) \ S. \/4 * (b \ i - a \ i) / content (cbox a b) * content K / interv_diff K i)"
proof (clarify intro!: sum_mono)
fix x K
assume xK: "(x,K) \ S"
then have x: "x \ cbox a b"
using S unfolding tagged_partial_division_of_def by (meson subset_iff)
show "norm (content K *\<^sub>R h x) \ \/4 * (b \ i - a \ i) / content (cbox a b) * content K / interv_diff K i"
proof (cases "content K = 0")
case True
then show ?thesis by simp
next
case False
then have Kgt0: "content K > 0"
using zero_less_measure_iff by blast
moreover
obtain u v where uv: "K = cbox u v"
using S \<open>(x,K) \<in> S\<close> unfolding tagged_partial_division_of_def by blast
then have u_less_v: "\i. i \ Basis \ u \ i < v \ i"
using content_pos_lt_eq uv Kgt0 by blast
then have dist_uv: "dist u v > 0"
using that by auto
ultimately have "norm (h x) \ (\ * (b \ i - a \ i)) / (4 * content (cbox a b) * interv_diff K i)"
proof -
have "dist x u < \ * (INF m\Basis. b \ m - a \ m) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2"
"dist x v < \ * (INF m\Basis. b \ m - a \ m) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2"
using fineS u_less_v uv xK
by (force simp: fine_def mem_box field_simps dest!: bspec)+
moreover have "\ * (INF m\Basis. b \ m - a \ m) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2
\<le> \<epsilon> * (b \<bullet> i - a \<bullet> i) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2"
proof (intro mult_left_mono divide_right_mono)
show "(INF m\Basis. b \ m - a \ m) \ b \ i - a \ i"
using \<open>i \<in> Basis\<close> by (auto intro!: cInf_le_finite)
qed (use \<open>0 < \<epsilon>\<close> in auto)
ultimately
have "dist x u < \ * (b \ i - a \ i) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2"
"dist x v < \ * (b \ i - a \ i) / (4 * (norm (f x) + 1) * content (cbox a b)) / 2"
by linarith+
then have duv: "dist u v < \ * (b \ i - a \ i) / (4 * (norm (f x) + 1) * content (cbox a b))"
using dist_triangle_half_r by blast
have uvi: "\v \ i - u \ i\ \ norm (v - u)"
by (metis inner_commute inner_diff_right \<open>i \<in> Basis\<close> Basis_le_norm)
have "norm (h x) \ norm (f x)"
using x that by (auto simp: norm_f)
also have "... < (norm (f x) + 1)"
by simp
also have "... < \ * (b \ i - a \ i) / dist u v / (4 * content (cbox a b))"
proof -
have "0 < norm (f x) + 1"
by (simp add: add.commute add_pos_nonneg)
then show ?thesis
using duv dist_uv contab_gt0
by (simp only: mult_ac divide_simps) auto
qed
also have "... = \ * (b \ i - a \ i) / norm (v - u) / (4 * content (cbox a b))"
by (simp add: dist_norm norm_minus_commute)
also have "... \ \ * (b \ i - a \ i) / \v \ i - u \ i\ / (4 * content (cbox a b))"
proof (intro mult_right_mono divide_left_mono divide_right_mono uvi)
show "norm (v - u) * \v \ i - u \ i\ > 0"
using u_less_v [OF \<open>i \<in> Basis\<close>]
by (auto simp: less_eq_real_def zero_less_mult_iff that)
show "\ * (b \ i - a \ i) \ 0"
using a_less_b \<open>0 < \<epsilon>\<close> \<open>i \<in> Basis\<close> by force
qed auto
also have "... = \ * (b \ i - a \ i) / (4 * content (cbox a b) * interv_diff K i)"
using uv False that(2) u_less_v interv_diff_def by fastforce
finally show ?thesis by simp
qed
with Kgt0 have "norm (content K *\<^sub>R h x) \ content K * ((\/4 * (b \ i - a \ i) / content (cbox a b)) / interv_diff K i)"
using mult_left_mono by fastforce
also have "... = \/4 * (b \ i - a \ i) / content (cbox a b) * content K / interv_diff K i"
by (simp add: field_split_simps)
finally show ?thesis .
qed
qed
also have "... = (\K\snd ` S. \/4 * (b \ i - a \ i) / content (cbox a b) * content K / interv_diff K i)"
unfolding interv_diff_def
apply (rule sum.over_tagged_division_lemma [OF tagged_partial_division_of_Union_self [OF S]])
apply (simp add: box_eq_empty(1) content_eq_0)
done
also have "... = \/2 * ((b \ i - a \ i) / (2 * content (cbox a b)) * (\K\snd ` S. content K / interv_diff K i))"
by (simp add: interv_diff_def sum_distrib_left mult.assoc)
also have "... \ (\/2) * 1"
proof (rule mult_left_mono)
have "(b \ i - a \ i) * (\K\snd ` S. content K / interv_diff K i) \ 2 * content (cbox a b)"
unfolding interv_diff_def
proof (rule sum_content_area_over_thin_division)
show "snd ` S division_of \(snd ` S)"
by (auto intro: S tagged_partial_division_of_Union_self division_of_tagged_division)
show "\(snd ` S) \ cbox a b"
using S unfolding tagged_partial_division_of_def by force
show "a \ i \ c \ i" "c \ i \ b \ i"
using mem_box(2) that by blast+
qed (use that in auto)
then show "(b \ i - a \ i) / (2 * content (cbox a b)) * (\K\snd ` S. content K / interv_diff K i) \ 1"
by (simp add: contab_gt0)
qed (use \<open>0 < \<epsilon>\<close> in auto)
finally show ?thesis by simp
qed
then have "(\(x,K) \ S. norm (integral K h)) - (\(x,K) \ S. norm (content K *\<^sub>R h x - integral K h)) \ \/2"
by (simp add: Groups_Big.sum_subtractf [symmetric])
ultimately show "(\(x,K) \ S. norm (integral K h)) < \"
by linarith
qed
ultimately show ?thesis using that by auto
qed
proposition equiintegrable_halfspace_restrictions_le:
fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
assumes F: "F equiintegrable_on cbox a b" and f: "f \ F"
and norm_f: "\h x. \h \ F; x \ cbox a b\ \ norm(h x) \ norm(f x)"
shows "(\i \ Basis. \c. \h \ F. {(\x. if x \ i \ c then h x else 0)})
equiintegrable_on cbox a b"
proof (cases "content(cbox a b) = 0")
case True
then show ?thesis by simp
next
case False
then have "content(cbox a b) > 0"
using zero_less_measure_iff by blast
then have "a \ i < b \ i" if "i \ Basis" for i
using content_pos_lt_eq that by blast
have int_F: "f integrable_on cbox a b" if "f \ F" for f
using F that by (simp add: equiintegrable_on_def)
let ?CI = "\K h x. content K *\<^sub>R h x - integral K h"
show ?thesis
unfolding equiintegrable_on_def
proof (intro conjI; clarify)
show int_lec: "\i \ Basis; h \ F\ \ (\x. if x \ i \ c then h x else 0) integrable_on cbox a b" for i c h
using integrable_restrict_Int [of "{x. x \ i \ c}" h]
by (simp add: inf_commute int_F integrable_split(1))
show "\\. gauge \ \
(\<forall>f T. f \<in> (\<Union>i\<in>Basis. \<Union>c. \<Union>h\<in>F. {\<lambda>x. if x \<bullet> i \<le> c then h x else 0}) \<and>
T tagged_division_of cbox a b \<and> \<gamma> fine T \<longrightarrow>
norm ((\<Sum>(x,K) \<in> T. content K *\<^sub>R f x) - integral (cbox a b) f) < \<epsilon>)"
if "\ > 0" for \
proof -
obtain \<gamma>0 where "gauge \<gamma>0" and \<gamma>0:
"\c i S h. \c \ cbox a b; i \ Basis; S tagged_partial_division_of cbox a b;
\<gamma>0 fine S; h \<in> F; \<And>x K. (x,K) \<in> S \<Longrightarrow> (K \<inter> {x. x \<bullet> i = c \<bullet> i} \<noteq> {})\<rbrakk>
\<Longrightarrow> (\<Sum>(x,K) \<in> S. norm (integral K h)) < \<epsilon>/12"
proof (rule bounded_equiintegral_over_thin_tagged_partial_division [OF F f, of \<open>\<epsilon>/12\<close>])
show "\h x. \h \ F; x \ cbox a b\ \ norm (h x) \ norm (f x)"
by (auto simp: norm_f)
qed (use \<open>\<epsilon> > 0\<close> in auto)
obtain \<gamma>1 where "gauge \<gamma>1"
and \<gamma>1: "\<And>h T. \<lbrakk>h \<in> F; T tagged_division_of cbox a b; \<gamma>1 fine T\<rbrakk>
\<Longrightarrow> norm ((\<Sum>(x,K) \<in> T. content K *\<^sub>R h x) - integral (cbox a b) h)
< \<epsilon>/(7 * (Suc DIM('b)))"
proof -
have e5: "\/(7 * (Suc DIM('b))) > 0"
using \<open>\<epsilon> > 0\<close> by auto
then show ?thesis
using F that by (auto simp: equiintegrable_on_def)
qed
have h_less3: "(\(x,K) \ T. norm (?CI K h x)) < \/3"
if "T tagged_partial_division_of cbox a b" "\1 fine T" "h \ F" for T h
proof -
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.43 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|