(* Title: HOL/Analysis/Sigma_Algebra.thy
Author: Stefan Richter, Markus Wenzel, TU München
Author: Johannes Hölzl, TU München
Plus material from the Hurd/Coble measure theory development,
translated by Lawrence Paulson.
*)
chapter \<open>Measure and Integration Theory\<close>
theory Sigma_Algebra
imports
Complex_Main
"HOL-Library.Countable_Set"
"HOL-Library.FuncSet"
"HOL-Library.Indicator_Function"
"HOL-Library.Extended_Nonnegative_Real"
"HOL-Library.Disjoint_Sets"
begin
section \<open>Sigma Algebra\<close>
text \<open>Sigma algebras are an elementary concept in measure
theory. To measure --- that is to integrate --- functions, we first have
to measure sets. Unfortunately, when dealing with a large universe,
it is often not possible to consistently assign a measure to every
subset. Therefore it is necessary to define the set of measurable
subsets of the universe. A sigma algebra is such a set that has
three very natural and desirable properties.\<close>
subsection \<open>Families of sets\<close>
locale\<^marker>\<open>tag important\<close> subset_class =
fixes \<Omega> :: "'a set" and M :: "'a set set"
assumes space_closed: "M \ Pow \"
lemma (in subset_class) sets_into_space: "x \ M \ x \ \"
by (metis PowD contra_subsetD space_closed)
subsubsection \<open>Semiring of sets\<close>
locale\<^marker>\<open>tag important\<close> semiring_of_sets = subset_class +
assumes empty_sets[iff]: "{} \ M"
assumes Int[intro]: "\a b. a \ M \ b \ M \ a \ b \ M"
assumes Diff_cover:
"\a b. a \ M \ b \ M \ \C\M. finite C \ disjoint C \ a - b = \C"
lemma (in semiring_of_sets) finite_INT[intro]:
assumes "finite I" "I \ {}" "\i. i \ I \ A i \ M"
shows "(\i\I. A i) \ M"
using assms by (induct rule: finite_ne_induct) auto
lemma (in semiring_of_sets) Int_space_eq1 [simp]: "x \ M \ \ \ x = x"
by (metis Int_absorb1 sets_into_space)
lemma (in semiring_of_sets) Int_space_eq2 [simp]: "x \ M \ x \ \ = x"
by (metis Int_absorb2 sets_into_space)
lemma (in semiring_of_sets) sets_Collect_conj:
assumes "{x\\. P x} \ M" "{x\\. Q x} \ M"
shows "{x\\. Q x \ P x} \ M"
proof -
have "{x\\. Q x \ P x} = {x\\. Q x} \ {x\\. P x}"
by auto
with assms show ?thesis by auto
qed
lemma (in semiring_of_sets) sets_Collect_finite_All':
assumes "\i. i \ S \ {x\\. P i x} \ M" "finite S" "S \ {}"
shows "{x\\. \i\S. P i x} \ M"
proof -
have "{x\\. \i\S. P i x} = (\i\S. {x\\. P i x})"
using \<open>S \<noteq> {}\<close> by auto
with assms show ?thesis by auto
qed
subsubsection \<open>Ring of sets\<close>
locale\<^marker>\<open>tag important\<close> ring_of_sets = semiring_of_sets +
assumes Un [intro]: "\a b. a \ M \ b \ M \ a \ b \ M"
lemma (in ring_of_sets) finite_Union [intro]:
"finite X \ X \ M \ \X \ M"
by (induct set: finite) (auto simp add: Un)
lemma (in ring_of_sets) finite_UN[intro]:
assumes "finite I" and "\i. i \ I \ A i \ M"
shows "(\i\I. A i) \ M"
using assms by induct auto
lemma (in ring_of_sets) Diff [intro]:
assumes "a \ M" "b \ M" shows "a - b \ M"
using Diff_cover[OF assms] by auto
lemma ring_of_setsI:
assumes space_closed: "M \ Pow \"
assumes empty_sets[iff]: "{} \ M"
assumes Un[intro]: "\a b. a \ M \ b \ M \ a \ b \ M"
assumes Diff[intro]: "\a b. a \ M \ b \ M \ a - b \ M"
shows "ring_of_sets \ M"
proof
fix a b assume ab: "a \ M" "b \ M"
from ab show "\C\M. finite C \ disjoint C \ a - b = \C"
by (intro exI[of _ "{a - b}"]) (auto simp: disjoint_def)
have "a \ b = a - (a - b)" by auto
also have "\ \ M" using ab by auto
finally show "a \ b \ M" .
qed fact+
lemma ring_of_sets_iff: "ring_of_sets \ M \ M \ Pow \ \ {} \ M \ (\a\M. \b\M. a \ b \ M) \ (\a\M. \b\M. a - b \ M)"
proof
assume "ring_of_sets \ M"
then interpret ring_of_sets \<Omega> M .
show "M \ Pow \ \ {} \ M \ (\a\M. \b\M. a \ b \ M) \ (\a\M. \b\M. a - b \ M)"
using space_closed by auto
qed (auto intro!: ring_of_setsI)
lemma (in ring_of_sets) insert_in_sets:
assumes "{x} \ M" "A \ M" shows "insert x A \ M"
proof -
have "{x} \ A \ M" using assms by (rule Un)
thus ?thesis by auto
qed
lemma (in ring_of_sets) sets_Collect_disj:
assumes "{x\\. P x} \ M" "{x\\. Q x} \ M"
shows "{x\\. Q x \ P x} \ M"
proof -
have "{x\\. Q x \ P x} = {x\\. Q x} \ {x\\. P x}"
by auto
with assms show ?thesis by auto
qed
lemma (in ring_of_sets) sets_Collect_finite_Ex:
assumes "\i. i \ S \ {x\\. P i x} \ M" "finite S"
shows "{x\\. \i\S. P i x} \ M"
proof -
have "{x\\. \i\S. P i x} = (\i\S. {x\\. P i x})"
by auto
with assms show ?thesis by auto
qed
subsubsection \<open>Algebra of sets\<close>
locale\<^marker>\<open>tag important\<close> algebra = ring_of_sets +
assumes top [iff]: "\ \ M"
lemma (in algebra) compl_sets [intro]:
"a \ M \ \ - a \ M"
by auto
proposition algebra_iff_Un:
"algebra \ M \
M \<subseteq> Pow \<Omega> \<and>
{} \<in> M \<and>
(\<forall>a \<in> M. \<Omega> - a \<in> M) \<and>
(\<forall>a \<in> M. \<forall> b \<in> M. a \<union> b \<in> M)" (is "_ \<longleftrightarrow> ?Un")
proof
assume "algebra \ M"
then interpret algebra \<Omega> M .
show ?Un using sets_into_space by auto
next
assume ?Un
then have "\ \ M" by auto
interpret ring_of_sets \<Omega> M
proof (rule ring_of_setsI)
show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
using \<open>?Un\<close> by auto
fix a b assume a: "a \ M" and b: "b \ M"
then show "a \ b \ M" using \?Un\ by auto
have "a - b = \ - ((\ - a) \ b)"
using \<Omega> a b by auto
then show "a - b \ M"
using a b \<open>?Un\<close> by auto
qed
show "algebra \ M" proof qed fact
qed
proposition algebra_iff_Int:
"algebra \ M \
M \<subseteq> Pow \<Omega> & {} \<in> M &
(\<forall>a \<in> M. \<Omega> - a \<in> M) &
(\<forall>a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)" (is "_ \<longleftrightarrow> ?Int")
proof
assume "algebra \ M"
then interpret algebra \<Omega> M .
show ?Int using sets_into_space by auto
next
assume ?Int
show "algebra \ M"
proof (unfold algebra_iff_Un, intro conjI ballI)
show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
using \<open>?Int\<close> by auto
from \<open>?Int\<close> show "\<And>a. a \<in> M \<Longrightarrow> \<Omega> - a \<in> M" by auto
fix a b assume M: "a \ M" "b \ M"
hence "a \ b = \ - ((\ - a) \ (\ - b))"
using \<Omega> by blast
also have "... \ M"
using M \<open>?Int\<close> by auto
finally show "a \ b \ M" .
qed
qed
lemma (in algebra) sets_Collect_neg:
assumes "{x\\. P x} \ M"
shows "{x\\. \ P x} \ M"
proof -
have "{x\\. \ P x} = \ - {x\\. P x}" by auto
with assms show ?thesis by auto
qed
lemma (in algebra) sets_Collect_imp:
"{x\\. P x} \ M \ {x\\. Q x} \ M \ {x\\. Q x \ P x} \ M"
unfolding imp_conv_disj by (intro sets_Collect_disj sets_Collect_neg)
lemma (in algebra) sets_Collect_const:
"{x\\. P} \ M"
by (cases P) auto
lemma algebra_single_set:
"X \ S \ algebra S { {}, X, S - X, S }"
by (auto simp: algebra_iff_Int)
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Restricted algebras\<close>
abbreviation (in algebra)
"restricted_space A \ ((\) A) ` M"
lemma (in algebra) restricted_algebra:
assumes "A \ M" shows "algebra A (restricted_space A)"
using assms by (auto simp: algebra_iff_Int)
subsubsection \<open>Sigma Algebras\<close>
locale\<^marker>\<open>tag important\<close> sigma_algebra = algebra +
assumes countable_nat_UN [intro]: "\A. range A \ M \ (\i::nat. A i) \ M"
lemma (in algebra) is_sigma_algebra:
assumes "finite M"
shows "sigma_algebra \ M"
proof
fix A :: "nat \ 'a set" assume "range A \ M"
then have "(\i. A i) = (\s\M \ range A. s)"
by auto
also have "(\s\M \ range A. s) \ M"
using \<open>finite M\<close> by auto
finally show "(\i. A i) \ M" .
qed
lemma countable_UN_eq:
fixes A :: "'i::countable \ 'a set"
shows "(range A \ M \ (\i. A i) \ M) \
(range (A \<circ> from_nat) \<subseteq> M \<longrightarrow> (\<Union>i. (A \<circ> from_nat) i) \<in> M)"
proof -
let ?A' = "A \ from_nat"
have *: "(\i. ?A' i) = (\i. A i)" (is "?l = ?r")
proof safe
fix x i assume "x \ A i" thus "x \ ?l"
by (auto intro!: exI[of _ "to_nat i"])
next
fix x i assume "x \ ?A' i" thus "x \ ?r"
by (auto intro!: exI[of _ "from_nat i"])
qed
have "A ` range from_nat = range A"
using surj_from_nat by simp
then have **: "range ?A' = range A"
by (simp only: image_comp [symmetric])
show ?thesis unfolding * ** ..
qed
lemma (in sigma_algebra) countable_Union [intro]:
assumes "countable X" "X \ M" shows "\X \ M"
proof cases
assume "X \ {}"
hence "\X = (\n. from_nat_into X n)"
using assms by (auto cong del: SUP_cong)
also have "\ \ M" using assms
by (auto intro!: countable_nat_UN) (metis \<open>X \<noteq> {}\<close> from_nat_into subsetD)
finally show ?thesis .
qed simp
lemma (in sigma_algebra) countable_UN[intro]:
fixes A :: "'i::countable \ 'a set"
assumes "A`X \ M"
shows "(\x\X. A x) \ M"
proof -
let ?A = "\i. if i \ X then A i else {}"
from assms have "range ?A \ M" by auto
with countable_nat_UN[of "?A \ from_nat"] countable_UN_eq[of ?A M]
have "(\x. ?A x) \ M" by auto
moreover have "(\x. ?A x) = (\x\X. A x)" by (auto split: if_split_asm)
ultimately show ?thesis by simp
qed
lemma (in sigma_algebra) countable_UN':
fixes A :: "'i \ 'a set"
assumes X: "countable X"
assumes A: "A`X \ M"
shows "(\x\X. A x) \ M"
proof -
have "(\x\X. A x) = (\i\to_nat_on X ` X. A (from_nat_into X i))"
using X by auto
also have "\ \ M"
using A X
by (intro countable_UN) auto
finally show ?thesis .
qed
lemma (in sigma_algebra) countable_UN'':
"\ countable X; \x y. x \ X \ A x \ M \ \ (\x\X. A x) \ M"
by(erule countable_UN')(auto)
lemma (in sigma_algebra) countable_INT [intro]:
fixes A :: "'i::countable \ 'a set"
assumes A: "A`X \ M" "X \ {}"
shows "(\i\X. A i) \ M"
proof -
from A have "\i\X. A i \ M" by fast
hence "\ - (\i\X. \ - A i) \ M" by blast
moreover
have "(\i\X. A i) = \ - (\i\X. \ - A i)" using space_closed A
by blast
ultimately show ?thesis by metis
qed
lemma (in sigma_algebra) countable_INT':
fixes A :: "'i \ 'a set"
assumes X: "countable X" "X \ {}"
assumes A: "A`X \ M"
shows "(\x\X. A x) \ M"
proof -
have "(\x\X. A x) = (\i\to_nat_on X ` X. A (from_nat_into X i))"
using X by auto
also have "\ \ M"
using A X
by (intro countable_INT) auto
finally show ?thesis .
qed
lemma (in sigma_algebra) countable_INT'':
"UNIV \ M \ countable I \ (\i. i \ I \ F i \ M) \ (\i\I. F i) \ M"
by (cases "I = {}") (auto intro: countable_INT')
lemma (in sigma_algebra) countable:
assumes "\a. a \ A \ {a} \ M" "countable A"
shows "A \ M"
proof -
have "(\a\A. {a}) \ M"
using assms by (intro countable_UN') auto
also have "(\a\A. {a}) = A" by auto
finally show ?thesis by auto
qed
lemma ring_of_sets_Pow: "ring_of_sets sp (Pow sp)"
by (auto simp: ring_of_sets_iff)
lemma algebra_Pow: "algebra sp (Pow sp)"
by (auto simp: algebra_iff_Un)
lemma sigma_algebra_iff:
"sigma_algebra \ M \
algebra \<Omega> M \<and> (\<forall>A. range A \<subseteq> M \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
by (simp add: sigma_algebra_def sigma_algebra_axioms_def)
lemma sigma_algebra_Pow: "sigma_algebra sp (Pow sp)"
by (auto simp: sigma_algebra_iff algebra_iff_Int)
lemma (in sigma_algebra) sets_Collect_countable_All:
assumes "\i. {x\\. P i x} \ M"
shows "{x\\. \i::'i::countable. P i x} \ M"
proof -
have "{x\\. \i::'i::countable. P i x} = (\i. {x\\. P i x})" by auto
with assms show ?thesis by auto
qed
lemma (in sigma_algebra) sets_Collect_countable_Ex:
assumes "\i. {x\\. P i x} \ M"
shows "{x\\. \i::'i::countable. P i x} \ M"
proof -
have "{x\\. \i::'i::countable. P i x} = (\i. {x\\. P i x})" by auto
with assms show ?thesis by auto
qed
lemma (in sigma_algebra) sets_Collect_countable_Ex':
assumes "\i. i \ I \ {x\\. P i x} \ M"
assumes "countable I"
shows "{x\\. \i\I. P i x} \ M"
proof -
have "{x\\. \i\I. P i x} = (\i\I. {x\\. P i x})" by auto
with assms show ?thesis
by (auto intro!: countable_UN')
qed
lemma (in sigma_algebra) sets_Collect_countable_All':
assumes "\i. i \ I \ {x\\. P i x} \ M"
assumes "countable I"
shows "{x\\. \i\I. P i x} \ M"
proof -
have "{x\\. \i\I. P i x} = (\i\I. {x\\. P i x}) \ \" by auto
with assms show ?thesis
by (cases "I = {}") (auto intro!: countable_INT')
qed
lemma (in sigma_algebra) sets_Collect_countable_Ex1':
assumes "\i. i \ I \ {x\\. P i x} \ M"
assumes "countable I"
shows "{x\\. \!i\I. P i x} \ M"
proof -
have "{x\\. \!i\I. P i x} = {x\\. \i\I. P i x \ (\j\I. P j x \ i = j)}"
by auto
with assms show ?thesis
by (auto intro!: sets_Collect_countable_All' sets_Collect_countable_Ex' sets_Collect_conj sets_Collect_imp sets_Collect_const)
qed
lemmas (in sigma_algebra) sets_Collect =
sets_Collect_imp sets_Collect_disj sets_Collect_conj sets_Collect_neg sets_Collect_const
sets_Collect_countable_All sets_Collect_countable_Ex sets_Collect_countable_All
lemma (in sigma_algebra) sets_Collect_countable_Ball:
assumes "\i. {x\\. P i x} \ M"
shows "{x\\. \i::'i::countable\X. P i x} \ M"
unfolding Ball_def by (intro sets_Collect assms)
lemma (in sigma_algebra) sets_Collect_countable_Bex:
assumes "\i. {x\\. P i x} \ M"
shows "{x\\. \i::'i::countable\X. P i x} \ M"
unfolding Bex_def by (intro sets_Collect assms)
lemma sigma_algebra_single_set:
assumes "X \ S"
shows "sigma_algebra S { {}, X, S - X, S }"
using algebra.is_sigma_algebra[OF algebra_single_set[OF \<open>X \<subseteq> S\<close>]] by simp
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Binary Unions\<close>
definition binary :: "'a \ 'a \ nat \ 'a"
where "binary a b = (\x. b)(0 := a)"
lemma range_binary_eq: "range(binary a b) = {a,b}"
by (auto simp add: binary_def)
lemma Un_range_binary: "a \ b = (\i::nat. binary a b i)"
by (simp add: range_binary_eq cong del: SUP_cong_simp)
lemma Int_range_binary: "a \ b = (\i::nat. binary a b i)"
by (simp add: range_binary_eq cong del: INF_cong_simp)
lemma sigma_algebra_iff2:
"sigma_algebra \ M \
M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>s \<in> M. \<Omega> - s \<in> M)
\<and> (\<forall>A. range A \<subseteq> M \<longrightarrow>(\<Union> i::nat. A i) \<in> M)" (is "?P \<longleftrightarrow> ?R \<and> ?S \<and> ?V \<and> ?W")
proof
assume ?P
then interpret sigma_algebra \<Omega> M .
from space_closed show "?R \ ?S \ ?V \ ?W"
by auto
next
assume "?R \ ?S \ ?V \ ?W"
then have ?R ?S ?V ?W
by simp_all
show ?P
proof (rule sigma_algebra.intro)
show "sigma_algebra_axioms M"
by standard (use \<open>?W\<close> in simp)
from \<open>?W\<close> have *: "range (binary a b) \<subseteq> M \<Longrightarrow> \<Union> (range (binary a b)) \<in> M" for a b
by auto
show "algebra \ M"
unfolding algebra_iff_Un using \<open>?R\<close> \<open>?S\<close> \<open>?V\<close> *
by (auto simp add: range_binary_eq)
qed
qed
subsubsection \<open>Initial Sigma Algebra\<close>
text\<^marker>\<open>tag important\<close> \<open>Sigma algebras can naturally be created as the closure of any set of
M with regard to the properties just postulated.\<close>
inductive_set\<^marker>\<open>tag important\<close> sigma_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set"
for sp :: "'a set" and A :: "'a set set"
where
Basic[intro, simp]: "a \ A \ a \ sigma_sets sp A"
| Empty: "{} \ sigma_sets sp A"
| Compl: "a \ sigma_sets sp A \ sp - a \ sigma_sets sp A"
| Union: "(\i::nat. a i \ sigma_sets sp A) \ (\i. a i) \ sigma_sets sp A"
lemma (in sigma_algebra) sigma_sets_subset:
assumes a: "a \ M"
shows "sigma_sets \ a \ M"
proof
fix x
assume "x \ sigma_sets \ a"
from this show "x \ M"
by (induct rule: sigma_sets.induct, auto) (metis a subsetD)
qed
lemma sigma_sets_into_sp: "A \ Pow sp \ x \ sigma_sets sp A \ x \ sp"
by (erule sigma_sets.induct, auto)
lemma sigma_algebra_sigma_sets:
"a \ Pow \ \ sigma_algebra \ (sigma_sets \ a)"
by (auto simp add: sigma_algebra_iff2 dest: sigma_sets_into_sp
intro!: sigma_sets.Union sigma_sets.Empty sigma_sets.Compl)
lemma sigma_sets_least_sigma_algebra:
assumes "A \ Pow S"
shows "sigma_sets S A = \{B. A \ B \ sigma_algebra S B}"
proof safe
fix B X assume "A \ B" and sa: "sigma_algebra S B"
and X: "X \ sigma_sets S A"
from sigma_algebra.sigma_sets_subset[OF sa, simplified, OF \<open>A \<subseteq> B\<close>] X
show "X \ B" by auto
next
fix X assume "X \ \{B. A \ B \ sigma_algebra S B}"
then have [intro!]: "\B. A \ B \ sigma_algebra S B \ X \ B"
by simp
have "A \ sigma_sets S A" using assms by auto
moreover have "sigma_algebra S (sigma_sets S A)"
using assms by (intro sigma_algebra_sigma_sets[of A]) auto
ultimately show "X \ sigma_sets S A" by auto
qed
lemma sigma_sets_top: "sp \ sigma_sets sp A"
by (metis Diff_empty sigma_sets.Compl sigma_sets.Empty)
lemma binary_in_sigma_sets:
"binary a b i \ sigma_sets sp A" if "a \ sigma_sets sp A" and "b \ sigma_sets sp A"
using that by (simp add: binary_def)
lemma sigma_sets_Un:
"a \ b \ sigma_sets sp A" if "a \ sigma_sets sp A" and "b \ sigma_sets sp A"
using that by (simp add: Un_range_binary binary_in_sigma_sets Union)
lemma sigma_sets_Inter:
assumes Asb: "A \ Pow sp"
shows "(\i::nat. a i \ sigma_sets sp A) \ (\i. a i) \ sigma_sets sp A"
proof -
assume ai: "\i::nat. a i \ sigma_sets sp A"
hence "\i::nat. sp-(a i) \ sigma_sets sp A"
by (rule sigma_sets.Compl)
hence "(\i. sp-(a i)) \ sigma_sets sp A"
by (rule sigma_sets.Union)
hence "sp-(\i. sp-(a i)) \ sigma_sets sp A"
by (rule sigma_sets.Compl)
also have "sp-(\i. sp-(a i)) = sp Int (\i. a i)"
by auto
also have "... = (\i. a i)" using ai
by (blast dest: sigma_sets_into_sp [OF Asb])
finally show ?thesis .
qed
lemma sigma_sets_INTER:
assumes Asb: "A \ Pow sp"
and ai: "\i::nat. i \ S \ a i \ sigma_sets sp A" and non: "S \ {}"
shows "(\i\S. a i) \ sigma_sets sp A"
proof -
from ai have "\i. (if i\S then a i else sp) \ sigma_sets sp A"
by (simp add: sigma_sets.intros(2-) sigma_sets_top)
hence "(\i. (if i\S then a i else sp)) \ sigma_sets sp A"
by (rule sigma_sets_Inter [OF Asb])
also have "(\i. (if i\S then a i else sp)) = (\i\S. a i)"
by auto (metis ai non sigma_sets_into_sp subset_empty subset_iff Asb)+
finally show ?thesis .
qed
lemma sigma_sets_UNION:
"countable B \ (\b. b \ B \ b \ sigma_sets X A) \ \ B \ sigma_sets X A"
using from_nat_into [of B] range_from_nat_into [of B] sigma_sets.Union [of "from_nat_into B" X A]
by (cases "B = {}") (simp_all add: sigma_sets.Empty cong del: SUP_cong)
lemma (in sigma_algebra) sigma_sets_eq:
"sigma_sets \ M = M"
proof
show "M \ sigma_sets \ M"
by (metis Set.subsetI sigma_sets.Basic)
next
show "sigma_sets \ M \ M"
by (metis sigma_sets_subset subset_refl)
qed
lemma sigma_sets_eqI:
assumes A: "\a. a \ A \ a \ sigma_sets M B"
assumes B: "\b. b \ B \ b \ sigma_sets M A"
shows "sigma_sets M A = sigma_sets M B"
proof (intro set_eqI iffI)
fix a assume "a \ sigma_sets M A"
from this A show "a \ sigma_sets M B"
by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
next
fix b assume "b \ sigma_sets M B"
from this B show "b \ sigma_sets M A"
by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
qed
lemma sigma_sets_subseteq: assumes "A \ B" shows "sigma_sets X A \ sigma_sets X B"
proof
fix x assume "x \ sigma_sets X A" then show "x \ sigma_sets X B"
by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-))
qed
lemma sigma_sets_mono: assumes "A \ sigma_sets X B" shows "sigma_sets X A \ sigma_sets X B"
proof
fix x assume "x \ sigma_sets X A" then show "x \ sigma_sets X B"
by induct (insert \<open>A \<subseteq> sigma_sets X B\<close>, auto intro: sigma_sets.intros(2-))
qed
lemma sigma_sets_mono': assumes "A \ B" shows "sigma_sets X A \ sigma_sets X B"
proof
fix x assume "x \ sigma_sets X A" then show "x \ sigma_sets X B"
by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-))
qed
lemma sigma_sets_superset_generator: "A \ sigma_sets X A"
by (auto intro: sigma_sets.Basic)
lemma (in sigma_algebra) restriction_in_sets:
fixes A :: "nat \ 'a set"
assumes "S \ M"
and *: "range A \ (\A. S \ A) ` M" (is "_ \ ?r")
shows "range A \ M" "(\i. A i) \ (\A. S \ A) ` M"
proof -
{ fix i have "A i \ ?r" using * by auto
hence "\B. A i = B \ S \ B \ M" by auto
hence "A i \ S" "A i \ M" using \S \ M\ by auto }
thus "range A \ M" "(\i. A i) \ (\A. S \ A) ` M"
by (auto intro!: image_eqI[of _ _ "(\i. A i)"])
qed
lemma (in sigma_algebra) restricted_sigma_algebra:
assumes "S \ M"
shows "sigma_algebra S (restricted_space S)"
unfolding sigma_algebra_def sigma_algebra_axioms_def
proof safe
show "algebra S (restricted_space S)" using restricted_algebra[OF assms] .
next
fix A :: "nat \ 'a set" assume "range A \ restricted_space S"
from restriction_in_sets[OF assms this[simplified]]
show "(\i. A i) \ restricted_space S" by simp
qed
lemma sigma_sets_Int:
assumes "A \ sigma_sets sp st" "A \ sp"
shows "(\) A ` sigma_sets sp st = sigma_sets A ((\) A ` st)"
proof (intro equalityI subsetI)
fix x assume "x \ (\) A ` sigma_sets sp st"
then obtain y where "y \ sigma_sets sp st" "x = y \ A" by auto
then have "x \ sigma_sets (A \ sp) ((\) A ` st)"
proof (induct arbitrary: x)
case (Compl a)
then show ?case
by (force intro!: sigma_sets.Compl simp: Diff_Int_distrib ac_simps)
next
case (Union a)
then show ?case
by (auto intro!: sigma_sets.Union
simp add: UN_extend_simps simp del: UN_simps)
qed (auto intro!: sigma_sets.intros(2-))
then show "x \ sigma_sets A ((\) A ` st)"
using \<open>A \<subseteq> sp\<close> by (simp add: Int_absorb2)
next
fix x assume "x \ sigma_sets A ((\) A ` st)"
then show "x \ (\) A ` sigma_sets sp st"
proof induct
case (Compl a)
then obtain x where "a = A \ x" "x \ sigma_sets sp st" by auto
then show ?case using \<open>A \<subseteq> sp\<close>
by (force simp add: image_iff intro!: bexI[of _ "sp - x"] sigma_sets.Compl)
next
case (Union a)
then have "\i. \x. x \ sigma_sets sp st \ a i = A \ x"
by (auto simp: image_iff Bex_def)
from choice[OF this] guess f ..
then show ?case
by (auto intro!: bexI[of _ "(\x. f x)"] sigma_sets.Union
simp add: image_iff)
qed (auto intro!: sigma_sets.intros(2-))
qed
lemma sigma_sets_empty_eq: "sigma_sets A {} = {{}, A}"
proof (intro set_eqI iffI)
fix a assume "a \ sigma_sets A {}" then show "a \ {{}, A}"
by induct blast+
qed (auto intro: sigma_sets.Empty sigma_sets_top)
lemma sigma_sets_single[simp]: "sigma_sets A {A} = {{}, A}"
proof (intro set_eqI iffI)
fix x assume "x \ sigma_sets A {A}"
then show "x \ {{}, A}"
by induct blast+
next
fix x assume "x \ {{}, A}"
then show "x \ sigma_sets A {A}"
by (auto intro: sigma_sets.Empty sigma_sets_top)
qed
lemma sigma_sets_sigma_sets_eq:
"M \ Pow S \ sigma_sets S (sigma_sets S M) = sigma_sets S M"
by (rule sigma_algebra.sigma_sets_eq[OF sigma_algebra_sigma_sets, of M S]) auto
lemma sigma_sets_singleton:
assumes "X \ S"
shows "sigma_sets S { X } = { {}, X, S - X, S }"
proof -
interpret sigma_algebra S "{ {}, X, S - X, S }"
by (rule sigma_algebra_single_set) fact
have "sigma_sets S { X } \ sigma_sets S { {}, X, S - X, S }"
by (rule sigma_sets_subseteq) simp
moreover have "\ = { {}, X, S - X, S }"
using sigma_sets_eq by simp
moreover
{ fix A assume "A \ { {}, X, S - X, S }"
then have "A \ sigma_sets S { X }"
by (auto intro: sigma_sets.intros(2-) sigma_sets_top) }
ultimately have "sigma_sets S { X } = sigma_sets S { {}, X, S - X, S }"
by (intro antisym) auto
with sigma_sets_eq show ?thesis by simp
qed
lemma restricted_sigma:
assumes S: "S \ sigma_sets \ M" and M: "M \ Pow \"
shows "algebra.restricted_space (sigma_sets \ M) S =
sigma_sets S (algebra.restricted_space M S)"
proof -
from S sigma_sets_into_sp[OF M]
have "S \ sigma_sets \ M" "S \ \" by auto
from sigma_sets_Int[OF this]
show ?thesis by simp
qed
lemma sigma_sets_vimage_commute:
assumes X: "X \ \ \ \'"
shows "{X -` A \ \ |A. A \ sigma_sets \' M'}
= sigma_sets \<Omega> {X -` A \<inter> \<Omega> |A. A \<in> M'}" (is "?L = ?R")
proof
show "?L \ ?R"
proof clarify
fix A assume "A \ sigma_sets \' M'"
then show "X -` A \ \ \ ?R"
proof induct
case Empty then show ?case
by (auto intro!: sigma_sets.Empty)
next
case (Compl B)
have [simp]: "X -` (\' - B) \ \ = \ - (X -` B \ \)"
by (auto simp add: funcset_mem [OF X])
with Compl show ?case
by (auto intro!: sigma_sets.Compl)
next
case (Union F)
then show ?case
by (auto simp add: vimage_UN UN_extend_simps(4) simp del: UN_simps
intro!: sigma_sets.Union)
qed auto
qed
show "?R \ ?L"
proof clarify
fix A assume "A \ ?R"
then show "\B. A = X -` B \ \ \ B \ sigma_sets \' M'"
proof induct
case (Basic B) then show ?case by auto
next
case Empty then show ?case
by (auto intro!: sigma_sets.Empty exI[of _ "{}"])
next
case (Compl B)
then obtain A where A: "B = X -` A \ \" "A \ sigma_sets \' M'" by auto
then have [simp]: "\ - B = X -` (\' - A) \ \"
by (auto simp add: funcset_mem [OF X])
with A(2) show ?case
by (auto intro: sigma_sets.Compl)
next
case (Union F)
then have "\i. \B. F i = X -` B \ \ \ B \ sigma_sets \' M'" by auto
from choice[OF this] guess A .. note A = this
with A show ?case
by (auto simp: vimage_UN[symmetric] intro: sigma_sets.Union)
qed
qed
qed
lemma (in ring_of_sets) UNION_in_sets:
fixes A:: "nat \ 'a set"
assumes A: "range A \ M"
shows "(\i\{0.. M"
proof (induct n)
case 0 show ?case by simp
next
case (Suc n)
thus ?case
by (simp add: atLeastLessThanSuc) (metis A Un UNIV_I image_subset_iff)
qed
lemma (in ring_of_sets) range_disjointed_sets:
assumes A: "range A \ M"
shows "range (disjointed A) \ M"
proof (auto simp add: disjointed_def)
fix n
show "A n - (\i\{0.. M" using UNION_in_sets
by (metis A Diff UNIV_I image_subset_iff)
qed
lemma (in algebra) range_disjointed_sets':
"range A \ M \ range (disjointed A) \ M"
using range_disjointed_sets .
lemma sigma_algebra_disjoint_iff:
"sigma_algebra \ M \ algebra \ M \
(\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
proof (auto simp add: sigma_algebra_iff)
fix A :: "nat \ 'a set"
assume M: "algebra \ M"
and A: "range A \ M"
and UnA: "\A. range A \ M \ disjoint_family A \ (\i::nat. A i) \ M"
hence "range (disjointed A) \ M \
disjoint_family (disjointed A) \<longrightarrow>
(\<Union>i. disjointed A i) \<in> M" by blast
hence "(\i. disjointed A i) \ M"
by (simp add: algebra.range_disjointed_sets'[of \] M A disjoint_family_disjointed)
thus "(\i::nat. A i) \ M" by (simp add: UN_disjointed_eq)
qed
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Ring generated by a semiring\<close>
definition (in semiring_of_sets) generated_ring :: "'a set set" where
"generated_ring = { \C | C. C \ M \ finite C \ disjoint C }"
lemma (in semiring_of_sets) generated_ringE[elim?]:
assumes "a \ generated_ring"
obtains C where "finite C" "disjoint C" "C \ M" "a = \C"
using assms unfolding generated_ring_def by auto
lemma (in semiring_of_sets) generated_ringI[intro?]:
assumes "finite C" "disjoint C" "C \ M" "a = \C"
shows "a \ generated_ring"
using assms unfolding generated_ring_def by auto
lemma (in semiring_of_sets) generated_ringI_Basic:
"A \ M \ A \ generated_ring"
by (rule generated_ringI[of "{A}"]) (auto simp: disjoint_def)
lemma (in semiring_of_sets) generated_ring_disjoint_Un[intro]:
assumes a: "a \ generated_ring" and b: "b \ generated_ring"
and "a \ b = {}"
shows "a \ b \ generated_ring"
proof -
from a guess Ca .. note Ca = this
from b guess Cb .. note Cb = this
show ?thesis
proof
show "disjoint (Ca \ Cb)"
using \<open>a \<inter> b = {}\<close> Ca Cb by (auto intro!: disjoint_union)
qed (insert Ca Cb, auto)
qed
lemma (in semiring_of_sets) generated_ring_empty: "{} \ generated_ring"
by (auto simp: generated_ring_def disjoint_def)
lemma (in semiring_of_sets) generated_ring_disjoint_Union:
assumes "finite A" shows "A \ generated_ring \ disjoint A \ \A \ generated_ring"
using assms by (induct A) (auto simp: disjoint_def intro!: generated_ring_disjoint_Un generated_ring_empty)
lemma (in semiring_of_sets) generated_ring_disjoint_UNION:
"finite I \ disjoint (A ` I) \ (\i. i \ I \ A i \ generated_ring) \ \(A ` I) \ generated_ring"
by (intro generated_ring_disjoint_Union) auto
lemma (in semiring_of_sets) generated_ring_Int:
assumes a: "a \ generated_ring" and b: "b \ generated_ring"
shows "a \ b \ generated_ring"
proof -
from a guess Ca .. note Ca = this
from b guess Cb .. note Cb = this
define C where "C = (\(a,b). a \ b)` (Ca\Cb)"
show ?thesis
proof
show "disjoint C"
proof (simp add: disjoint_def C_def, intro ballI impI)
fix a1 b1 a2 b2 assume sets: "a1 \ Ca" "b1 \ Cb" "a2 \ Ca" "b2 \ Cb"
assume "a1 \ b1 \ a2 \ b2"
then have "a1 \ a2 \ b1 \ b2" by auto
then show "(a1 \ b1) \ (a2 \ b2) = {}"
proof
assume "a1 \ a2"
with sets Ca have "a1 \ a2 = {}"
by (auto simp: disjoint_def)
then show ?thesis by auto
next
assume "b1 \ b2"
with sets Cb have "b1 \ b2 = {}"
by (auto simp: disjoint_def)
then show ?thesis by auto
qed
qed
qed (insert Ca Cb, auto simp: C_def)
qed
lemma (in semiring_of_sets) generated_ring_Inter:
assumes "finite A" "A \ {}" shows "A \ generated_ring \ \A \ generated_ring"
using assms by (induct A rule: finite_ne_induct) (auto intro: generated_ring_Int)
lemma (in semiring_of_sets) generated_ring_INTER:
"finite I \ I \ {} \ (\i. i \ I \ A i \ generated_ring) \ \(A ` I) \ generated_ring"
by (intro generated_ring_Inter) auto
lemma (in semiring_of_sets) generating_ring:
"ring_of_sets \ generated_ring"
proof (rule ring_of_setsI)
let ?R = generated_ring
show "?R \ Pow \"
using sets_into_space by (auto simp: generated_ring_def generated_ring_empty)
show "{} \ ?R" by (rule generated_ring_empty)
{ fix a assume a: "a \ ?R" then guess Ca .. note Ca = this
fix b assume b: "b \ ?R" then guess Cb .. note Cb = this
show "a - b \ ?R"
proof cases
assume "Cb = {}" with Cb \<open>a \<in> ?R\<close> show ?thesis
by simp
next
assume "Cb \ {}"
with Ca Cb have "a - b = (\a'\Ca. \b'\Cb. a' - b')" by auto
also have "\ \ ?R"
proof (intro generated_ring_INTER generated_ring_disjoint_UNION)
fix a b assume "a \ Ca" "b \ Cb"
with Ca Cb Diff_cover[of a b] show "a - b \ ?R"
by (auto simp add: generated_ring_def)
(metis DiffI Diff_eq_empty_iff empty_iff)
next
show "disjoint ((\a'. \b'\Cb. a' - b')`Ca)"
using Ca by (auto simp add: disjoint_def \<open>Cb \<noteq> {}\<close>)
next
show "finite Ca" "finite Cb" "Cb \ {}" by fact+
qed
finally show "a - b \ ?R" .
qed }
note Diff = this
fix a b assume sets: "a \ ?R" "b \ ?R"
have "a \ b = (a - b) \ (a \ b) \ (b - a)" by auto
also have "\ \ ?R"
by (intro sets generated_ring_disjoint_Un generated_ring_Int Diff) auto
finally show "a \ b \ ?R" .
qed
lemma (in semiring_of_sets) sigma_sets_generated_ring_eq: "sigma_sets \ generated_ring = sigma_sets \ M"
proof
interpret M: sigma_algebra \<Omega> "sigma_sets \<Omega> M"
using space_closed by (rule sigma_algebra_sigma_sets)
show "sigma_sets \ generated_ring \ sigma_sets \ M"
by (blast intro!: sigma_sets_mono elim: generated_ringE)
qed (auto intro!: generated_ringI_Basic sigma_sets_mono)
subsubsection\<^marker>\<open>tag unimportant\<close> \<open>A Two-Element Series\<close>
definition binaryset :: "'a set \ 'a set \ nat \ 'a set"
where "binaryset A B = (\x. {})(0 := A, Suc 0 := B)"
lemma range_binaryset_eq: "range(binaryset A B) = {A,B,{}}"
apply (simp add: binaryset_def)
apply (rule set_eqI)
apply (auto simp add: image_iff)
done
lemma UN_binaryset_eq: "(\i. binaryset A B i) = A \ B"
by (simp add: range_binaryset_eq cong del: SUP_cong_simp)
subsubsection \<open>Closed CDI\<close>
definition\<^marker>\<open>tag important\<close> closed_cdi :: "'a set \<Rightarrow> 'a set set \<Rightarrow> bool" where
"closed_cdi \ M \
M \<subseteq> Pow \<Omega> &
(\<forall>s \<in> M. \<Omega> - s \<in> M) &
(\<forall>A. (range A \<subseteq> M) & (A 0 = {}) & (\<forall>n. A n \<subseteq> A (Suc n)) \<longrightarrow>
(\<Union>i. A i) \<in> M) &
(\<forall>A. (range A \<subseteq> M) & disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
inductive_set
smallest_ccdi_sets :: "'a set \ 'a set set \ 'a set set"
for \<Omega> M
where
Basic [intro]:
"a \ M \ a \ smallest_ccdi_sets \ M"
| Compl [intro]:
"a \ smallest_ccdi_sets \ M \ \ - a \ smallest_ccdi_sets \ M"
| Inc:
"range A \ Pow(smallest_ccdi_sets \ M) \ A 0 = {} \ (\n. A n \ A (Suc n))
\<Longrightarrow> (\<Union>i. A i) \<in> smallest_ccdi_sets \<Omega> M"
| Disj:
"range A \ Pow(smallest_ccdi_sets \ M) \ disjoint_family A
\<Longrightarrow> (\<Union>i::nat. A i) \<in> smallest_ccdi_sets \<Omega> M"
lemma (in subset_class) smallest_closed_cdi1: "M \ smallest_ccdi_sets \ M"
by auto
lemma (in subset_class) smallest_ccdi_sets: "smallest_ccdi_sets \ M \ Pow \"
apply (rule subsetI)
apply (erule smallest_ccdi_sets.induct)
apply (auto intro: range_subsetD dest: sets_into_space)
done
lemma (in subset_class) smallest_closed_cdi2: "closed_cdi \ (smallest_ccdi_sets \ M)"
apply (auto simp add: closed_cdi_def smallest_ccdi_sets)
apply (blast intro: smallest_ccdi_sets.Inc smallest_ccdi_sets.Disj) +
done
lemma closed_cdi_subset: "closed_cdi \ M \ M \ Pow \"
by (simp add: closed_cdi_def)
lemma closed_cdi_Compl: "closed_cdi \ M \ s \ M \ \ - s \ M"
by (simp add: closed_cdi_def)
lemma closed_cdi_Inc:
"closed_cdi \ M \ range A \ M \ A 0 = {} \ (!!n. A n \ A (Suc n)) \ (\i. A i) \ M"
by (simp add: closed_cdi_def)
lemma closed_cdi_Disj:
"closed_cdi \ M \ range A \ M \ disjoint_family A \ (\i::nat. A i) \ M"
by (simp add: closed_cdi_def)
lemma closed_cdi_Un:
assumes cdi: "closed_cdi \ M" and empty: "{} \ M"
and A: "A \ M" and B: "B \ M"
and disj: "A \ B = {}"
shows "A \ B \ M"
proof -
have ra: "range (binaryset A B) \ M"
by (simp add: range_binaryset_eq empty A B)
have di: "disjoint_family (binaryset A B)" using disj
by (simp add: disjoint_family_on_def binaryset_def Int_commute)
from closed_cdi_Disj [OF cdi ra di]
show ?thesis
by (simp add: UN_binaryset_eq)
qed
lemma (in algebra) smallest_ccdi_sets_Un:
assumes A: "A \ smallest_ccdi_sets \ M" and B: "B \ smallest_ccdi_sets \ M"
and disj: "A \ B = {}"
shows "A \ B \ smallest_ccdi_sets \ M"
proof -
have ra: "range (binaryset A B) \ Pow (smallest_ccdi_sets \ M)"
by (simp add: range_binaryset_eq A B smallest_ccdi_sets.Basic)
have di: "disjoint_family (binaryset A B)" using disj
by (simp add: disjoint_family_on_def binaryset_def Int_commute)
from Disj [OF ra di]
show ?thesis
by (simp add: UN_binaryset_eq)
qed
lemma (in algebra) smallest_ccdi_sets_Int1:
assumes a: "a \ M"
shows "b \ smallest_ccdi_sets \ M \ a \ b \ smallest_ccdi_sets \ M"
proof (induct rule: smallest_ccdi_sets.induct)
case (Basic x)
thus ?case
by (metis a Int smallest_ccdi_sets.Basic)
next
case (Compl x)
have "a \ (\ - x) = \ - ((\ - a) \ (a \ x))"
by blast
also have "... \ smallest_ccdi_sets \ M"
by (metis smallest_ccdi_sets.Compl a Compl(2) Diff_Int2 Diff_Int_distrib2
Diff_disjoint Int_Diff Int_empty_right smallest_ccdi_sets_Un
smallest_ccdi_sets.Basic smallest_ccdi_sets.Compl)
finally show ?case .
next
case (Inc A)
have 1: "(\i. (\i. a \ A i) i) = a \ (\i. A i)"
by blast
have "range (\i. a \ A i) \ Pow(smallest_ccdi_sets \ M)" using Inc
by blast
moreover have "(\i. a \ A i) 0 = {}"
by (simp add: Inc)
moreover have "!!n. (\i. a \ A i) n \ (\i. a \ A i) (Suc n)" using Inc
by blast
ultimately have 2: "(\i. (\i. a \ A i) i) \ smallest_ccdi_sets \ M"
by (rule smallest_ccdi_sets.Inc)
show ?case
by (metis 1 2)
next
case (Disj A)
have 1: "(\i. (\i. a \ A i) i) = a \ (\i. A i)"
by blast
have "range (\i. a \ A i) \ Pow(smallest_ccdi_sets \ M)" using Disj
by blast
moreover have "disjoint_family (\i. a \ A i)" using Disj
by (auto simp add: disjoint_family_on_def)
ultimately have 2: "(\i. (\i. a \ A i) i) \ smallest_ccdi_sets \ M"
by (rule smallest_ccdi_sets.Disj)
show ?case
by (metis 1 2)
qed
lemma (in algebra) smallest_ccdi_sets_Int:
assumes b: "b \ smallest_ccdi_sets \ M"
shows "a \ smallest_ccdi_sets \ M \ a \ b \ smallest_ccdi_sets \ M"
proof (induct rule: smallest_ccdi_sets.induct)
case (Basic x)
thus ?case
by (metis b smallest_ccdi_sets_Int1)
next
case (Compl x)
have "(\ - x) \ b = \ - (x \ b \ (\ - b))"
by blast
also have "... \ smallest_ccdi_sets \ M"
by (metis Compl(2) Diff_disjoint Int_Diff Int_commute Int_empty_right b
smallest_ccdi_sets.Compl smallest_ccdi_sets_Un)
finally show ?case .
next
case (Inc A)
have 1: "(\i. (\i. A i \ b) i) = (\i. A i) \ b"
by blast
have "range (\i. A i \ b) \ Pow(smallest_ccdi_sets \ M)" using Inc
by blast
moreover have "(\i. A i \ b) 0 = {}"
by (simp add: Inc)
moreover have "!!n. (\i. A i \ b) n \ (\i. A i \ b) (Suc n)" using Inc
by blast
ultimately have 2: "(\i. (\i. A i \ b) i) \ smallest_ccdi_sets \ M"
by (rule smallest_ccdi_sets.Inc)
show ?case
by (metis 1 2)
next
case (Disj A)
have 1: "(\i. (\i. A i \ b) i) = (\i. A i) \ b"
by blast
have "range (\i. A i \ b) \ Pow(smallest_ccdi_sets \ M)" using Disj
by blast
moreover have "disjoint_family (\i. A i \ b)" using Disj
by (auto simp add: disjoint_family_on_def)
ultimately have 2: "(\i. (\i. A i \ b) i) \ smallest_ccdi_sets \ M"
by (rule smallest_ccdi_sets.Disj)
show ?case
by (metis 1 2)
qed
lemma (in algebra) sigma_property_disjoint_lemma:
assumes sbC: "M \ C"
and ccdi: "closed_cdi \ C"
shows "sigma_sets \ M \ C"
proof -
have "smallest_ccdi_sets \ M \ {B . M \ B \ sigma_algebra \ B}"
apply (auto simp add: sigma_algebra_disjoint_iff algebra_iff_Int
smallest_ccdi_sets_Int)
apply (metis Union_Pow_eq Union_upper subsetD smallest_ccdi_sets)
apply (blast intro: smallest_ccdi_sets.Disj)
done
hence "sigma_sets (\) (M) \ smallest_ccdi_sets \ M"
by clarsimp
(drule sigma_algebra.sigma_sets_subset [where a="M"], auto)
also have "... \ C"
proof
fix x
assume x: "x \ smallest_ccdi_sets \ M"
thus "x \ C"
proof (induct rule: smallest_ccdi_sets.induct)
case (Basic x)
thus ?case
by (metis Basic subsetD sbC)
next
case (Compl x)
thus ?case
by (blast intro: closed_cdi_Compl [OF ccdi, simplified])
next
case (Inc A)
thus ?case
by (auto intro: closed_cdi_Inc [OF ccdi, simplified])
next
case (Disj A)
thus ?case
by (auto intro: closed_cdi_Disj [OF ccdi, simplified])
qed
qed
finally show ?thesis .
qed
lemma (in algebra) sigma_property_disjoint:
assumes sbC: "M \ C"
and compl: "!!s. s \ C \ sigma_sets (\) (M) \ \ - s \ C"
and inc: "!!A. range A \ C \ sigma_sets (\) (M)
\<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n))
\<Longrightarrow> (\<Union>i. A i) \<in> C"
and disj: "!!A. range A \ C \ sigma_sets (\) (M)
\<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> C"
shows "sigma_sets (\) (M) \ C"
proof -
have "sigma_sets (\) (M) \ C \ sigma_sets (\) (M)"
proof (rule sigma_property_disjoint_lemma)
show "M \ C \ sigma_sets (\) (M)"
by (metis Int_greatest Set.subsetI sbC sigma_sets.Basic)
next
show "closed_cdi \ (C \ sigma_sets (\) (M))"
by (simp add: closed_cdi_def compl inc disj)
(metis PowI Set.subsetI le_infI2 sigma_sets_into_sp space_closed
IntE sigma_sets.Compl range_subsetD sigma_sets.Union)
qed
thus ?thesis
by blast
qed
subsubsection \<open>Dynkin systems\<close>
locale\<^marker>\<open>tag important\<close> Dynkin_system = subset_class +
assumes space: "\ \ M"
and compl[intro!]: "\A. A \ M \ \ - A \ M"
and UN[intro!]: "\A. disjoint_family A \ range A \ M
\<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
lemma (in Dynkin_system) empty[intro, simp]: "{} \ M"
using space compl[of "\"] by simp
lemma (in Dynkin_system) diff:
assumes sets: "D \ M" "E \ M" and "D \ E"
shows "E - D \ M"
proof -
let ?f = "\x. if x = 0 then D else if x = Suc 0 then \ - E else {}"
have "range ?f = {D, \ - E, {}}"
by (auto simp: image_iff)
moreover have "D \ (\ - E) = (\i. ?f i)"
by (auto simp: image_iff split: if_split_asm)
moreover
have "disjoint_family ?f" unfolding disjoint_family_on_def
using \<open>D \<in> M\<close>[THEN sets_into_space] \<open>D \<subseteq> E\<close> by auto
ultimately have "\ - (D \ (\ - E)) \ M"
using sets UN by auto fastforce
also have "\ - (D \ (\ - E)) = E - D"
using assms sets_into_space by auto
finally show ?thesis .
qed
lemma Dynkin_systemI:
assumes "\ A. A \ M \ A \ \" "\ \ M"
assumes "\ A. A \ M \ \ - A \ M"
assumes "\ A. disjoint_family A \ range A \ M
\<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
shows "Dynkin_system \ M"
using assms by (auto simp: Dynkin_system_def Dynkin_system_axioms_def subset_class_def)
lemma Dynkin_systemI':
assumes 1: "\ A. A \ M \ A \ \"
assumes empty: "{} \ M"
assumes Diff: "\ A. A \ M \ \ - A \ M"
assumes 2: "\ A. disjoint_family A \ range A \ M
\<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
shows "Dynkin_system \ M"
proof -
from Diff[OF empty] have "\ \ M" by auto
from 1 this Diff 2 show ?thesis
by (intro Dynkin_systemI) auto
qed
lemma Dynkin_system_trivial:
shows "Dynkin_system A (Pow A)"
by (rule Dynkin_systemI) auto
lemma sigma_algebra_imp_Dynkin_system:
assumes "sigma_algebra \ M" shows "Dynkin_system \ M"
proof -
interpret sigma_algebra \<Omega> M by fact
show ?thesis using sets_into_space by (fastforce intro!: Dynkin_systemI)
qed
subsubsection "Intersection sets systems"
definition\<^marker>\<open>tag important\<close> Int_stable :: "'a set set \<Rightarrow> bool" where
"Int_stable M \ (\ a \ M. \ b \ M. a \ b \ M)"
lemma (in algebra) Int_stable: "Int_stable M"
unfolding Int_stable_def by auto
lemma Int_stableI_image:
"(\i j. i \ I \ j \ I \ \k\I. A i \ A j = A k) \ Int_stable (A ` I)"
by (auto simp: Int_stable_def image_def)
lemma Int_stableI:
"(\a b. a \ A \ b \ A \ a \ b \ A) \ Int_stable A"
unfolding Int_stable_def by auto
lemma Int_stableD:
"Int_stable M \ a \ M \ b \ M \ a \ b \ M"
unfolding Int_stable_def by auto
lemma (in Dynkin_system) sigma_algebra_eq_Int_stable:
"sigma_algebra \ M \ Int_stable M"
proof
assume "sigma_algebra \ M" then show "Int_stable M"
unfolding sigma_algebra_def using algebra.Int_stable by auto
next
assume "Int_stable M"
show "sigma_algebra \ M"
unfolding sigma_algebra_disjoint_iff algebra_iff_Un
proof (intro conjI ballI allI impI)
show "M \ Pow (\)" using sets_into_space by auto
next
fix A B assume "A \ M" "B \ M"
then have "A \ B = \ - ((\ - A) \ (\ - B))"
"\ - A \ M" "\ - B \ M"
using sets_into_space by auto
then show "A \ B \ M"
using \<open>Int_stable M\<close> unfolding Int_stable_def by auto
qed auto
qed
subsubsection "Smallest Dynkin systems"
definition\<^marker>\<open>tag important\<close> Dynkin :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set" where
"Dynkin \ M = (\{D. Dynkin_system \ D \ M \ D})"
lemma Dynkin_system_Dynkin:
assumes "M \ Pow (\)"
shows "Dynkin_system \ (Dynkin \ M)"
proof (rule Dynkin_systemI)
fix A assume "A \ Dynkin \ M"
moreover
{ fix D assume "A \ D" and d: "Dynkin_system \ D"
then have "A \ \" by (auto simp: Dynkin_system_def subset_class_def) }
moreover have "{D. Dynkin_system \ D \ M \ D} \ {}"
using assms Dynkin_system_trivial by fastforce
ultimately show "A \ \"
unfolding Dynkin_def using assms
by auto
next
show "\ \ Dynkin \ M"
unfolding Dynkin_def using Dynkin_system.space by fastforce
next
fix A assume "A \ Dynkin \ M"
then show "\ - A \ Dynkin \ M"
unfolding Dynkin_def using Dynkin_system.compl by force
next
fix A :: "nat \ 'a set"
assume A: "disjoint_family A" "range A \ Dynkin \ M"
show "(\i. A i) \ Dynkin \ M" unfolding Dynkin_def
proof (simp, safe)
fix D assume "Dynkin_system \ D" "M \ D"
with A have "(\i. A i) \ D"
by (intro Dynkin_system.UN) (auto simp: Dynkin_def)
then show "(\i. A i) \ D" by auto
qed
qed
lemma Dynkin_Basic[intro]: "A \ M \ A \ Dynkin \ M"
unfolding Dynkin_def by auto
lemma (in Dynkin_system) restricted_Dynkin_system:
assumes "D \ M"
shows "Dynkin_system \ {Q. Q \ \ \ Q \ D \ M}"
proof (rule Dynkin_systemI, simp_all)
have "\ \ D = D"
using \<open>D \<in> M\<close> sets_into_space by auto
then show "\ \ D \ M"
using \<open>D \<in> M\<close> by auto
next
fix A assume "A \ \ \ A \ D \ M"
moreover have "(\ - A) \ D = (\ - (A \ D)) - (\ - D)"
by auto
ultimately show "(\ - A) \ D \ M"
using \<open>D \<in> M\<close> by (auto intro: diff)
next
fix A :: "nat \ 'a set"
assume "disjoint_family A" "range A \ {Q. Q \ \ \ Q \ D \ M}"
then have "\i. A i \ \" "disjoint_family (\i. A i \ D)"
"range (\i. A i \ D) \ M" "(\x. A x) \ D = (\x. A x \ D)"
by ((fastforce simp: disjoint_family_on_def)+)
then show "(\x. A x) \ \ \ (\x. A x) \ D \ M"
by (auto simp del: UN_simps)
qed
lemma (in Dynkin_system) Dynkin_subset:
assumes "N \ M"
shows "Dynkin \ N \ M"
proof -
have "Dynkin_system \ M" ..
then have "Dynkin_system \ M"
using assms unfolding Dynkin_system_def Dynkin_system_axioms_def subset_class_def by simp
with \<open>N \<subseteq> M\<close> show ?thesis by (auto simp add: Dynkin_def)
qed
lemma sigma_eq_Dynkin:
assumes sets: "M \ Pow \"
assumes "Int_stable M"
shows "sigma_sets \ M = Dynkin \ M"
proof -
have "Dynkin \ M \ sigma_sets (\) (M)"
using sigma_algebra_imp_Dynkin_system
unfolding Dynkin_def sigma_sets_least_sigma_algebra[OF sets] by auto
moreover
interpret Dynkin_system \<Omega> "Dynkin \<Omega> M"
using Dynkin_system_Dynkin[OF sets] .
have "sigma_algebra \ (Dynkin \ M)"
unfolding sigma_algebra_eq_Int_stable Int_stable_def
proof (intro ballI)
fix A B assume "A \ Dynkin \ M" "B \ Dynkin \ M"
let ?D = "\E. {Q. Q \ \ \ Q \ E \ Dynkin \ M}"
have "M \ ?D B"
proof
fix E assume "E \ M"
then have "M \ ?D E" "E \ Dynkin \ M"
using sets_into_space \<open>Int_stable M\<close> by (auto simp: Int_stable_def)
then have "Dynkin \ M \ ?D E"
using restricted_Dynkin_system \<open>E \<in> Dynkin \<Omega> M\<close>
by (intro Dynkin_system.Dynkin_subset) simp_all
then have "B \ ?D E"
using \<open>B \<in> Dynkin \<Omega> M\<close> by auto
then have "E \ B \ Dynkin \ M"
by (subst Int_commute) simp
then show "E \ ?D B"
using sets \<open>E \<in> M\<close> by auto
qed
then have "Dynkin \ M \ ?D B"
using restricted_Dynkin_system \<open>B \<in> Dynkin \<Omega> M\<close>
by (intro Dynkin_system.Dynkin_subset) simp_all
then show "A \ B \ Dynkin \ M"
using \<open>A \<in> Dynkin \<Omega> M\<close> sets_into_space by auto
qed
from sigma_algebra.sigma_sets_subset[OF this, of "M"]
have "sigma_sets (\) (M) \ Dynkin \ M" by auto
ultimately have "sigma_sets (\) (M) = Dynkin \ M" by auto
then show ?thesis
by (auto simp: Dynkin_def)
qed
lemma (in Dynkin_system) Dynkin_idem:
"Dynkin \ M = M"
proof -
have "Dynkin \ M = M"
proof
show "M \ Dynkin \ M"
using Dynkin_Basic by auto
show "Dynkin \ M \ M"
by (intro Dynkin_subset) auto
qed
then show ?thesis
by (auto simp: Dynkin_def)
qed
lemma (in Dynkin_system) Dynkin_lemma:
assumes "Int_stable E"
and E: "E \ M" "M \ sigma_sets \ E"
shows "sigma_sets \ E = M"
proof -
have "E \ Pow \"
using E sets_into_space by force
then have *: "sigma_sets \ E = Dynkin \ E"
using \<open>Int_stable E\<close> by (rule sigma_eq_Dynkin)
then have "Dynkin \ E = M"
using assms Dynkin_subset[OF E(1)] by simp
with * show ?thesis
using assms by (auto simp: Dynkin_def)
qed
subsubsection \<open>Induction rule for intersection-stable generators\<close>
text\<^marker>\<open>tag important\<close> \<open>The reason to introduce Dynkin-systems is the following induction rules for \<open>\<sigma>\<close>-algebras
generated by a generator closed under intersection.\<close>
proposition sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]:
assumes "Int_stable G"
and closed: "G \ Pow \"
and A: "A \ sigma_sets \ G"
assumes basic: "\A. A \ G \ P A"
and empty: "P {}"
and compl: "\A. A \ sigma_sets \ G \ P A \ P (\ - A)"
and union: "\A. disjoint_family A \ range A \ sigma_sets \ G \ (\i. P (A i)) \ P (\i::nat. A i)"
shows "P A"
proof -
let ?D = "{ A \ sigma_sets \ G. P A }"
interpret sigma_algebra \<Omega> "sigma_sets \<Omega> G"
using closed by (rule sigma_algebra_sigma_sets)
from compl[OF _ empty] closed have space: "P \" by simp
interpret Dynkin_system \<Omega> ?D
by standard (auto dest: sets_into_space intro!: space compl union)
have "sigma_sets \ G = ?D"
by (rule Dynkin_lemma) (auto simp: basic \<open>Int_stable G\<close>)
with A show ?thesis by auto
qed
subsection \<open>Measure type\<close>
definition\<^marker>\<open>tag important\<close> positive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
"positive M \ \ \ {} = 0"
definition\<^marker>\<open>tag important\<close> countably_additive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
"countably_additive M f \
(\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow>
(\<Sum>i. f (A i)) = f (\<Union>i. A i))"
definition\<^marker>\<open>tag important\<close> measure_space :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
"measure_space \ A \ \
sigma_algebra \<Omega> A \<and> positive A \<mu> \<and> countably_additive A \<mu>"
typedef\<^marker>\<open>tag important\<close> 'a measure =
"{(\::'a set, A, \). (\a\-A. \ a = 0) \ measure_space \ A \ }"
proof
have "sigma_algebra UNIV {{}, UNIV}"
by (auto simp: sigma_algebra_iff2)
then show "(UNIV, {{}, UNIV}, \A. 0) \ {(\, A, \). (\a\-A. \ a = 0) \ measure_space \ A \} "
by (auto simp: measure_space_def positive_def countably_additive_def)
qed
definition\<^marker>\<open>tag important\<close> space :: "'a measure \<Rightarrow> 'a set" where
"space M = fst (Rep_measure M)"
definition\<^marker>\<open>tag important\<close> sets :: "'a measure \<Rightarrow> 'a set set" where
"sets M = fst (snd (Rep_measure M))"
definition\<^marker>\<open>tag important\<close> emeasure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal" where
"emeasure M = snd (snd (Rep_measure M))"
definition\<^marker>\<open>tag important\<close> measure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> real" where
"measure M A = enn2real (emeasure M A)"
declare [[coercion sets]]
declare [[coercion measure]]
declare [[coercion emeasure]]
lemma measure_space: "measure_space (space M) (sets M) (emeasure M)"
by (cases M) (auto simp: space_def sets_def emeasure_def Abs_measure_inverse)
interpretation sets: sigma_algebra "space M" "sets M" for M :: "'a measure"
using measure_space[of M] by (auto simp: measure_space_def)
definition\<^marker>\<open>tag important\<close> measure_of :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a measure"
where
"measure_of \ A \ =
Abs_measure (\<Omega>, if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>},
\<lambda>a. if a \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> a else 0)"
abbreviation "sigma \ A \ measure_of \ A (\x. 0)"
lemma measure_space_0: "A \ Pow \ \ measure_space \ (sigma_sets \ A) (\x. 0)"
unfolding measure_space_def
by (auto intro!: sigma_algebra_sigma_sets simp: positive_def countably_additive_def)
lemma sigma_algebra_trivial: "sigma_algebra \ {{}, \}"
by unfold_locales(fastforce intro: exI[where x="{{}}"] exI[where x="{\}"])+
lemma measure_space_0': "measure_space \ {{}, \} (\x. 0)"
by(simp add: measure_space_def positive_def countably_additive_def sigma_algebra_trivial)
lemma measure_space_closed:
assumes "measure_space \ M \"
shows "M \ Pow \"
proof -
interpret sigma_algebra \<Omega> M using assms by(simp add: measure_space_def)
show ?thesis by(rule space_closed)
qed
lemma (in ring_of_sets) positive_cong_eq:
"(\a. a \ M \ \' a = \ a) \ positive M \' = positive M \"
by (auto simp add: positive_def)
lemma (in sigma_algebra) countably_additive_eq:
"(\a. a \ M \ \' a = \ a) \ countably_additive M \' = countably_additive M \"
unfolding countably_additive_def
by (intro arg_cong[where f=All] ext) (auto simp add: countably_additive_def subset_eq)
lemma measure_space_eq:
assumes closed: "A \ Pow \" and eq: "\a. a \ sigma_sets \ A \ \ a = \' a"
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.80 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|