(* Title: HOL/Metis_Examples/Tarski.thy
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory
Author: Jasmin Blanchette, TU Muenchen
Metis example featuring the full theorem of Tarski.
*)
section \<open>Metis Example Featuring the Full Theorem of Tarski\<close>
theory Tarski
imports Main "HOL-Library.FuncSet"
begin
declare [[metis_new_skolem]]
(*Many of these higher-order problems appear to be impossible using the
current linkup. They often seem to need either higher-order unification
or explicit reasoning about connectives such as conjunction. The numerous
set comprehensions are to blame.*)
record 'a potype =
pset :: "'a set"
order :: "('a * 'a) set"
definition monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
"monotone f A r == \x\A. \y\A. (x, y) \ r --> ((f x), (f y)) \ r"
definition least :: "['a => bool, 'a potype] => 'a" where
"least P po \ SOME x. x \ pset po \ P x \
(\<forall>y \<in> pset po. P y \<longrightarrow> (x,y) \<in> order po)"
definition greatest :: "['a => bool, 'a potype] => 'a" where
"greatest P po \ SOME x. x \ pset po \ P x \
(\<forall>y \<in> pset po. P y \<longrightarrow> (y,x) \<in> order po)"
definition lub :: "['a set, 'a potype] => 'a" where
"lub S po == least (\x. \y\S. (y,x) \ order po) po"
definition glb :: "['a set, 'a potype] => 'a" where
"glb S po \ greatest (\x. \y\S. (x,y) \ order po) po"
definition isLub :: "['a set, 'a potype, 'a] => bool" where
"isLub S po \ \L. (L \ pset po \ (\y\S. (y,L) \ order po) \
(\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z) \<in> order po) \<longrightarrow> (L,z) \<in> order po))"
definition isGlb :: "['a set, 'a potype, 'a] => bool" where
"isGlb S po \ \G. (G \ pset po \ (\y\S. (G,y) \ order po) \
(\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y) \<in> order po) \<longrightarrow> (z,G) \<in> order po))"
definition "fix" :: "[('a => 'a), 'a set] => 'a set" where
"fix f A \ {x. x \ A \ f x = x}"
definition interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
"interval r a b == {x. (a,x) \ r & (x,b) \ r}"
definition Bot :: "'a potype => 'a" where
"Bot po == least (\x. True) po"
definition Top :: "'a potype => 'a" where
"Top po == greatest (\x. True) po"
definition PartialOrder :: "('a potype) set" where
"PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) &
trans (order P)}"
definition CompleteLattice :: "('a potype) set" where
"CompleteLattice == {cl. cl \ PartialOrder \
(\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>L. isLub S cl L)) \<and>
(\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>G. isGlb S cl G))}"
definition induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
"induced A r \ {(a,b). a \ A \ b \ A \ (a,b) \ r}"
definition sublattice :: "('a potype * 'a set)set" where
"sublattice \
SIGMA cl : CompleteLattice.
{S. S \<subseteq> pset cl \<and>
\<lparr>pset = S, order = induced S (order cl)\<rparr> \<in> CompleteLattice}"
abbreviation
sublattice_syntax :: "['a set, 'a potype] => bool" ("_ <<= _" [51, 50] 50)
where "S <<= cl \ S \ sublattice `` {cl}"
definition dual :: "'a potype => 'a potype" where
"dual po == (| pset = pset po, order = converse (order po) |)"
locale PO =
fixes cl :: "'a potype"
and A :: "'a set"
and r :: "('a * 'a) set"
assumes cl_po: "cl \ PartialOrder"
defines A_def: "A == pset cl"
and r_def: "r == order cl"
locale CL = PO +
assumes cl_co: "cl \ CompleteLattice"
definition CLF_set :: "('a potype * ('a => 'a)) set" where
"CLF_set = (SIGMA cl: CompleteLattice.
{f. f \<in> pset cl \<rightarrow> pset cl \<and> monotone f (pset cl) (order cl)})"
locale CLF = CL +
fixes f :: "'a => 'a"
and P :: "'a set"
assumes f_cl: "(cl,f) \ CLF_set" (*was the equivalent "f : CLF``{cl}"*)
defines P_def: "P == fix f A"
locale Tarski = CLF +
fixes Y :: "'a set"
and intY1 :: "'a set"
and v :: "'a"
assumes
Y_ss: "Y \ P"
defines
intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"
and v_def: "v == glb {x. ((\x \ intY1. f x) x, x) \ induced intY1 r \
x \<in> intY1}
\<lparr>pset=intY1, order=induced intY1 r\<rparr>"
subsection \<open>Partial Order\<close>
lemma (in PO) PO_imp_refl_on: "refl_on A r"
apply (insert cl_po)
apply (simp add: PartialOrder_def A_def r_def)
done
lemma (in PO) PO_imp_sym: "antisym r"
apply (insert cl_po)
apply (simp add: PartialOrder_def r_def)
done
lemma (in PO) PO_imp_trans: "trans r"
apply (insert cl_po)
apply (simp add: PartialOrder_def r_def)
done
lemma (in PO) reflE: "x \ A ==> (x, x) \ r"
apply (insert cl_po)
apply (simp add: PartialOrder_def refl_on_def A_def r_def)
done
lemma (in PO) antisymE: "[| (a, b) \ r; (b, a) \ r |] ==> a = b"
apply (insert cl_po)
apply (simp add: PartialOrder_def antisym_def r_def)
done
lemma (in PO) transE: "[| (a, b) \ r; (b, c) \ r|] ==> (a,c) \ r"
apply (insert cl_po)
apply (simp add: PartialOrder_def r_def)
apply (unfold trans_def, fast)
done
lemma (in PO) monotoneE:
"[| monotone f A r; x \ A; y \ A; (x, y) \ r |] ==> (f x, f y) \ r"
by (simp add: monotone_def)
lemma (in PO) po_subset_po:
"S \ A ==> (| pset = S, order = induced S r |) \ PartialOrder"
apply (simp (no_asm) add: PartialOrder_def)
apply auto
\<comment> \<open>refl\<close>
apply (simp add: refl_on_def induced_def)
apply (blast intro: reflE)
\<comment> \<open>antisym\<close>
apply (simp add: antisym_def induced_def)
apply (blast intro: antisymE)
\<comment> \<open>trans\<close>
apply (simp add: trans_def induced_def)
apply (blast intro: transE)
done
lemma (in PO) indE: "[| (x, y) \ induced S r; S \ A |] ==> (x, y) \ r"
by (simp add: add: induced_def)
lemma (in PO) indI: "[| (x, y) \ r; x \ S; y \ S |] ==> (x, y) \ induced S r"
by (simp add: add: induced_def)
lemma (in CL) CL_imp_ex_isLub: "S \ A ==> \L. isLub S cl L"
apply (insert cl_co)
apply (simp add: CompleteLattice_def A_def)
done
declare (in CL) cl_co [simp]
lemma isLub_lub: "(\L. isLub S cl L) = isLub S cl (lub S cl)"
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
lemma isGlb_glb: "(\G. isGlb S cl G) = isGlb S cl (glb S cl)"
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
by (simp add: isLub_def isGlb_def dual_def converse_unfold)
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
by (simp add: isLub_def isGlb_def dual_def converse_unfold)
lemma (in PO) dualPO: "dual cl \ PartialOrder"
apply (insert cl_po)
apply (simp add: PartialOrder_def dual_def)
done
lemma Rdual:
"\S. (S \ A -->( \L. isLub S (| pset = A, order = r|) L))
==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"
apply safe
apply (rule_tac x = "lub {y. y \ A & (\k \ S. (y, k) \ r)}
(|pset = A, order = r|) " in exI)
apply (drule_tac x = "{y. y \ A & (\k \ S. (y,k) \ r) }" in spec)
apply (drule mp, fast)
apply (simp add: isLub_lub isGlb_def)
apply (simp add: isLub_def, blast)
done
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)
lemma CL_subset_PO: "CompleteLattice \ PartialOrder"
by (simp add: PartialOrder_def CompleteLattice_def, fast)
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
declare PO.PO_imp_refl_on [OF PO.intro [OF CL_imp_PO], simp]
declare PO.PO_imp_sym [OF PO.intro [OF CL_imp_PO], simp]
declare PO.PO_imp_trans [OF PO.intro [OF CL_imp_PO], simp]
lemma (in CL) CO_refl_on: "refl_on A r"
by (rule PO_imp_refl_on)
lemma (in CL) CO_antisym: "antisym r"
by (rule PO_imp_sym)
lemma (in CL) CO_trans: "trans r"
by (rule PO_imp_trans)
lemma CompleteLatticeI:
"[| po \ PartialOrder; (\S. S \ pset po --> (\L. isLub S po L));
(\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]
==> po \<in> CompleteLattice"
apply (unfold CompleteLattice_def, blast)
done
lemma (in CL) CL_dualCL: "dual cl \ CompleteLattice"
apply (insert cl_co)
apply (simp add: CompleteLattice_def dual_def)
apply (fold dual_def)
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
dualPO)
done
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
by (simp add: dual_def)
lemma (in PO) dualr_iff: "((x, y) \ (order(dual cl))) = ((y, x) \ order cl)"
by (simp add: dual_def)
lemma (in PO) monotone_dual:
"monotone f (pset cl) (order cl)
==> monotone f (pset (dual cl)) (order(dual cl))"
by (simp add: monotone_def dualA_iff dualr_iff)
lemma (in PO) interval_dual:
"[| x \ A; y \ A|] ==> interval r x y = interval (order(dual cl)) y x"
apply (simp add: interval_def dualr_iff)
apply (fold r_def, fast)
done
lemma (in PO) interval_not_empty:
"[| trans r; interval r a b \ {} |] ==> (a, b) \ r"
apply (simp add: interval_def)
apply (unfold trans_def, blast)
done
lemma (in PO) interval_imp_mem: "x \ interval r a b ==> (a, x) \ r"
by (simp add: interval_def)
lemma (in PO) left_in_interval:
"[| a \ A; b \ A; interval r a b \ {} |] ==> a \ interval r a b"
apply (simp (no_asm_simp) add: interval_def)
apply (simp add: PO_imp_trans interval_not_empty)
apply (simp add: reflE)
done
lemma (in PO) right_in_interval:
"[| a \ A; b \ A; interval r a b \ {} |] ==> b \ interval r a b"
apply (simp (no_asm_simp) add: interval_def)
apply (simp add: PO_imp_trans interval_not_empty)
apply (simp add: reflE)
done
subsection \<open>sublattice\<close>
lemma (in PO) sublattice_imp_CL:
"S <<= cl ==> (| pset = S, order = induced S r |) \ CompleteLattice"
by (simp add: sublattice_def CompleteLattice_def A_def r_def)
lemma (in CL) sublatticeI:
"[| S \ A; (| pset = S, order = induced S r |) \ CompleteLattice |]
==> S <<= cl"
by (simp add: sublattice_def A_def r_def)
subsection \<open>lub\<close>
lemma (in CL) lub_unique: "[| S \ A; isLub S cl x; isLub S cl L|] ==> x = L"
apply (rule antisymE)
apply (auto simp add: isLub_def r_def)
done
lemma (in CL) lub_upper: "[|S \ A; x \ S|] ==> (x, lub S cl) \ r"
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
apply (unfold lub_def least_def)
apply (rule some_equality [THEN ssubst])
apply (simp add: isLub_def)
apply (simp add: lub_unique A_def isLub_def)
apply (simp add: isLub_def r_def)
done
lemma (in CL) lub_least:
"[| S \ A; L \ A; \x \ S. (x,L) \ r |] ==> (lub S cl, L) \ r"
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
apply (unfold lub_def least_def)
apply (rule_tac s=x in some_equality [THEN ssubst])
apply (simp add: isLub_def)
apply (simp add: lub_unique A_def isLub_def)
apply (simp add: isLub_def r_def A_def)
done
lemma (in CL) lub_in_lattice: "S \ A ==> lub S cl \ A"
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
apply (unfold lub_def least_def)
apply (subst some_equality)
apply (simp add: isLub_def)
prefer 2 apply (simp add: isLub_def A_def)
apply (simp add: lub_unique A_def isLub_def)
done
lemma (in CL) lubI:
"[| S \ A; L \ A; \x \ S. (x,L) \ r;
\<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"
apply (rule lub_unique, assumption)
apply (simp add: isLub_def A_def r_def)
apply (unfold isLub_def)
apply (rule conjI)
apply (fold A_def r_def)
apply (rule lub_in_lattice, assumption)
apply (simp add: lub_upper lub_least)
done
lemma (in CL) lubIa: "[| S \ A; isLub S cl L |] ==> L = lub S cl"
by (simp add: lubI isLub_def A_def r_def)
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \ A"
by (simp add: isLub_def A_def)
lemma (in CL) isLub_upper: "[|isLub S cl L; y \ S|] ==> (y, L) \ r"
by (simp add: isLub_def r_def)
lemma (in CL) isLub_least:
"[| isLub S cl L; z \ A; \y \ S. (y, z) \ r|] ==> (L, z) \ r"
by (simp add: isLub_def A_def r_def)
lemma (in CL) isLubI:
"\L \ A; \y \ S. (y, L) \ r;
(\<forall>z \<in> A. (\<forall>y \<in> S. (y, z) \<in> r) \<longrightarrow> (L, z) \<in> r)\<rbrakk> \<Longrightarrow> isLub S cl L"
by (simp add: isLub_def A_def r_def)
subsection \<open>glb\<close>
lemma (in CL) glb_in_lattice: "S \ A ==> glb S cl \ A"
apply (subst glb_dual_lub)
apply (simp add: A_def)
apply (rule dualA_iff [THEN subst])
apply (rule CL.lub_in_lattice)
apply (rule CL.intro)
apply (rule PO.intro)
apply (rule dualPO)
apply (rule CL_axioms.intro)
apply (rule CL_dualCL)
apply (simp add: dualA_iff)
done
lemma (in CL) glb_lower: "[|S \ A; x \ S|] ==> (glb S cl, x) \ r"
apply (subst glb_dual_lub)
apply (simp add: r_def)
apply (rule dualr_iff [THEN subst])
apply (rule CL.lub_upper)
apply (rule CL.intro)
apply (rule PO.intro)
apply (rule dualPO)
apply (rule CL_axioms.intro)
apply (rule CL_dualCL)
apply (simp add: dualA_iff A_def, assumption)
done
text \<open>
Reduce the sublattice property by using substructural properties;
abandoned see \<open>Tarski_4.ML\<close>.
\<close>
declare (in CLF) f_cl [simp]
lemma (in CLF) [simp]:
"f \ pset cl \ pset cl \ monotone f (pset cl) (order cl)"
proof -
have "\u v. (v, u) \ CLF_set \ u \ {R \ pset v \ pset v. monotone R (pset v) (order v)}"
unfolding CLF_set_def using SigmaE2 by blast
hence F1: "\u v. (v, u) \ CLF_set \ u \ pset v \ pset v \ monotone u (pset v) (order v)"
using CollectE by blast
hence "Tarski.monotone f (pset cl) (order cl)" by (metis f_cl)
hence "(cl, f) \ CLF_set \ Tarski.monotone f (pset cl) (order cl)"
by (metis f_cl)
thus "f \ pset cl \ pset cl \ Tarski.monotone f (pset cl) (order cl)"
using F1 by metis
qed
lemma (in CLF) f_in_funcset: "f \ A \ A"
by (simp add: A_def)
lemma (in CLF) monotone_f: "monotone f A r"
by (simp add: A_def r_def)
(*never proved, 2007-01-22*)
declare (in CLF) CLF_set_def [simp] CL_dualCL [simp] monotone_dual [simp] dualA_iff [simp]
lemma (in CLF) CLF_dual: "(dual cl, f) \ CLF_set"
apply (simp del: dualA_iff)
apply (simp)
done
declare (in CLF) CLF_set_def[simp del] CL_dualCL[simp del] monotone_dual[simp del]
dualA_iff[simp del]
subsection \<open>fixed points\<close>
lemma fix_subset: "fix f A \ A"
by (auto simp add: fix_def)
lemma fix_imp_eq: "x \ fix f A ==> f x = x"
by (simp add: fix_def)
lemma fixf_subset:
"[| A \ B; x \ fix (\y \ A. f y) A |] ==> x \ fix f B"
by (simp add: fix_def, auto)
subsection \<open>lemmas for Tarski, lub\<close>
(*never proved, 2007-01-22*)
declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]
lemma (in CLF) lubH_le_flubH:
"H = {x. (x, f x) \ r & x \ A} ==> (lub H cl, f (lub H cl)) \ r"
apply (rule lub_least, fast)
apply (rule f_in_funcset [THEN funcset_mem])
apply (rule lub_in_lattice, fast)
\<comment> \<open>\<open>\<forall>x:H. (x, f (lub H r)) \<in> r\<close>\<close>
apply (rule ballI)
(*never proved, 2007-01-22*)
apply (rule transE)
\<comment> \<open>instantiates \<open>(x, ?z) \<in> order cl to (x, f x)\<close>,\<close>
\<comment> \<open>because of the definition of \<open>H\<close>\<close>
apply fast
\<comment> \<open>so it remains to show \<open>(f x, f (lub H cl)) \<in> r\<close>\<close>
apply (rule_tac f = "f" in monotoneE)
apply (rule monotone_f, fast)
apply (rule lub_in_lattice, fast)
apply (rule lub_upper, fast)
apply assumption
done
declare CL.lub_least[rule del] CLF.f_in_funcset[rule del]
funcset_mem[rule del] CL.lub_in_lattice[rule del]
PO.transE[rule del] PO.monotoneE[rule del]
CLF.monotone_f[rule del] CL.lub_upper[rule del]
(*never proved, 2007-01-22*)
declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro]
PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro]
CLF.lubH_le_flubH[simp]
lemma (in CLF) flubH_le_lubH:
"[| H = {x. (x, f x) \ r & x \ A} |] ==> (f (lub H cl), lub H cl) \ r"
apply (rule lub_upper, fast)
apply (rule_tac t = "H" in ssubst, assumption)
apply (rule CollectI)
by (metis (lifting) CO_refl_on lubH_le_flubH monotone_def monotone_f refl_onD1 refl_onD2)
declare CLF.f_in_funcset[rule del] funcset_mem[rule del]
CL.lub_in_lattice[rule del] PO.monotoneE[rule del]
CLF.monotone_f[rule del] CL.lub_upper[rule del]
CLF.lubH_le_flubH[simp del]
(*never proved, 2007-01-22*)
(* Single-step version fails. The conjecture clauses refer to local abstraction
functions (Frees). *)
lemma (in CLF) lubH_is_fixp:
"H = {x. (x, f x) \ r & x \ A} ==> lub H cl \ fix f A"
apply (simp add: fix_def)
apply (rule conjI)
proof -
assume A1: "H = {x. (x, f x) \ r \ x \ A}"
have F1: "\u v. v \ u \ u" by (metis Int_commute Int_lower1)
have "{R. (R, f R) \ r} \ {R. R \ A} = H" using A1 by (metis Collect_conj_eq)
hence "H \ {R. R \ A}" using F1 by metis
hence "H \ A" by (metis Collect_mem_eq)
hence "lub H cl \ A" by (metis lub_in_lattice)
thus "lub {x. (x, f x) \ r \ x \ A} cl \ A" using A1 by metis
next
assume A1: "H = {x. (x, f x) \ r \ x \ A}"
have F1: "\v. {R. R \ v} = v" by (metis Collect_mem_eq)
have F2: "\w u. {R. R \ u \ R \ w} = u \ w"
by (metis Collect_conj_eq Collect_mem_eq)
have F3: "\x v. {R. v R \ x} = v -` x" by (metis vimage_def)
hence F4: "A \ (\R. (R, f R)) -` r = H" using A1 by auto
hence F5: "(f (lub H cl), lub H cl) \ r"
by (metis A1 flubH_le_lubH)
have F6: "(lub H cl, f (lub H cl)) \ r"
by (metis A1 lubH_le_flubH)
have "(lub H cl, f (lub H cl)) \ r \ f (lub H cl) = lub H cl"
using F5 by (metis antisymE)
hence "f (lub H cl) = lub H cl" using F6 by metis
thus "H = {x. (x, f x) \ r \ x \ A}
\<Longrightarrow> f (lub {x. (x, f x) \<in> r \<and> x \<in> A} cl) =
lub {x. (x, f x) \<in> r \<and> x \<in> A} cl"
by metis
qed
lemma (in CLF) (*lubH_is_fixp:*)
"H = {x. (x, f x) \ r & x \ A} ==> lub H cl \ fix f A"
apply (simp add: fix_def)
apply (rule conjI)
apply (metis CO_refl_on lubH_le_flubH refl_onD1)
apply (metis antisymE flubH_le_lubH lubH_le_flubH)
done
lemma (in CLF) fix_in_H:
"[| H = {x. (x, f x) \ r & x \ A}; x \ P |] ==> x \ H"
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on
fix_subset [of f A, THEN subsetD])
lemma (in CLF) fixf_le_lubH:
"H = {x. (x, f x) \ r & x \ A} ==> \x \ fix f A. (x, lub H cl) \ r"
apply (rule ballI)
apply (rule lub_upper, fast)
apply (rule fix_in_H)
apply (simp_all add: P_def)
done
lemma (in CLF) lubH_least_fixf:
"H = {x. (x, f x) \ r & x \ A}
==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"
apply (metis P_def lubH_is_fixp)
done
subsection \<open>Tarski fixpoint theorem 1, first part\<close>
declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro]
CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp]
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \ r & x \ A} cl"
(*sledgehammer;*)
apply (rule sym)
apply (simp add: P_def)
apply (rule lubI)
apply (simp add: fix_subset)
using fix_subset lubH_is_fixp apply fastforce
apply (simp add: fixf_le_lubH)
using lubH_is_fixp apply blast
done
declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del]
CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del]
(*never proved, 2007-01-22*)
declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro]
PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp]
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \ r & x \ A} ==> glb H cl \ P"
\<comment> \<open>Tarski for glb\<close>
(*sledgehammer;*)
apply (simp add: glb_dual_lub P_def A_def r_def)
apply (rule dualA_iff [THEN subst])
apply (rule CLF.lubH_is_fixp)
apply (rule CLF.intro)
apply (rule CL.intro)
apply (rule PO.intro)
apply (rule dualPO)
apply (rule CL_axioms.intro)
apply (rule CL_dualCL)
apply (rule CLF_axioms.intro)
apply (rule CLF_dual)
apply (simp add: dualr_iff dualA_iff)
done
declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del]
PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del]
(*never proved, 2007-01-22*)
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \ r & x \ A} cl"
(*sledgehammer;*)
apply (simp add: glb_dual_lub P_def A_def r_def)
apply (rule dualA_iff [THEN subst])
(*never proved, 2007-01-22*)
(*sledgehammer;*)
apply (simp add: CLF.T_thm_1_lub [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro,
OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff)
done
subsection \<open>interval\<close>
declare (in CLF) CO_refl_on[simp] refl_on_def [simp]
lemma (in CLF) rel_imp_elem: "(x, y) \ r ==> x \ A"
by (metis CO_refl_on refl_onD1)
declare (in CLF) CO_refl_on[simp del] refl_on_def [simp del]
declare (in CLF) rel_imp_elem[intro]
declare interval_def [simp]
lemma (in CLF) interval_subset: "[| a \ A; b \ A |] ==> interval r a b \ A"
by (metis CO_refl_on interval_imp_mem refl_onD refl_onD2 rel_imp_elem subset_eq)
declare (in CLF) rel_imp_elem[rule del]
declare interval_def [simp del]
lemma (in CLF) intervalI:
"[| (a, x) \ r; (x, b) \ r |] ==> x \ interval r a b"
by (simp add: interval_def)
lemma (in CLF) interval_lemma1:
"[| S \ interval r a b; x \ S |] ==> (a, x) \ r"
by (unfold interval_def, fast)
lemma (in CLF) interval_lemma2:
"[| S \ interval r a b; x \ S |] ==> (x, b) \ r"
by (unfold interval_def, fast)
lemma (in CLF) a_less_lub:
"[| S \ A; S \ {};
\<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"
by (blast intro: transE)
lemma (in CLF) glb_less_b:
"[| S \ A; S \ {};
\<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"
by (blast intro: transE)
lemma (in CLF) S_intv_cl:
"[| a \ A; b \ A; S \ interval r a b |]==> S \ A"
by (simp add: subset_trans [OF _ interval_subset])
lemma (in CLF) L_in_interval:
"[| a \ A; b \ A; S \ interval r a b;
S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
(*WON'T TERMINATE
apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def)
*)
apply (rule intervalI)
apply (rule a_less_lub)
prefer 2 apply assumption
apply (simp add: S_intv_cl)
apply (rule ballI)
apply (simp add: interval_lemma1)
apply (simp add: isLub_upper)
\<comment> \<open>\<open>(L, b) \<in> r\<close>\<close>
apply (simp add: isLub_least interval_lemma2)
done
(*never proved, 2007-01-22*)
lemma (in CLF) G_in_interval:
"[| a \ A; b \ A; interval r a b \ {}; S \ interval r a b; isGlb S cl G;
S \<noteq> {} |] ==> G \<in> interval r a b"
apply (simp add: interval_dual)
apply (simp add: CLF.L_in_interval [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]
dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)
done
lemma (in CLF) intervalPO:
"[| a \ A; b \ A; interval r a b \ {} |]
==> (| pset = interval r a b, order = induced (interval r a b) r |)
\<in> PartialOrder"
proof -
assume A1: "a \ A"
assume "b \ A"
hence "\u. u \ A \ interval r u b \ A" by (metis interval_subset)
hence "interval r a b \ A" using A1 by metis
hence "interval r a b \ A" by metis
thus ?thesis by (metis po_subset_po)
qed
lemma (in CLF) intv_CL_lub:
"[| a \ A; b \ A; interval r a b \ {} |]
==> \<forall>S. S \<subseteq> interval r a b -->
(\<exists>L. isLub S (| pset = interval r a b,
order = induced (interval r a b) r |) L)"
apply (intro strip)
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
prefer 2 apply assumption
apply assumption
apply (erule exE)
\<comment> \<open>define the lub for the interval as\<close>
apply (rule_tac x = "if S = {} then a else L" in exI)
apply (simp (no_asm_simp) add: isLub_def split del: if_split)
apply (intro impI conjI)
\<comment> \<open>\<open>(if S = {} then a else L) \<in> interval r a b\<close>\<close>
apply (simp add: CL_imp_PO L_in_interval)
apply (simp add: left_in_interval)
\<comment> \<open>lub prop 1\<close>
apply (case_tac "S = {}")
\<comment> \<open>\<open>S = {}, y \<in> S = False => everything\<close>\<close>
apply fast
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close>
apply simp
\<comment> \<open>\<open>\<forall>y:S. (y, L) \<in> induced (interval r a b) r\<close>\<close>
apply (rule ballI)
apply (simp add: induced_def L_in_interval)
apply (rule conjI)
apply (rule subsetD)
apply (simp add: S_intv_cl, assumption)
apply (simp add: isLub_upper)
\<comment> \<open>\<open>\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r\<close>\<close>
apply (rule ballI)
apply (rule impI)
apply (case_tac "S = {}")
\<comment> \<open>\<open>S = {}\<close>\<close>
apply simp
apply (simp add: induced_def interval_def)
apply (rule conjI)
apply (rule reflE, assumption)
apply (rule interval_not_empty)
apply (rule CO_trans)
apply (simp add: interval_def)
\<comment> \<open>\<open>S \<noteq> {}\<close>\<close>
apply simp
apply (simp add: induced_def L_in_interval)
apply (rule isLub_least, assumption)
apply (rule subsetD)
prefer 2 apply assumption
apply (simp add: S_intv_cl, fast)
done
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
(*never proved, 2007-01-22*)
lemma (in CLF) interval_is_sublattice:
"[| a \ A; b \ A; interval r a b \ {} |]
==> interval r a b <<= cl"
(*sledgehammer *)
apply (rule sublatticeI)
apply (simp add: interval_subset)
(*never proved, 2007-01-22*)
(*sledgehammer *)
apply (rule CompleteLatticeI)
apply (simp add: intervalPO)
apply (simp add: intv_CL_lub)
apply (simp add: intv_CL_glb)
done
lemmas (in CLF) interv_is_compl_latt =
interval_is_sublattice [THEN sublattice_imp_CL]
subsection \<open>Top and Bottom\<close>
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
lemma (in CLF) Bot_in_lattice: "Bot cl \ A"
(*sledgehammer; *)
apply (simp add: Bot_def least_def)
apply (rule_tac a="glb A cl" in someI2)
apply (simp_all add: glb_in_lattice glb_lower
r_def [symmetric] A_def [symmetric])
done
(*first proved 2007-01-25 after relaxing relevance*)
lemma (in CLF) Top_in_lattice: "Top cl \ A"
(*sledgehammer;*)
apply (simp add: Top_dual_Bot A_def)
(*first proved 2007-01-25 after relaxing relevance*)
(*sledgehammer*)
apply (rule dualA_iff [THEN subst])
apply (blast intro!: CLF.Bot_in_lattice [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] dualPO CL_dualCL CLF_dual)
done
lemma (in CLF) Top_prop: "x \ A ==> (x, Top cl) \ r"
apply (simp add: Top_def greatest_def)
apply (rule_tac a="lub A cl" in someI2)
apply (rule someI2)
apply (simp_all add: lub_in_lattice lub_upper
r_def [symmetric] A_def [symmetric])
done
(*never proved, 2007-01-22*)
lemma (in CLF) Bot_prop: "x \ A ==> (Bot cl, x) \ r"
(*sledgehammer*)
apply (simp add: Bot_dual_Top r_def)
apply (rule dualr_iff [THEN subst])
apply (simp add: CLF.Top_prop [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]
dualA_iff A_def dualPO CL_dualCL CLF_dual)
done
lemma (in CLF) Top_intv_not_empty: "x \ A ==> interval r x (Top cl) \ {}"
apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE)
done
lemma (in CLF) Bot_intv_not_empty: "x \ A ==> interval r (Bot cl) x \ {}"
apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem)
done
subsection \<open>fixed points form a partial order\<close>
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \ PartialOrder"
by (simp add: P_def fix_subset po_subset_po)
(*first proved 2007-01-25 after relaxing relevance*)
declare (in Tarski) P_def[simp] Y_ss [simp]
declare fix_subset [intro] subset_trans [intro]
lemma (in Tarski) Y_subset_A: "Y \ A"
(*sledgehammer*)
apply (rule subset_trans [OF _ fix_subset])
apply (rule Y_ss [simplified P_def])
done
declare (in Tarski) P_def[simp del] Y_ss [simp del]
declare fix_subset [rule del] subset_trans [rule del]
lemma (in Tarski) lubY_in_A: "lub Y cl \ A"
by (rule Y_subset_A [THEN lub_in_lattice])
(*never proved, 2007-01-22*)
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \ r"
(*sledgehammer*)
apply (rule lub_least)
apply (rule Y_subset_A)
apply (rule f_in_funcset [THEN funcset_mem])
apply (rule lubY_in_A)
\<comment> \<open>\<open>Y \<subseteq> P ==> f x = x\<close>\<close>
apply (rule ballI)
(*sledgehammer *)
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
apply (erule Y_ss [simplified P_def, THEN subsetD])
\<comment> \<open>\<open>reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r\<close> by monotonicity\<close>
(*sledgehammer*)
apply (rule_tac f = "f" in monotoneE)
apply (rule monotone_f)
apply (simp add: Y_subset_A [THEN subsetD])
apply (rule lubY_in_A)
apply (simp add: lub_upper Y_subset_A)
done
(*first proved 2007-01-25 after relaxing relevance*)
lemma (in Tarski) intY1_subset: "intY1 \ A"
(*sledgehammer*)
apply (unfold intY1_def)
apply (rule interval_subset)
apply (rule lubY_in_A)
apply (rule Top_in_lattice)
done
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
(*never proved, 2007-01-22*)
lemma (in Tarski) intY1_f_closed: "x \ intY1 \ f x \ intY1"
(*sledgehammer*)
apply (simp add: intY1_def interval_def)
apply (rule conjI)
apply (rule transE)
apply (rule lubY_le_flubY)
\<comment> \<open>\<open>(f (lub Y cl), f x) \<in> r\<close>\<close>
(*sledgehammer [has been proved before now...]*)
apply (rule_tac f=f in monotoneE)
apply (rule monotone_f)
apply (rule lubY_in_A)
apply (simp add: intY1_def interval_def intY1_elem)
apply (simp add: intY1_def interval_def)
\<comment> \<open>\<open>(f x, Top cl) \<in> r\<close>\<close>
apply (rule Top_prop)
apply (rule f_in_funcset [THEN funcset_mem])
apply (simp add: intY1_def interval_def intY1_elem)
done
lemma (in Tarski) intY1_func: "(\x \ intY1. f x) \ intY1 \ intY1"
apply (rule restrict_in_funcset)
apply (metis intY1_f_closed restrict_in_funcset)
done
lemma (in Tarski) intY1_mono:
"monotone (\x \ intY1. f x) intY1 (induced intY1 r)"
(*sledgehammer *)
apply (auto simp add: monotone_def induced_def intY1_f_closed)
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
done
(*proof requires relaxing relevance: 2007-01-25*)
lemma (in Tarski) intY1_is_cl:
"(| pset = intY1, order = induced intY1 r |) \ CompleteLattice"
(*sledgehammer*)
apply (unfold intY1_def)
apply (rule interv_is_compl_latt)
apply (rule lubY_in_A)
apply (rule Top_in_lattice)
apply (rule Top_intv_not_empty)
apply (rule lubY_in_A)
done
(*never proved, 2007-01-22*)
lemma (in Tarski) v_in_P: "v \ P"
(*sledgehammer*)
apply (unfold P_def)
apply (rule_tac A = "intY1" in fixf_subset)
apply (rule intY1_subset)
apply (simp add: CLF.glbH_is_fixp [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]
v_def CL_imp_PO intY1_is_cl CLF_set_def intY1_func intY1_mono)
done
lemma (in Tarski) z_in_interval:
"[| z \ P; \y\Y. (y, z) \ induced P r |] ==> z \ intY1"
(*sledgehammer *)
apply (unfold intY1_def P_def)
apply (rule intervalI)
prefer 2
apply (erule fix_subset [THEN subsetD, THEN Top_prop])
apply (rule lub_least)
apply (rule Y_subset_A)
apply (fast elim!: fix_subset [THEN subsetD])
apply (simp add: induced_def)
done
lemma (in Tarski) f'z_in_int_rel: "[| z \ P; \y\Y. (y, z) \ induced P r |]
==> ((\<lambda>x \<in> intY1. f x) z, z) \<in> induced intY1 r"
using P_def fix_imp_eq indI intY1_elem reflE z_in_interval by fastforce
(*never proved, 2007-01-22*)
lemma (in Tarski) tarski_full_lemma:
"\L. isLub Y (| pset = P, order = induced P r |) L"
apply (rule_tac x = "v" in exI)
apply (simp add: isLub_def)
\<comment> \<open>\<open>v \<in> P\<close>\<close>
apply (simp add: v_in_P)
apply (rule conjI)
(*sledgehammer*)
\<comment> \<open>\<open>v\<close> is lub\<close>
\<comment> \<open>\<open>1. \<forall>y:Y. (y, v) \<in> induced P r\<close>\<close>
apply (rule ballI)
apply (simp add: induced_def subsetD v_in_P)
apply (rule conjI)
apply (erule Y_ss [THEN subsetD])
apply (rule_tac b = "lub Y cl" in transE)
apply (rule lub_upper)
apply (rule Y_subset_A, assumption)
apply (rule_tac b = "Top cl" in interval_imp_mem)
apply (simp add: v_def)
apply (fold intY1_def)
apply (rule CL.glb_in_lattice [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])
apply (simp add: CL_imp_PO intY1_is_cl, force)
\<comment> \<open>\<open>v\<close> is LEAST ub\<close>
apply clarify
apply (rule indI)
prefer 3 apply assumption
prefer 2 apply (simp add: v_in_P)
apply (unfold v_def)
(*never proved, 2007-01-22*)
(*sledgehammer*)
apply (rule indE)
apply (rule_tac [2] intY1_subset)
(*never proved, 2007-01-22*)
(*sledgehammer*)
apply (rule CL.glb_lower [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])
apply (simp add: CL_imp_PO intY1_is_cl)
apply force
apply (simp add: induced_def intY1_f_closed z_in_interval)
apply (simp add: P_def fix_imp_eq [of _ f A] reflE
fix_subset [of f A, THEN subsetD])
done
lemma CompleteLatticeI_simp:
"[| (| pset = A, order = r |) \ PartialOrder;
\<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |]
==> (| pset = A, order = r |) \<in> CompleteLattice"
by (simp add: CompleteLatticeI Rdual)
(*never proved, 2007-01-22*)
declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp]
Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro]
CompleteLatticeI_simp [intro]
theorem (in CLF) Tarski_full:
"(| pset = P, order = induced P r|) \ CompleteLattice"
(*sledgehammer*)
apply (rule CompleteLatticeI_simp)
apply (rule fixf_po, clarify)
(*never proved, 2007-01-22*)
(*sledgehammer*)
apply (simp add: P_def A_def r_def)
apply (blast intro!: Tarski.tarski_full_lemma [OF Tarski.intro, OF CLF.intro Tarski_axioms.intro,
OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] cl_po cl_co f_cl)
done
declare (in CLF) fixf_po [rule del] P_def [simp del] A_def [simp del] r_def [simp del]
Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del]
CompleteLatticeI_simp [rule del]
end
¤ Dauer der Verarbeitung: 0.37 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|