(* Title: Sequents/LK0.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
There may be printing problems if a seqent is in expanded normal form
(eta-expanded, beta-contracted).
*)
section \<open>Classical First-Order Sequent Calculus\<close>
theory LK0
imports Sequents
begin
setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc [])\<close>
class "term"
default_sort "term"
consts
Trueprop :: "two_seqi"
True :: o
False :: o
equal :: "['a,'a] \ o" (infixl "=" 50)
Not :: "o \ o" ("\ _" [40] 40)
conj :: "[o,o] \ o" (infixr "\" 35)
disj :: "[o,o] \ o" (infixr "\" 30)
imp :: "[o,o] \ o" (infixr "\" 25)
iff :: "[o,o] \ o" (infixr "\" 25)
The :: "('a \ o) \ 'a" (binder "THE " 10)
All :: "('a \ o) \ o" (binder "\" 10)
Ex :: "('a \ o) \ o" (binder "\" 10)
syntax
"_Trueprop" :: "two_seqe" ("((_)/ \ (_))" [6,6] 5)
parse_translation \<open>[(\<^syntax_const>\<open>_Trueprop\<close>, K (two_seq_tr \<^const_syntax>\<open>Trueprop\<close>))]\<close>
print_translation \<open>[(\<^const_syntax>\<open>Trueprop\<close>, K (two_seq_tr' \<^syntax_const>\<open>_Trueprop\<close>))]\<close>
abbreviation
not_equal (infixl "\" 50) where
"x \ y \ \ (x = y)"
axiomatization where
(*Structural rules: contraction, thinning, exchange [Soren Heilmann] *)
contRS: "$H \ $E, $S, $S, $F \ $H \ $E, $S, $F" and
contLS: "$H, $S, $S, $G \ $E \ $H, $S, $G \ $E" and
thinRS: "$H \ $E, $F \ $H \ $E, $S, $F" and
thinLS: "$H, $G \ $E \ $H, $S, $G \ $E" and
exchRS: "$H \ $E, $R, $S, $F \ $H \ $E, $S, $R, $F" and
exchLS: "$H, $R, $S, $G \ $E \ $H, $S, $R, $G \ $E" and
cut: "\$H \ $E, P; $H, P \ $E\ \ $H \ $E" and
(*Propositional rules*)
basic: "$H, P, $G \ $E, P, $F" and
conjR: "\$H\ $E, P, $F; $H\ $E, Q, $F\ \ $H\ $E, P \ Q, $F" and
conjL: "$H, P, Q, $G \ $E \ $H, P \ Q, $G \ $E" and
disjR: "$H \ $E, P, Q, $F \ $H \ $E, P \ Q, $F" and
disjL: "\$H, P, $G \ $E; $H, Q, $G \ $E\ \ $H, P \ Q, $G \ $E" and
impR: "$H, P \ $E, Q, $F \ $H \ $E, P \ Q, $F" and
impL: "\$H,$G \ $E,P; $H, Q, $G \ $E\ \ $H, P \ Q, $G \ $E" and
notR: "$H, P \ $E, $F \ $H \ $E, \ P, $F" and
notL: "$H, $G \ $E, P \ $H, \ P, $G \ $E" and
FalseL: "$H, False, $G \ $E" and
True_def: "True \ False \ False" and
iff_def: "P \ Q \ (P \ Q) \ (Q \ P)"
axiomatization where
(*Quantifiers*)
allR: "(\x. $H \ $E, P(x), $F) \ $H \ $E, \x. P(x), $F" and
allL: "$H, P(x), $G, \x. P(x) \ $E \ $H, \x. P(x), $G \ $E" and
exR: "$H \ $E, P(x), $F, \x. P(x) \ $H \ $E, \x. P(x), $F" and
exL: "(\x. $H, P(x), $G \ $E) \ $H, \x. P(x), $G \ $E" and
(*Equality*)
refl: "$H \ $E, a = a, $F" and
subst: "\G H E. $H(a), $G(a) \ $E(a) \ $H(b), a=b, $G(b) \ $E(b)"
(* Reflection *)
axiomatization where
eq_reflection: "\ x = y \ (x \ y)" and
iff_reflection: "\ P \ Q \ (P \ Q)"
(*Descriptions*)
axiomatization where
The: "\$H \ $E, P(a), $F; \x.$H, P(x) \ $E, x=a, $F\ \
$H \<turnstile> $E, P(THE x. P(x)), $F"
definition If :: "[o, 'a, 'a] \ 'a" ("(if (_)/ then (_)/ else (_))" 10)
where "If(P,x,y) \ THE z::'a. (P \ z = x) \ (\ P \ z = y)"
(** Structural Rules on formulas **)
(*contraction*)
lemma contR: "$H \ $E, P, P, $F \ $H \ $E, P, $F"
by (rule contRS)
lemma contL: "$H, P, P, $G \ $E \ $H, P, $G \ $E"
by (rule contLS)
(*thinning*)
lemma thinR: "$H \ $E, $F \ $H \ $E, P, $F"
by (rule thinRS)
lemma thinL: "$H, $G \ $E \ $H, P, $G \ $E"
by (rule thinLS)
(*exchange*)
lemma exchR: "$H \ $E, Q, P, $F \ $H \ $E, P, Q, $F"
by (rule exchRS)
lemma exchL: "$H, Q, P, $G \ $E \ $H, P, Q, $G \ $E"
by (rule exchLS)
ML \<open>
(*Cut and thin, replacing the right-side formula*)
fun cutR_tac ctxt s i =
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), s)] [] @{thm cut} i THEN
resolve_tac ctxt @{thms thinR} i
(*Cut and thin, replacing the left-side formula*)
fun cutL_tac ctxt s i =
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), s)] [] @{thm cut} i THEN
resolve_tac ctxt @{thms thinL} (i + 1)
\<close>
(** If-and-only-if rules **)
lemma iffR: "\$H,P \ $E,Q,$F; $H,Q \ $E,P,$F\ \ $H \ $E, P \ Q, $F"
apply (unfold iff_def)
apply (assumption | rule conjR impR)+
done
lemma iffL: "\$H,$G \ $E,P,Q; $H,Q,P,$G \ $E\ \ $H, P \ Q, $G \ $E"
apply (unfold iff_def)
apply (assumption | rule conjL impL basic)+
done
lemma iff_refl: "$H \ $E, (P \ P), $F"
apply (rule iffR basic)+
done
lemma TrueR: "$H \ $E, True, $F"
apply (unfold True_def)
apply (rule impR)
apply (rule basic)
done
(*Descriptions*)
lemma the_equality:
assumes p1: "$H \ $E, P(a), $F"
and p2: "\x. $H, P(x) \ $E, x=a, $F"
shows "$H \ $E, (THE x. P(x)) = a, $F"
apply (rule cut)
apply (rule_tac [2] p2)
apply (rule The, rule thinR, rule exchRS, rule p1)
apply (rule thinR, rule exchRS, rule p2)
done
(** Weakened quantifier rules. Incomplete, they let the search terminate.**)
lemma allL_thin: "$H, P(x), $G \ $E \ $H, \x. P(x), $G \ $E"
apply (rule allL)
apply (erule thinL)
done
lemma exR_thin: "$H \ $E, P(x), $F \ $H \ $E, \x. P(x), $F"
apply (rule exR)
apply (erule thinR)
done
(*The rules of LK*)
lemmas [safe] =
iffR iffL
notR notL
impR impL
disjR disjL
conjR conjL
FalseL TrueR
refl basic
ML \<open>val prop_pack = Cla.get_pack \<^context>\<close>
lemmas [safe] = exL allR
lemmas [unsafe] = the_equality exR_thin allL_thin
ML \<open>val LK_pack = Cla.get_pack \<^context>\<close>
ML \<open>
val LK_dup_pack =
Cla.put_pack prop_pack \<^context>
|> fold_rev Cla.add_safe @{thms allR exL}
|> fold_rev Cla.add_unsafe @{thms allL exR the_equality}
|> Cla.get_pack;
\<close>
method_setup fast_prop =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.fast_tac (Cla.put_pack prop_pack ctxt)))\<close>
method_setup fast_dup =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.fast_tac (Cla.put_pack LK_dup_pack ctxt)))\<close>
method_setup best_dup =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack LK_dup_pack ctxt)))\<close>
method_setup lem = \<open>
Attrib.thm >> (fn th => fn ctxt =>
SIMPLE_METHOD' (fn i =>
resolve_tac ctxt [@{thm thinR} RS @{thm cut}] i THEN
REPEAT (resolve_tac ctxt @{thms thinL} i) THEN
resolve_tac ctxt [th] i))
\<close>
lemma mp_R:
assumes major: "$H \ $E, $F, P \ Q"
and minor: "$H \ $E, $F, P"
shows "$H \ $E, Q, $F"
apply (rule thinRS [THEN cut], rule major)
apply step
apply (rule thinR, rule minor)
done
lemma mp_L:
assumes major: "$H, $G \ $E, P \ Q"
and minor: "$H, $G, Q \ $E"
shows "$H, P, $G \ $E"
apply (rule thinL [THEN cut], rule major)
apply step
apply (rule thinL, rule minor)
done
(** Two rules to generate left- and right- rules from implications **)
lemma R_of_imp:
assumes major: "\ P \ Q"
and minor: "$H \ $E, $F, P"
shows "$H \ $E, Q, $F"
apply (rule mp_R)
apply (rule_tac [2] minor)
apply (rule thinRS, rule major [THEN thinLS])
done
lemma L_of_imp:
assumes major: "\ P \ Q"
and minor: "$H, $G, Q \ $E"
shows "$H, P, $G \ $E"
apply (rule mp_L)
apply (rule_tac [2] minor)
apply (rule thinRS, rule major [THEN thinLS])
done
(*Can be used to create implications in a subgoal*)
lemma backwards_impR:
assumes prem: "$H, $G \ $E, $F, P \ Q"
shows "$H, P, $G \ $E, Q, $F"
apply (rule mp_L)
apply (rule_tac [2] basic)
apply (rule thinR, rule prem)
done
lemma conjunct1: "\P \ Q \ \P"
apply (erule thinR [THEN cut])
apply fast
done
lemma conjunct2: "\P \ Q \ \Q"
apply (erule thinR [THEN cut])
apply fast
done
lemma spec: "\ (\x. P(x)) \ \ P(x)"
apply (erule thinR [THEN cut])
apply fast
done
(** Equality **)
lemma sym: "\ a = b \ b = a"
by (safe add!: subst)
lemma trans: "\ a = b \ b = c \ a = c"
by (safe add!: subst)
(* Symmetry of equality in hypotheses *)
lemmas symL = sym [THEN L_of_imp]
(* Symmetry of equality in hypotheses *)
lemmas symR = sym [THEN R_of_imp]
lemma transR: "\$H\ $E, $F, a = b; $H\ $E, $F, b=c\ \ $H\ $E, a = c, $F"
by (rule trans [THEN R_of_imp, THEN mp_R])
(* Two theorms for rewriting only one instance of a definition:
the first for definitions of formulae and the second for terms *)
lemma def_imp_iff: "(A \ B) \ \ A \ B"
apply unfold
apply (rule iff_refl)
done
lemma meta_eq_to_obj_eq: "(A \ B) \ \ A = B"
apply unfold
apply (rule refl)
done
(** if-then-else rules **)
lemma if_True: "\ (if True then x else y) = x"
unfolding If_def by fast
lemma if_False: "\ (if False then x else y) = y"
unfolding If_def by fast
lemma if_P: "\ P \ \ (if P then x else y) = x"
apply (unfold If_def)
apply (erule thinR [THEN cut])
apply fast
done
lemma if_not_P: "\ \ P \ \ (if P then x else y) = y"
apply (unfold If_def)
apply (erule thinR [THEN cut])
apply fast
done
end
¤ Dauer der Verarbeitung: 0.16 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|