products/sources/formale sprachen/Java/openjdk-20-36_src/src/hotspot/share/gc/z image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: bytes_zero.hpp   Sprache: Unknown

/*
 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


// output_c.cpp - Class CPP file output routines for architecture definition

#include "adlc.hpp"

// Utilities to characterize effect statements
static bool is_def(int usedef) {
  switch(usedef) {
  case Component::DEF:
  case Component::USE_DEF: return truebreak;
  }
  return false;
}

// Define  an array containing the machine register names, strings.
static void defineRegNames(FILE *fp, RegisterForm *registers) {
  if (registers) {
    fprintf(fp,"\n");
    fprintf(fp,"// An array of character pointers to machine register names.\n");
    fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");

    // Output the register name for each register in the allocation classes
    RegDef *reg_def = NULL;
    RegDef *next = NULL;
    registers->reset_RegDefs();
    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
      next = registers->iter_RegDefs();
      const char *comma = (next != NULL) ? "," : " // no trailing comma";
      fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma);
    }

    // Finish defining enumeration
    fprintf(fp,"};\n");

    fprintf(fp,"\n");
    fprintf(fp,"// An array of character pointers to machine register names.\n");
    fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    reg_def = NULL;
    next = NULL;
    registers->reset_RegDefs();
    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
      next = registers->iter_RegDefs();
      const char *comma = (next != NULL) ? "," : " // no trailing comma";
      fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
    }
    // Finish defining array
    fprintf(fp,"\t};\n");
    fprintf(fp,"\n");

    fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");

  }
}

// Define an array containing the machine register encoding values
static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  if (registers) {
    fprintf(fp,"\n");
    fprintf(fp,"// An array of the machine register encode values\n");
    fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");

    // Output the register encoding for each register in the allocation classes
    RegDef *reg_def = NULL;
    RegDef *next    = NULL;
    registers->reset_RegDefs();
    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
      next = registers->iter_RegDefs();
      const char* register_encode = reg_def->register_encode();
      const char *comma = (next != NULL) ? "," : " // no trailing comma";
      int encval;
      if (!ADLParser::is_int_token(register_encode, encval)) {
        fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname);
      } else {
        // Output known constants in hex char format (backward compatibility).
        assert(encval < 256, "Exceeded supported width for register encoding");
        fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname);
      }
    }
    // Finish defining enumeration
    fprintf(fp,"};\n");

  } // Done defining array
}

// Output an enumeration of register class names
static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
  if (registers) {
    // Output an enumeration of register class names
    fprintf(fp,"\n");
    fprintf(fp,"// Enumeration of register class names\n");
    fprintf(fp, "enum machRegisterClass {\n");
    registers->_rclasses.reset();
    for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
      const char * class_name_to_upper = toUpper(class_name);
      fprintf(fp," %s,\n", class_name_to_upper);
      delete[] class_name_to_upper;
    }
    // Finish defining enumeration
    fprintf(fp, " _last_Mach_Reg_Class\n");
    fprintf(fp, "};\n");
  }
}

// Declare an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::declare_register_masks(FILE *fp_hpp) {
  const char  *rc_name;

  if (_register) {
    // Build enumeration of user-defined register classes.
    defineRegClassEnum(fp_hpp, _register);

    // Generate a list of register masks, one for each class.
    fprintf(fp_hpp,"\n");
    fprintf(fp_hpp,"// Register masks, one for each register class.\n");
    _register->_rclasses.reset();
    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
      RegClass *reg_class = _register->getRegClass(rc_name);
      assert(reg_class, "Using an undefined register class");
      reg_class->declare_register_masks(fp_hpp);
    }
  }
}

// Generate an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::build_register_masks(FILE *fp_cpp) {
  const char  *rc_name;

  if (_register) {
    // Generate a list of register masks, one for each class.
    fprintf(fp_cpp,"\n");
    fprintf(fp_cpp,"// Register masks, one for each register class.\n");
    _register->_rclasses.reset();
    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
      RegClass *reg_class = _register->getRegClass(rc_name);
      assert(reg_class, "Using an undefined register class");
      reg_class->build_register_masks(fp_cpp);
    }
  }
}

// Compute an index for an array in the pipeline_reads_NNN arrays
static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
{
  int templen = 1;
  int paramcount = 0;
  const char *paramname;

  if (pipeclass->_parameters.count() == 0)
    return -1;

  pipeclass->_parameters.reset();
  paramname = pipeclass->_parameters.iter();
  const PipeClassOperandForm *pipeopnd =
    (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
    pipeclass->_parameters.reset();

  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
    const PipeClassOperandForm *tmppipeopnd =
        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];

    if (tmppipeopnd)
      templen += 10 + (int)strlen(tmppipeopnd->_stage);
    else
      templen += 19;

    paramcount++;
  }

  // See if the count is zero
  if (paramcount == 0) {
    return -1;
  }

  char *operand_stages = new char [templen];
  operand_stages[0] = 0;
  int i = 0;
  templen = 0;

  pipeclass->_parameters.reset();
  paramname = pipeclass->_parameters.iter();
  pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
    pipeclass->_parameters.reset();

  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
    const PipeClassOperandForm *tmppipeopnd =
        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
    templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
      tmppipeopnd ? tmppipeopnd->_stage : "undefined",
      (++i < paramcount ? ',' : ' ') );
  }

  // See if the same string is in the table
  int ndx = pipeline_reads.index(operand_stages);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_reads.addName(operand_stages);
    ndx = pipeline_reads.index(operand_stages);

    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
      ndx+1, paramcount, operand_stages);
  }
  else
    delete [] operand_stages;

  return (ndx);
}

// Compute an index for an array in the pipeline_res_stages_NNN arrays
static int pipeline_res_stages_initializer(
  FILE *fp_cpp,
  PipelineForm *pipeline,
  NameList &pipeline_res_stages,
  PipeClassForm *pipeclass)
{
  const PipeClassResourceForm *piperesource;
  int * res_stages = new int [pipeline->_rescount];
  int i;

  for (i = 0; i < pipeline->_rescount; i++)
     res_stages[i] = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
    for (i = 0; i < pipeline->_rescount; i++)
      if ((1 << i) & used_mask) {
        int stage = pipeline->_stages.index(piperesource->_stage);
        if (res_stages[i] < stage+1)
          res_stages[i] = stage+1;
      }
  }

  // Compute the length needed for the resource list
  int commentlen = 0;
  int max_stage = 0;
  for (i = 0; i < pipeline->_rescount; i++) {
    if (res_stages[i] == 0) {
      if (max_stage < 9)
        max_stage = 9;
    }
    else {
      int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
      if (max_stage < stagelen)
        max_stage = stagelen;
    }

    commentlen += (int)strlen(pipeline->_reslist.name(i));
  }

  int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);

  // Allocate space for the resource list
  char * resource_stages = new char [templen];

  templen = 0;
  for (i = 0; i < pipeline->_rescount; i++) {
    const char * const resname =
      res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);

    templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
      resname, max_stage - (int)strlen(resname) + 1,
      (i < pipeline->_rescount-1) ? "," : "",
      pipeline->_reslist.name(i));
  }

  // See if the same string is in the table
  int ndx = pipeline_res_stages.index(resource_stages);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_res_stages.addName(resource_stages);
    ndx = pipeline_res_stages.index(resource_stages);

    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
      ndx+1, pipeline->_rescount, resource_stages);
  }
  else
    delete [] resource_stages;

  delete [] res_stages;

  return (ndx);
}

// Compute an index for an array in the pipeline_res_cycles_NNN arrays
static int pipeline_res_cycles_initializer(
  FILE *fp_cpp,
  PipelineForm *pipeline,
  NameList &pipeline_res_cycles,
  PipeClassForm *pipeclass)
{
  const PipeClassResourceForm *piperesource;
  int * res_cycles = new int [pipeline->_rescount];
  int i;

  for (i = 0; i < pipeline->_rescount; i++)
     res_cycles[i] = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
    for (i = 0; i < pipeline->_rescount; i++)
      if ((1 << i) & used_mask) {
        int cycles = piperesource->_cycles;
        if (res_cycles[i] < cycles)
          res_cycles[i] = cycles;
      }
  }

  // Pre-compute the string length
  int templen;
  int cyclelen = 0, commentlen = 0;
  int max_cycles = 0;
  char temp[32];

  for (i = 0; i < pipeline->_rescount; i++) {
    if (max_cycles < res_cycles[i])
      max_cycles = res_cycles[i];
    templen = sprintf(temp, "%d", res_cycles[i]);
    if (cyclelen < templen)
      cyclelen = templen;
    commentlen += (int)strlen(pipeline->_reslist.name(i));
  }

  templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;

  // Allocate space for the resource list
  char * resource_cycles = new char [templen];

  templen = 0;

  for (i = 0; i < pipeline->_rescount; i++) {
    templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
      cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
  }

  // See if the same string is in the table
  int ndx = pipeline_res_cycles.index(resource_cycles);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_res_cycles.addName(resource_cycles);
    ndx = pipeline_res_cycles.index(resource_cycles);

    fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
      ndx+1, pipeline->_rescount, resource_cycles);
  }
  else
    delete [] resource_cycles;

  delete [] res_cycles;

  return (ndx);
}

//typedef unsigned long long uint64_t;

// Compute an index for an array in the pipeline_res_mask_NNN arrays
static int pipeline_res_mask_initializer(
  FILE *fp_cpp,
  PipelineForm *pipeline,
  NameList &pipeline_res_mask,
  NameList &pipeline_res_args,
  PipeClassForm *pipeclass)
{
  const PipeClassResourceForm *piperesource;
  const uint rescount      = pipeline->_rescount;
  const uint maxcycleused  = pipeline->_maxcycleused;
  const uint cyclemasksize = (maxcycleused + 31) >> 5;

  int i, j;
  uint element_count = 0;
  uint *res_mask = new uint [cyclemasksize];
  uint resources_used             = 0;
  uint resources_used_exclusively = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
    element_count++;
  }

  // Pre-compute the string length
  int templen;
  int commentlen = 0;
  int max_cycles = 0;

  int cyclelen = ((maxcycleused + 3) >> 2);
  int masklen = (rescount + 3) >> 2;

  int cycledigit = 0;
  for (i = maxcycleused; i > 0; i /= 10)
    cycledigit++;

  int maskdigit = 0;
  for (i = rescount; i > 0; i /= 10)
    maskdigit++;

  static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
  static const char* pipeline_use_element    = "Pipeline_Use_Element";

  templen = 1 +
    (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
     (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;

  // Allocate space for the resource list
  char * resource_mask = new char [templen];
  char * last_comma = NULL;

  templen = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();

    if (!used_mask) {
      fprintf(stderr, "*** used_mask is 0 ***\n");
    }

    resources_used |= used_mask;

    uint lb, ub;

    for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
    for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);

    if (lb == ub) {
      resources_used_exclusively |= used_mask;
    }

    int formatlen =
      sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
        pipeline_use_element,
        masklen, used_mask,
        cycledigit, lb, cycledigit, ub,
        ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
        pipeline_use_cycle_mask);

    templen += formatlen;

    memset(res_mask, 0, cyclemasksize * sizeof(uint));

    int cycles = piperesource->_cycles;
    uint stage          = pipeline->_stages.index(piperesource->_stage);
    if ((uint)NameList::Not_in_list == stage) {
      fprintf(stderr,
              "pipeline_res_mask_initializer: "
              "semantic error: "
              "pipeline stage undeclared: %s\n",
              piperesource->_stage);
      exit(1);
    }
    uint upper_limit    = stage + cycles - 1;
    uint lower_limit    = stage - 1;
    uint upper_idx      = upper_limit >> 5;
    uint lower_idx      = lower_limit >> 5;
    uint upper_position = upper_limit & 0x1f;
    uint lower_position = lower_limit & 0x1f;

    uint mask = (((uint)1) << upper_position) - 1;

    while (upper_idx > lower_idx) {
      res_mask[upper_idx--] |= mask;
      mask = (uint)-1;
    }

    mask -= (((uint)1) << lower_position) - 1;
    res_mask[upper_idx] |= mask;

    for (j = cyclemasksize-1; j >= 0; j--) {
      formatlen =
        sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
      templen += formatlen;
    }

    resource_mask[templen++] = ')';
    resource_mask[templen++] = ')';
    last_comma = &resource_mask[templen];
    resource_mask[templen++] = ',';
    resource_mask[templen++] = '\n';
  }

  resource_mask[templen] = 0;
  if (last_comma) {
    last_comma[0] = ' ';
  }

  // See if the same string is in the table
  int ndx = pipeline_res_mask.index(resource_mask);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_res_mask.addName(resource_mask);
    ndx = pipeline_res_mask.index(resource_mask);

    if (strlen(resource_mask) > 0)
      fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
        ndx+1, element_count, resource_mask);

    // "0x012345678, 0x012345678, 4294967295"
    char* args = new char [36 + 1];

    int printed = sprintf(args, "0x%x, 0x%x, %u",
      resources_used, resources_used_exclusively, element_count);
    assert(printed <= 36, "overflow");

    pipeline_res_args.addName(args);
  }
  else {
    delete [] resource_mask;
  }

  delete [] res_mask;
//delete [] res_masks;

  return (ndx);
}

void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
  const char *classname;
  const char *resourcename;
  int resourcenamelen = 0;
  NameList pipeline_reads;
  NameList pipeline_res_stages;
  NameList pipeline_res_cycles;
  NameList pipeline_res_masks;
  NameList pipeline_res_args;
  const int default_latency = 1;
  const int non_operand_latency = 0;
  const int node_latency = 0;

  if (!_pipeline) {
    fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
    fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
    fprintf(fp_cpp, " return %d;\n", non_operand_latency);
    fprintf(fp_cpp, "}\n");
    return;
  }

  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
  fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
  fprintf(fp_cpp, " \"undefined\"");

  for (int s = 0; s < _pipeline->_stagecnt; s++)
    fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));

  fprintf(fp_cpp, "\n };\n\n");
  fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
    _pipeline->_stagecnt);
  fprintf(fp_cpp, "}\n");
  fprintf(fp_cpp, "#endif\n\n");

  fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
  fprintf(fp_cpp, " // See if the functional units overlap\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, " tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
  fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, " tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
  fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
  fprintf(fp_cpp, " if (predUse->multiple())\n");
  fprintf(fp_cpp, " continue;\n\n");
  fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
  fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
  fprintf(fp_cpp, " if (currUse->multiple())\n");
  fprintf(fp_cpp, " continue;\n\n");
  fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
  fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
  fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
  fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
  fprintf(fp_cpp, " y <<= 1;\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n\n");
  fprintf(fp_cpp, " // There is the potential for overlap\n");
  fprintf(fp_cpp, " return (start);\n");
  fprintf(fp_cpp, "}\n\n");
  fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
  fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
  fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
  fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n"span>);
  fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
  fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
  fprintf(fp_cpp, " if (predUse->_multiple) {\n");
  fprintf(fp_cpp, " uint min_delay = %d;\n",
    _pipeline->_maxcycleused+1);
  fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
  fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, " uint curr_delay = delay;\n");
  fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
  fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
  fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
  fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
  fprintf(fp_cpp, " y <<= 1;\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " else {\n");
  fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
  fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
  fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
  fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
  fprintf(fp_cpp, " y <<= 1;\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n\n");
  fprintf(fp_cpp, " return (delay);\n");
  fprintf(fp_cpp, "}\n\n");
  fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
  fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
  fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
  fprintf(fp_cpp, " if (predUse->_multiple) {\n");
  fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
  fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
  fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
  fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
  fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
  fprintf(fp_cpp, " break;\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " else {\n");
  fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
  fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
  fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, "}\n\n");

  fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
  fprintf(fp_cpp, " int const default_latency = 1;\n");
  fprintf(fp_cpp, "\n");
#if 0
  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, " tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n");
  fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n");
  fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
  fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
  fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
  fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
  fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, " tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
  fprintf(fp_cpp, " return (default_latency);\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
  fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, " tty->print(\"operand_latency: delta=%%d\\n\", delta);\n");
  fprintf(fp_cpp, " }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, " return (delta);\n");
  fprintf(fp_cpp, "}\n\n");

  if (!_pipeline)
    /* Do Nothing */;

  else if (_pipeline->_maxcycleused <= 32) {
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
    fprintf(fp_cpp, "}\n\n");
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
    fprintf(fp_cpp, "}\n\n");
  }
  else {
    uint l;
    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
    for (l = 1; l <= masklen; l++)
      fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
    fprintf(fp_cpp, ");\n");
    fprintf(fp_cpp, "}\n\n");
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
    for (l = 1; l <= masklen; l++)
      fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
    fprintf(fp_cpp, ");\n");
    fprintf(fp_cpp, "}\n\n");
    fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n "span>);
    for (l = 1; l <= masklen; l++)
      fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
    fprintf(fp_cpp, "\n}\n\n");
  }

  /* Get the length of all the resource names */
  for (_pipeline->_reslist.reset(), resourcenamelen = 0;
       (resourcename = _pipeline->_reslist.iter()) != NULL;
       resourcenamelen += (int)strlen(resourcename));

  // Create the pipeline class description

  fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
  fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");

  fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
  for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
    fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
    for (int i2 = masklen-1; i2 >= 0; i2--)
      fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
    fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
  }
  fprintf(fp_cpp, "};\n\n");

  fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
    _pipeline->_rescount);

  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
    fprintf(fp_cpp, "\n");
    fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
    int maxWriteStage = -1;
    int maxMoreInstrs = 0;
    int paramcount = 0;
    int i = 0;
    const char *paramname;
    int resource_count = (_pipeline->_rescount + 3) >> 2;

    // Scan the operands, looking for last output stage and number of inputs
    for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
      const PipeClassOperandForm *pipeopnd =
          (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
      if (pipeopnd) {
        if (pipeopnd->_iswrite) {
           int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
           int moreinsts = pipeopnd->_more_instrs;
          if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
            maxWriteStage = stagenum;
            maxMoreInstrs = moreinsts;
          }
        }
      }

      if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
        paramcount++;
    }

    // Create the list of stages for the operands that are read
    // Note that we will build a NameList to reduce the number of copies

    int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);

    int pipeline_res_stages_index = pipeline_res_stages_initializer(
      fp_cpp, _pipeline, pipeline_res_stages, pipeclass);

    int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
      fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);

    int pipeline_res_mask_index = pipeline_res_mask_initializer(
      fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);

#if 0
    // Process the Resources
    const PipeClassResourceForm *piperesource;

    unsigned resources_used = 0;
    unsigned exclusive_resources_used = 0;
    unsigned resource_groups = 0;
    for (pipeclass->_resUsage.reset();
         (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
      int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
      if (used_mask)
        resource_groups++;
      resources_used |= used_mask;
      if ((used_mask & (used_mask-1)) == 0)
        exclusive_resources_used |= used_mask;
    }

    if (resource_groups > 0) {
      fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
        pipeclass->_num, resource_groups);
      for (pipeclass->_resUsage.reset(), i = 1;
           (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
           i++ ) {
        int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
        if (used_mask) {
          fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
        }
      }
      fprintf(fp_cpp, "};\n\n");
    }
#endif

    // Create the pipeline class description
    fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
      pipeclass->_num);
    if (maxWriteStage < 0)
      fprintf(fp_cpp, "(uint)stage_undefined");
    else if (maxMoreInstrs == 0)
      fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
    else
      fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
    fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
      paramcount,
      pipeclass->hasFixedLatency() ? "true" : "false",
      pipeclass->fixedLatency(),
      pipeclass->InstructionCount(),
      pipeclass->hasBranchDelay() ? "true" : "false",
      pipeclass->hasMultipleBundles() ? "true" : "false",
      pipeclass->forceSerialization() ? "true" : "false",
      pipeclass->mayHaveNoCode() ? "true" : "false" );
    if (paramcount > 0) {
      fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
        pipeline_reads_index+1);
    }
    else
      fprintf(fp_cpp, " NULL,");
    fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
      pipeline_res_stages_index+1);
    fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
      pipeline_res_cycles_index+1);
    fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
      pipeline_res_args.name(pipeline_res_mask_index));
    if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
      fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
        pipeline_res_mask_index+1);
    else
      fprintf(fp_cpp, "NULL");
    fprintf(fp_cpp, "));\n");
  }

  // Generate the Node::latency method if _pipeline defined
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
  fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
  if (_pipeline) {
#if 0
    fprintf(fp_cpp, "#ifndef PRODUCT\n");
    fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
    fprintf(fp_cpp, " tty->print(\"%%4d->latency(%%d)\\n\", _idx, i);\n");
    fprintf(fp_cpp, " }\n");
    fprintf(fp_cpp, "#endif\n");
#endif
    fprintf(fp_cpp, " uint j;\n");
    fprintf(fp_cpp, " // verify in legal range for inputs\n");
    fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
    fprintf(fp_cpp, " // verify input is not null\n");
    fprintf(fp_cpp, " Node *pred = in(i);\n");
    fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
      non_operand_latency);
    fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
    fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
    fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
    fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
    fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
    fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
    fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
    fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
      node_latency);
    fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
    fprintf(fp_cpp, " j = m->oper_input_base();\n");
    fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
      non_operand_latency);
    fprintf(fp_cpp, " // determine which operand this is in\n");
    fprintf(fp_cpp, " uint n = m->num_opnds();\n");
    fprintf(fp_cpp, " int delta = %d;\n\n",
      non_operand_latency);
    fprintf(fp_cpp, " uint k;\n");
    fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
    fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
    fprintf(fp_cpp, " if (i < j)\n");
    fprintf(fp_cpp, " break;\n");
    fprintf(fp_cpp, " }\n");
    fprintf(fp_cpp, " if (k < n)\n");
    fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
    fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
  }
  else {
    fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
    fprintf(fp_cpp, " return %d;\n",
      non_operand_latency);
  }
  fprintf(fp_cpp, "}\n\n");

  // Output the list of nop nodes
  fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
  const char *nop;
  int nopcnt = 0;
  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );

  fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
  int i = 0;
  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
    fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
  }
  fprintf(fp_cpp, "};\n\n");
  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
  fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
  fprintf(fp_cpp, " \"\",\n");
  fprintf(fp_cpp, " \"use nop delay\",\n");
  fprintf(fp_cpp, " \"use unconditional delay\",\n");
  fprintf(fp_cpp, " \"use conditional delay\",\n");
  fprintf(fp_cpp, " \"used in conditional delay\",\n");
  fprintf(fp_cpp, " \"used in unconditional delay\",\n");
  fprintf(fp_cpp, " \"used in all conditional delays\",\n");
  fprintf(fp_cpp, " };\n\n");

  fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
  for (i = 0; i < _pipeline->_rescount; i++)
    fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' ' ');
  fprintf(fp_cpp, "};\n\n");

  // See if the same string is in the table
  fprintf(fp_cpp, " bool needs_comma = false;\n\n");
  fprintf(fp_cpp, " if (_flags) {\n");
  fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n");
  fprintf(fp_cpp, " needs_comma = true;\n");
  fprintf(fp_cpp, " };\n");
  fprintf(fp_cpp, " if (instr_count()) {\n");
  fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  fprintf(fp_cpp, " needs_comma = true;\n");
  fprintf(fp_cpp, " };\n");
  fprintf(fp_cpp, " uint r = resources_used();\n");
  fprintf(fp_cpp, " if (r) {\n");
  fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
  fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n");
  fprintf(fp_cpp, " needs_comma = true;\n");
  fprintf(fp_cpp, " };\n");
  fprintf(fp_cpp, " st->print(\"\\n\");\n");
  fprintf(fp_cpp, "}\n");
  fprintf(fp_cpp, "#endif\n");
}

// ---------------------------------------------------------------------------
//------------------------------Utilities to build Instruction Classes--------
// ---------------------------------------------------------------------------

static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
          node, regMask);
}

static void print_block_index(FILE *fp, int inst_position) {
  assert( inst_position >= 0, "Instruction number less than zero");
  fprintf(fp, "block_index");
  if( inst_position != 0 ) {
    fprintf(fp, " - %d", inst_position);
  }
}

// Scan the peepmatch and output a test for each instruction
static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  int         parent        = -1;
  int         inst_position = 0;
  const char* inst_name     = NULL;
  int         input         = 0;
  fprintf(fp, " // Check instruction sub-tree\n");
  pmatch->reset();
  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
       inst_name != NULL;
       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
    // If this is not a placeholder
    if( ! pmatch->is_placeholder() ) {
      // Define temporaries 'inst#', based on parent and parent's input index
      if( parent != -1 ) {                // root was initialized
        fprintf(fp, " // Identify previous instruction if inside this block\n");
        fprintf(fp, " if( ");
        print_block_index(fp, inst_position);
        fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
        print_block_index(fp, inst_position);
        fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
        fprintf(fp, "n->as_Mach() : NULL;\n }\n");
      }

      // When not the root
      // Test we have the correct instruction by comparing the rule.
      if( parent != -1 ) {
        fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
                inst_position, inst_position, inst_name);
      }
    } else {
      // Check that user did not try to constrain a placeholder
      assert( ! pconstraint->constrains_instruction(inst_position),
              "fatal(): Can not constrain a placeholder instruction");
    }
  }
}

// Build mapping for register indices, num_edges to input
static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  int         parent        = -1;
  int         inst_position = 0;
  const char* inst_name     = NULL;
  int         input         = 0;
  fprintf(fp, " // Build map to register info\n");
  pmatch->reset();
  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
       inst_name != NULL;
       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
    // If this is not a placeholder
    if( ! pmatch->is_placeholder() ) {
      // Define temporaries 'inst#', based on self's inst_position
      InstructForm *inst = globals[inst_name]->is_instruction();
      if( inst != NULL ) {
        char inst_prefix[]  = "instXXXX_";
        sprintf(inst_prefix, "inst%d_",   inst_position);
        char receiver[]     = "instXXXX->";
        sprintf(receiver,    "inst%d->", inst_position);
        inst->index_temps( fp, globals, inst_prefix, receiver );
      }
    }
  }
}

// Generate tests for the constraints
static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  fprintf(fp, "\n");
  fprintf(fp, " // Check constraints on sub-tree-leaves\n");

  // Build mapping from num_edges to local variables
  build_instruction_index_mapping( fp, globals, pmatch );

  // Build constraint tests
  if( pconstraint != NULL ) {
    fprintf(fp, " matches = matches &&");
    bool   first_constraint = true;
    while( pconstraint != NULL ) {
      // indentation and connecting '&&'
      const char *indentation = " ";
      fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));

      // Only have '==' relation implemented
      if( strcmp(pconstraint->_relation,"==") != 0 ) {
        assert( false"Unimplemented()" );
      }

      // LEFT
      int left_index       = pconstraint->_left_inst;
      const char *left_op  = pconstraint->_left_op;
      // Access info on the instructions whose operands are compared
      InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
      assert( inst_left, "Parser should guaranty this is an instruction");
      int left_op_base  = inst_left->oper_input_base(globals);
      // Access info on the operands being compared
      int left_op_index  = inst_left->operand_position(left_op, Component::USE);
      if( left_op_index == -1 ) {
        left_op_index = inst_left->operand_position(left_op, Component::DEF);
        if( left_op_index == -1 ) {
          left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
        }
      }
      assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
      ComponentList components_left = inst_left->_components;
      const char *left_comp_type = components_left.at(left_op_index)->_type;
      OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
      Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);


      // RIGHT
      int right_op_index = -1;
      int right_index      = pconstraint->_right_inst;
      const char *right_op = pconstraint->_right_op;
      if( right_index != -1 ) { // Match operand
        // Access info on the instructions whose operands are compared
        InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
        assert( inst_right, "Parser should guaranty this is an instruction");
        int right_op_base = inst_right->oper_input_base(globals);
        // Access info on the operands being compared
        right_op_index = inst_right->operand_position(right_op, Component::USE);
        if( right_op_index == -1 ) {
          right_op_index = inst_right->operand_position(right_op, Component::DEF);
          if( right_op_index == -1 ) {
            right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
          }
        }
        assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
        ComponentList components_right = inst_right->_components;
        const char *right_comp_type = components_right.at(right_op_index)->_type;
        OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
        Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
        assert( right_interface_type == left_interface_type, "Both must be same interface");

      } else {                  // Else match register
        // assert( false, "should be a register" );
      }

      //
      // Check for equivalence
      //
      // fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */ == /* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
      //         left_index, left_op_index, left_index, left_reg_index, left_index, left_op
      //         right_index, right_op, right_index, right_op_index, right_index, right_reg_index);
      // fprintf(fp, ")");
      //
      switch( left_interface_type ) {
      case Form::register_interface: {
        // Check that they are allocated to the same register
        // Need parameter for index position if not result operand
        char left_reg_index[] = ",inst4294967295_idx4294967295";
        if( left_op_index != 0 ) {
          // Must have index into operands
          sprintf(left_reg_index,",inst%u_idx%u", (unsigned)left_index, (unsigned)left_op_index);
        } else {
          strcpy(left_reg_index, "");
        }
        fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
                left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
        fprintf(fp, " == ");

        if( right_index != -1 ) {
          char right_reg_index[] = ",inst4294967295_idx4294967295";
          if( right_op_index != 0 ) {
            // Must have index into operands
            sprintf(right_reg_index,",inst%u_idx%u", (unsigned)right_index, (unsigned)right_op_index);
          } else {
            strcpy(right_reg_index, "");
          }
          fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
                  right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
        } else {
          fprintf(fp, "%s_enc", right_op );
        }
        fprintf(fp,")");
        break;
      }
      case Form::constant_interface: {
        // Compare the '->constant()' values
        fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
                left_index,  left_op_index,  left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
                right_index, right_op, right_index, right_op_index );
        break;
      }
      case Form::memory_interface: {
        // Compare 'base', 'index', 'scale', and 'disp'
        // base
        fprintf(fp, "( \n");
        fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
          left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
        // index
        fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
        // scale
        fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
                left_index,  left_op_index,  left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
                right_index, right_op, right_index, right_op_index );
        // disp
        fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
        fprintf(fp, ") \n");
        break;
      }
      case Form::conditional_interface: {
        // Compare the condition code being tested
        assert( false"Unimplemented()" );
        break;
      }
      default: {
        assert( false"ShouldNotReachHere()" );
        break;
      }
      }

      // Advance to next constraint
      pconstraint = pconstraint->next();
      first_constraint = false;
    }

    fprintf(fp, ";\n");
  }
}

// // EXPERIMENTAL -- TEMPORARY code
// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
//   int op_index = instr->operand_position(op_name, Component::USE);
//   if( op_index == -1 ) {
//     op_index = instr->operand_position(op_name, Component::DEF);
//     if( op_index == -1 ) {
//       op_index = instr->operand_position(op_name, Component::USE_DEF);
//     }
//   }
//   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
//
//   ComponentList components_right = instr->_components;
//   char *right_comp_type = components_right.at(op_index)->_type;
//   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
//   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
//
//   return;
// }

// Construct the new sub-tree
static void generate_peepreplace( FILE *fp, FormDict &globals, int peephole_number, PeepMatch *pmatch,
                                  PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  fprintf(fp, " // IF instructions and constraints matched\n");
  fprintf(fp, " if( matches ) {\n");
  fprintf(fp, " // generate the new sub-tree\n");
  fprintf(fp, " assert( true, \"Debug stopping point\");\n");
  if( preplace != NULL ) {
    // Get the root of the new sub-tree
    const char *root_inst = NULL;
    preplace->next_instruction(root_inst);
    InstructForm *root_form = globals[root_inst]->is_instruction();
    assert( root_form != NULL, "Replacement instruction was not previously defined");
    fprintf(fp, " %sNode *root = new %sNode();\n", root_inst, root_inst);

    int         inst_num;
    const char *op_name;
    int         opnds_index = 0;            // define result operand
    // Then install the use-operands for the new sub-tree
    // preplace->reset();             // reset breaks iteration
    for( preplace->next_operand( inst_num, op_name );
         op_name != NULL;
         preplace->next_operand( inst_num, op_name ) ) {
      InstructForm *inst_form;
      inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
      assert( inst_form, "Parser should guaranty this is an instruction");
      int inst_op_num = inst_form->operand_position(op_name, Component::USE);
      if( inst_op_num == NameList::Not_in_list )
        inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
      assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
      // find the name of the OperandForm from the local name
      const Form *form   = inst_form->_localNames[op_name];
      OperandForm  *op_form = form->is_operand();
      if( opnds_index == 0 ) {
        // Initial setup of new instruction
        fprintf(fp, " // ----- Initial setup -----\n");
        //
        // Add control edge for this node
        fprintf(fp, " root->add_req(_in[0]); // control edge\n");
        // Add unmatched edges from root of match tree
        int op_base = root_form->oper_input_base(globals);
        forint unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
          fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n",
                                          inst_num, unmatched_edge);
        }
        // If new instruction captures bottom type
        if( root_form->captures_bottom_type(globals) ) {
          // Get bottom type from instruction whose result we are replacing
          fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num);
        }
        // Define result register and result operand
        fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
        fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
        fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
        fprintf(fp, " // ----- Done with initial setup -----\n");
      } else {
        if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
          // Do not have ideal edges for constants after matching
          fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
                  inst_op_num, inst_num, inst_op_num,
                  inst_op_num, inst_num, inst_op_num+1, inst_op_num );
          fprintf(fp, " root->add_req( inst%d->in(x%d) );\n",
                  inst_num, inst_op_num );
        } else {
          fprintf(fp, " // no ideal edge for constants after matching\n");
        }
        fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
                opnds_index, inst_num, inst_op_num );
      }
      ++opnds_index;
    }
  }else {
    // Replacing subtree with empty-tree
    assert( false"ShouldNotReachHere();");
  }

  // Set output of the new node
  fprintf(fp, " inst0->replace_by(root);\n");
  // Mark the node as removed because peephole does not remove nodes from the graph
  for (int i = 0; i <= max_position; i++) {
    fprintf(fp, " inst%d->set_removed();\n", i);
    fprintf(fp, " cfg_->map_node_to_block(inst%d, nullptr);\n", i);
  }
  for (int i = 0; i <= max_position; i++) {
    fprintf(fp, " block->remove_node(block_index - %d);\n", i);
  }
  fprintf(fp, " block->insert_node(root, block_index - %d);\n", max_position);
  fprintf(fp, " cfg_->map_node_to_block(root, block);\n");
  // Return the peephole index
  fprintf(fp, " return %d; // return the peephole index;\n", peephole_number);
  fprintf(fp, " }\n");
}


// Define the Peephole method for an instruction node
void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  // Generate Peephole function header
  fprintf(fp, "int %sNode::peephole(Block* block, int block_index, PhaseCFG* cfg_, PhaseRegAlloc* ra_) {\n", node->_ident);
  fprintf(fp, " bool matches = true;\n");

  // Identify the maximum instruction position,
  // generate temporaries that hold current instruction
  //
  //   MachNode  *inst0 = NULL;
  //   ...
  //   MachNode  *instMAX = NULL;
  //
  int max_position = 0;
  Peephole *peep;
  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
    if (peep->procedure() != NULL) {
      continue;
    }
    PeepMatch *pmatch = peep->match();
    assert( pmatch != NULL, "fatal(), missing peepmatch rule");
    if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  }
  forint i = 0; i <= max_position; ++i ) {
    if( i == 0 ) {
      fprintf(fp, " MachNode *inst0 = this;\n");
    } else {
      fprintf(fp, " MachNode *inst%d = NULL;\n", i);
    }
  }

  // For each peephole rule in architecture description
  //   Construct a test for the desired instruction sub-tree
  //   then check the constraints
  //   If these match, Generate the new subtree
  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
    int         peephole_number = peep->peephole_number();
    PeepPredicate  *ppredicate  = peep->predicate();
    PeepMatch      *pmatch      = peep->match();
    PeepProcedure  *pprocedure  = peep->procedure();
    PeepConstraint *pconstraint = peep->constraints();
    PeepReplace    *preplace    = peep->replacement();

    // Root of this peephole is the current MachNode
    assert( true// %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
            "root of PeepMatch does not match instruction");

    // Make each peephole rule individually selectable
    fprintf(fp, " if( ((OptoPeepholeAt == -1) || (OptoPeepholeAt==%d)) && ( %s ) ) {\n",
            peephole_number, ppredicate != NULL ? ppredicate->rule() : "true");
    if (pprocedure == NULL) {
      fprintf(fp, " matches = true;\n");
      // Scan the peepmatch and output a test for each instruction
      check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );

      // Check constraints and build replacement inside scope
      fprintf(fp, " // If instruction subtree matches\n");
      fprintf(fp, " if( matches ) {\n");

      // Generate tests for the constraints
      check_peepconstraints( fp, _globalNames, pmatch, pconstraint );

      // Construct the new sub-tree
      generate_peepreplace( fp, _globalNames, peephole_number, pmatch, pconstraint, preplace, max_position );

      // End of scope for this peephole's constraints
      fprintf(fp, " }\n");
    } else {
      const char* replace_inst = NULL;
      preplace->next_instruction(replace_inst);
      // Generate the target instruction
      fprintf(fp, " auto replacing = [](){ return static_cast(new %sNode()); };\n", replace_inst);

      // Call the precedure
      fprintf(fp, " bool replacement = Peephole::%s(block, block_index, cfg_, ra_, replacing", pprocedure->name());

      int         parent        = -1;
      int         inst_position = 0;
      const char* inst_name     = NULL;
      int         input         = 0;
      pmatch->reset();
      for (pmatch->next_instruction(parent, inst_position, inst_name, input);
           inst_name != NULL;
           pmatch->next_instruction(parent, inst_position, inst_name, input)) {
        fprintf(fp, ", %s_rule", inst_name);
      }
      fprintf(fp, ");\n");

      // If substitution succeeded, return the new node
      fprintf(fp, " if (replacement) {\n");
      fprintf(fp, " return %d;\n", peephole_number);
      fprintf(fp, " }\n");
    }

    // Closing brace '}' to make each peephole rule individually selectable
    fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
    fprintf(fp, "\n");
  }

  fprintf(fp, " return -1; // No peephole rules matched\n");
  fprintf(fp, "}\n");
  fprintf(fp, "\n");
}

// Define the Expand method for an instruction node
void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  unsigned      cnt  = 0;          // Count nodes we have expand into
  unsigned      i;

  // Generate Expand function header
  fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  fprintf(fp, " Compile* C = Compile::current();\n");
  // Generate expand code
  if( node->expands() ) {
    const char   *opid;
    int           new_pos, exp_pos;
    const char   *new_id   = NULL;
    const Form   *frm      = NULL;
    InstructForm *new_inst = NULL;
    OperandForm  *new_oper = NULL;
    unsigned      numo     = node->num_opnds() +
                                node->_exprule->_newopers.count();

    // If necessary, generate any operands created in expand rule
    if (node->_exprule->_newopers.count()) {
      for(node->_exprule->_newopers.reset();
          (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
        frm = node->_localNames[new_id];
        assert(frm, "Invalid entry in new operands list of expand rule");
        new_oper = frm->is_operand();
        char *tmp = (char *)node->_exprule->_newopconst[new_id];
        if (tmp == NULL) {
          fprintf(fp," MachOper *op%d = new %sOper();\n",
                  cnt, new_oper->_ident);
        }
        else {
          fprintf(fp," MachOper *op%d = new %sOper(%s);\n",
                  cnt, new_oper->_ident, tmp);
        }
      }
    }
    cnt = 0;
    // Generate the temps to use for DAG building
    for(i = 0; i < numo; i++) {
      if (i < node->num_opnds()) {
        fprintf(fp," MachNode *tmp%d = this;\n", i);
      }
      else {
        fprintf(fp," MachNode *tmp%d = NULL;\n", i);
      }
    }
    // Build mapping from num_edges to local variables
    fprintf(fp," unsigned num0 = 0;\n");
    for( i = 1; i < node->num_opnds(); i++ ) {
      fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
    }

    // Build a mapping from operand index to input edges
    fprintf(fp," unsigned idx0 = oper_input_base();\n");

    // The order in which the memory input is added to a node is very
    // strange.  Store nodes get a memory input before Expand is
    // called and other nodes get it afterwards or before depending on
    // match order so oper_input_base is wrong during expansion.  This
    // code adjusts it so that expansion will work correctly.
    int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
    if (has_memory_edge) {
      fprintf(fp," if (mem == (Node*)1) {\n");
      fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
      fprintf(fp," }\n");
    }

    for( i = 0; i < node->num_opnds(); i++ ) {
      fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
              i+1,i,i);
    }

    // Declare variable to hold root of expansion
    fprintf(fp," MachNode *result = NULL;\n");

    // Iterate over the instructions 'node' expands into
    ExpandRule  *expand       = node->_exprule;
    NameAndList *expand_instr = NULL;
    for (expand->reset_instructions();
         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
      new_id = expand_instr->name();

      InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];

      if (!expand_instruction) {
        globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
                             node->_ident, new_id);
        continue;
      }

      // Build the node for the instruction
      fprintf(fp,"\n %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
      // Add control edge for this node
      fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
      // Build the operand for the value this node defines.
      Form *form = (Form*)_globalNames[new_id];
      assert(form, "'new_id' must be a defined form name");
      // Grab the InstructForm for the new instruction
      new_inst = form->is_instruction();
      assert(new_inst, "'new_id' must be an instruction name");
      if (node->is_ideal_if() && new_inst->is_ideal_if()) {
        fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
        fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
      }

      if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
        fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
        fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
      }

      // Fill in the bottom_type where requested
      if (node->captures_bottom_type(_globalNames) &&
--> --------------------

--> maximum size reached

--> --------------------

[ Verzeichnis aufwärts0.27unsichere Verbindung  Übersetzung europäischer Sprachen durch Browser  ]