products/Sources/formale Sprachen/Coq/theories/Vectors image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: VectorDef.v   Sprache: Coq

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** Definitions of Vectors and functions to use them

   Author: Pierre Boutillier
   Institution: PPS, INRIA 12/2010
*)


(**
Names should be "caml name in list.ml" if exists and order of arguments
have to be the same. complain if you see mistakes ... *)


Require Import Arith_base.
Require Vectors.Fin.
Import EqNotations.
Local Open Scope nat_scope.

(* Set Universe Polymorphism. *)

(**
A vector is a list of size n whose elements belong to a set A. *)


#[universes(template)]
Inductive t A : nat -> Type :=
  |nil : t A 0
  |cons : forall (h:A) (n:nat), t A n -> t A (S n).

Local Notation "[ ]" := (nil _) (format "[ ]").
Local Notation "h :: t" := (cons _ h _ t) (at level 60, right associativity).

Section SCHEMES.

(** An induction scheme for non-empty vectors *)

Definition rectS {A} (P:forall {n}, t A (S n) -> Type)
 (bas: forall a: A, P (a :: []))
 (rect: forall a {n} (v: t A (S n)), P v -> P (a :: v)) :=
 fix rectS_fix {n} (v: t A (S n)) : P v :=
 match v with
 |@cons _ a 0 v =>
   match v with
     |nil _ => bas a
     |_ => fun devil => False_ind (@IDProp) devil (* subterm !!! *)
   end
 |@cons _ a (S nn') v => rect a v (rectS_fix v)
 |_ => fun devil => False_ind (@IDProp) devil (* subterm !!! *)
 end.

(** A vector of length [0] is [nil] *)
Definition case0 {A} (P:t A 0 -> Type) (H:P (nil A)) v:P v :=
match v with
  |[] => H
  |_ => fun devil => False_ind (@IDProp) devil (* subterm !!! *)
end.

(** A vector of length [S _] is [cons] *)
Definition caseS {A} (P : forall {n}, t A (S n) -> Type)
  (H : forall h {n} t, @P n (h :: t)) {n} (v: t A (S n)) : P v :=
match v with
  |h :: t => H h t
  |_ => fun devil => False_ind (@IDProp) devil (* subterm !!! *)
end.

Definition caseS' {A} {n : nat} (v : t A (S n)) : forall (P : t A (S n) -> Type)
  (H : forall h t, P (h :: t)), P v :=
  match v with
  | h :: t => fun P H => H h t
  | _ => fun devil => False_rect (@IDProp) devil
  end.

(** An induction scheme for 2 vectors of same length *)
Definition rect2 {A B} (P:forall {n}, t A n -> t B n -> Type)
  (bas : P [] []) (rect : forall {n v1 v2}, P v1 v2 ->
    forall a b, P (a :: v1) (b :: v2)) :=
  fix rect2_fix {n} (v1 : t A n) : forall v2 : t B n, P v1 v2 :=
  match v1 with
  | [] => fun v2 => case0 _ bas v2
  | @cons _ h1 n' t1 => fun v2 =>
    caseS' v2 (fun v2' => P (h1::t1) v2') (fun h2 t2 => rect (rect2_fix t1 t2) h1 h2)
  end.

End SCHEMES.

Section BASES.
(** The first element of a non empty vector *)
Definition hd {A} := @caseS _ (fun n v => A) (fun h n t => h).
Global Arguments hd {A} {n} v.

(** The last element of an non empty vector *)
Definition last {A} := @rectS _ (fun _ _ => A) (fun a => a) (fun _ _ _ H => H).
Global Arguments last {A} {n} v.

(** Build a vector of n{^ th} [a] *)
Definition const {A} (a:A) := nat_rect _ [] (fun n x => cons _ a n x).

(** The [p]{^ th} element of a vector of length [m].

Computational behavior of this function should be the same as
ocaml function. *)

Definition nth {A} :=
fix nth_fix {m} (v' : t A m) (p : Fin.t m) {struct v'} : A :=
match p in Fin.t m' return t A m' -> A with
 |Fin.F1 => caseS (fun n v' => A) (fun h n t => h)
 |Fin.FS p' => fun v => (caseS (fun n v' => Fin.t n -> A)
   (fun h n t p0 => nth_fix t p0) v) p'
end v'.

(** An equivalent definition of [nth]. *)
Definition nth_order {A} {n} (v: t A n) {p} (H: p < n) :=
(nth v (Fin.of_nat_lt H)).

(** Put [a] at the p{^ th} place of [v] *)
Fixpoint replace {A n} (v : t A n) (p: Fin.t n) (a : A) {struct p}: t A n :=
  match p with
  | @Fin.F1 k => fun v': t A (S k) => caseS' v' _ (fun h t => a :: t)
  | @Fin.FS k p' => fun v' : t A (S k) =>
    (caseS' v' (fun _ => t A (S k)) (fun h t => h :: (replace t p' a)))
  end v.

(** Version of replace with [lt] *)
Definition replace_order {A n} (v: t A n) {p} (H: p < n) :=
replace v (Fin.of_nat_lt H).

(** Remove the first element of a non empty vector *)
Definition tl {A} := @caseS _ (fun n v => t A n) (fun h n t => t).
Global Arguments tl {A} {n} v.

(** Destruct a non empty vector *)
Definition uncons {A} {n : nat} (v : t A (S n)) : A * t A n := (hd v, tl v).

(** Remove last element of a non-empty vector *)
Definition shiftout {A} := @rectS _ (fun n _ => t A n) (fun a => [])
  (fun h _ _ H => h :: H).
Global Arguments shiftout {A} {n} v.

(** Add an element at the end of a vector *)
Fixpoint shiftin {A} {n:nat} (a : A) (v:t A n) : t A (S n) :=
match v with
  |[] => a :: []
  |h :: t => h :: (shiftin a t)
end.

(** Copy last element of a vector *)
Definition shiftrepeat {A} := @rectS _ (fun n _ => t A (S (S n)))
  (fun h =>  h :: h :: []) (fun h _ _ H => h :: H).
Global Arguments shiftrepeat {A} {n} v.

(** Take first [p] elements of a vector *)
Fixpoint take {A} {n} (p:nat) (le:p <= n) (v:t A n) : t A p := 
  match p as p return p <= n -> t A p with 
  | 0 => fun _ => [] 
  | S p' => match v in t _ n return S p' <= n -> t A (S p') with
    | []=> fun le => False_rect _ (Nat.nle_succ_0 p' le)
    | x::xs => fun le => x::take p' (le_S_n p' _ le) xs
    end 
  end le.

(** Remove [p] last elements of a vector *)
Lemma trunc : forall {A} {n} (p:nat), n > p -> t A n
  -> t A (n - p).
Proof.
  induction p as [| p f]; intros H v.
  rewrite <- minus_n_O.
  exact v.

  apply shiftout.

  rewrite minus_Sn_m.
  apply f.
  auto with *.
  exact v.
  auto with *.
Defined.

(** Concatenation of two vectors *)
Fixpoint append {A}{n}{p} (v:t A n) (w:t A p):t A (n+p) :=
  match v with
  | [] => w
  | a :: v' => a :: (append v' w)
  end.

Infix "++" := append.

(** Split a vector into two parts *)
Fixpoint splitat {A} (l : nat) {r : nat} :
  t A (l + r) -> t A l * t A r :=
  match l with
  | 0 => fun v => ([], v)
  | S l' => fun v =>
    let (v1, v2) := splitat l' (tl v) in
    (hd v::v1, v2)
  end.

(** Two definitions of the tail recursive function that appends two lists but
reverses the first one *)


(** This one has the exact expected computational behavior *)
Fixpoint rev_append_tail {A n p} (v : t A n) (w: t A p)
  : t A (tail_plus n p) :=
  match v with
  | [] => w
  | a :: v' => rev_append_tail v' (a :: w)
  end.

Import EqdepFacts.

(** This one has a better type *)
Definition rev_append {A n p} (v: t A n) (w: t A p)
  :t A (n + p) :=
  rew <- (plus_tail_plus n p) in (rev_append_tail v w).

(** rev [a₁ ; a₂ ; .. ; an] is [an ; a{n-1} ; .. ; a₁]

Caution : There is a lot of rewrite garbage in this definition *)

Definition rev {A n} (v : t A n) : t A n :=
 rew <- (plus_n_O _) in (rev_append v []).

End BASES.
Local Notation "v [@ p ]" := (nth v p) (at level 1).

Section ITERATORS.
(** * Here are special non dependent useful instantiation of induction schemes *)

(** Uniform application on the arguments of the vector *)
Definition map {A} {B} (f : A -> B) : forall {n} (v:t A n), t B n :=
  fix map_fix {n} (v : t A n) : t B n := match v with
  | [] => []
  | a :: v' => (f a) :: (map_fix v')
  end.

(** map2 g [x1 .. xn] [y1 .. yn] = [(g x1 y1) .. (g xn yn)] *)
Definition map2 {A B C} (g:A -> B -> C) :
  forall (n : nat), t A n -> t B n -> t C n :=
@rect2 _ _ (fun n _ _ => t C n) (nil C) (fun _ _ _ H a b => (g a b) :: H).
Global Arguments map2 {A B C} g {n} v1 v2.

(** fold_left f b [x1 .. xn] = f .. (f (f b x1) x2) .. xn *)
Definition fold_left {A B:Type} (f:B->A->B): forall (b:B) {n} (v:t A n), B :=
  fix fold_left_fix (b:B) {n} (v : t A n) : B := match v with
    | [] => b
    | a :: w => (fold_left_fix (f b a) w)
  end.

(** fold_right f [x1 .. xn] b = f x1 (f x2 .. (f xn b) .. ) *)
Definition fold_right {A B : Type} (f : A->B->B) :=
  fix fold_right_fix {n} (v : t A n) (b:B)
  {struct v} : B :=
  match v with
    | [] => b
    | a :: w => f a (fold_right_fix w b)
  end.

(** fold_right2 g c [x1 .. xn] [y1 .. yn] = g x1 y1 (g x2 y2 .. (g xn yn c) .. )
    c is before the vectors to be compliant with "refolding". *)

Definition fold_right2 {A B C} (g:A -> B -> C -> C) (c: C) :=
@rect2 _ _ (fun _ _ _ => C) c (fun _ _ _ H a b => g a b H).


(** fold_left2 f b [x1 .. xn] [y1 .. yn] = g .. (g (g a x1 y1) x2 y2) .. xn yn *)
Definition fold_left2 {A B C: Type} (f : A -> B -> C -> A) :=
fix fold_left2_fix (a : A) {n} (v : t B n) : t C n -> A :=
match v in t _ n0 return t C n0 -> A with
  |[] => fun w => case0 (fun _ => A) a w
  |@cons _ vh vn vt => fun w =>
    caseS' w (fun _ => A) (fun wh wt => fold_left2_fix (f a vh wh) vt wt)
end.

End ITERATORS.

Section SCANNING.
Inductive Forall {A} (P: A -> Prop): forall {n} (v: t A n), Prop :=
 |Forall_nil: Forall P []
 |Forall_cons {n} x (v: t A n): P x -> Forall P v -> Forall P (x::v).
Hint Constructors Forall : core.

Inductive Exists {A} (P:A->Prop): forall {n}, t A n -> Prop :=
 |Exists_cons_hd {m} x (v: t A m): P x -> Exists P (x::v)
 |Exists_cons_tl {m} x (v: t A m): Exists P v -> Exists P (x::v).
Hint Constructors Exists : core.

Inductive In {A} (a:A): forall {n}, t A n -> Prop :=
 |In_cons_hd {m} (v: t A m): In a (a::v)
 |In_cons_tl {m} x (v: t A m): In a v -> In a (x::v).
Hint Constructors In : core.

Inductive Forall2 {A B} (P:A->B->Prop): forall {n}, t A n -> t B n -> Prop :=
 |Forall2_nil: Forall2 P [] []
 |Forall2_cons {m} x1 x2 (v1:t A m) v2: P x1 x2 -> Forall2 P v1 v2 ->
    Forall2 P (x1::v1) (x2::v2).
Hint Constructors Forall2 : core.

Inductive Exists2 {A B} (P:A->B->Prop): forall {n}, t A n -> t B n -> Prop :=
 |Exists2_cons_hd {m} x1 x2 (v1: t A m) (v2: t B m): P x1 x2 -> Exists2 P (x1::v1) (x2::v2)
 |Exists2_cons_tl {m} x1 x2 (v1:t A m) v2: Exists2 P v1 v2 -> Exists2 P (x1::v1) (x2::v2).
Hint Constructors Exists2 : core.

End SCANNING.

Section VECTORLIST.
(** * vector <=> list functions *)

Fixpoint of_list {A} (l : list A) : t A (length l) :=
match l as l' return t A (length l') with
  |Datatypes.nil => []
  |(h :: tail)%list => (h :: (of_list tail))
end.

Definition to_list {A}{n} (v : t A n) : list A :=
Eval cbv delta beta in fold_right (fun h H => Datatypes.cons h H) v Datatypes.nil.
End VECTORLIST.

Module VectorNotations.
Declare Scope vector_scope.
Delimit Scope vector_scope with vector.
Notation "[ ]" := [] (format "[ ]") : vector_scope.
Notation "h :: t" := (h :: t) (at level 60, right associativity)
  : vector_scope.
Notation "[ x ]" := (x :: []) : vector_scope.
Notation "[ x ; y ; .. ; z ]" := (cons _ x _ (cons _ y _ .. (cons _ z _ (nil _)) ..)) : vector_scope.
Notation "v [@ p ]" := (nth v p) (at level 1, format "v [@ p ]") : vector_scope.
Infix "++" := append : vector_scope.
Open Scope vector_scope.
End VectorNotations.

¤ Dauer der Verarbeitung: 0.6 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff