(* Title: HOL/Nominal/Examples/Standardization.thy
Author: Stefan Berghofer and Tobias Nipkow
Copyright 2005, 2008 TU Muenchen
*)
section \<open>Standardization\<close>
theory Standardization
imports "HOL-Nominal.Nominal"
begin
text \<open>
The proof of the standardization theorem, as well as most of the theorems about
lambda calculus in the following sections, are taken from \<open>HOL/Lambda\<close>.
\<close>
subsection \<open>Lambda terms\<close>
atom_decl name
nominal_datatype lam =
Var "name"
| App "lam" "lam" (infixl "\" 200)
| Lam "\name\lam" ("Lam [_]._" [0, 10] 10)
instantiation lam :: size
begin
nominal_primrec size_lam
where
"size (Var n) = 0"
| "size (t \ u) = size t + size u + 1"
| "size (Lam [x].t) = size t + 1"
apply finite_guess+
apply (rule TrueI)+
apply (simp add: fresh_nat)
apply fresh_guess+
done
instance ..
end
nominal_primrec
subst :: "lam \ name \ lam \ lam" ("_[_::=_]" [300, 0, 0] 300)
where
subst_Var: "(Var x)[y::=s] = (if x=y then s else (Var x))"
| subst_App: "(t\<^sub>1 \ t\<^sub>2)[y::=s] = t\<^sub>1[y::=s] \ t\<^sub>2[y::=s]"
| subst_Lam: "x \ (y, s) \ (Lam [x].t)[y::=s] = (Lam [x].(t[y::=s]))"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)
apply(fresh_guess)+
done
lemma subst_eqvt [eqvt]:
"(pi::name prm) \ (t[x::=u]) = (pi \ t)[(pi \ x)::=(pi \ u)]"
by (nominal_induct t avoiding: x u rule: lam.strong_induct)
(perm_simp add: fresh_bij)+
lemma subst_rename:
"y \ t \ ([(y, x)] \ t)[y::=u] = t[x::=u]"
by (nominal_induct t avoiding: x y u rule: lam.strong_induct)
(simp_all add: fresh_atm calc_atm abs_fresh)
lemma fresh_subst:
"(x::name) \ t \ x \ u \ x \ t[y::=u]"
by (nominal_induct t avoiding: x y u rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)
lemma fresh_subst':
"(x::name) \ u \ x \ t[x::=u]"
by (nominal_induct t avoiding: x u rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)
lemma subst_forget: "(x::name) \ t \ t[x::=u] = t"
by (nominal_induct t avoiding: x u rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)
lemma subst_subst:
"x \ y \ x \ v \ t[y::=v][x::=u[y::=v]] = t[x::=u][y::=v]"
by (nominal_induct t avoiding: x y u v rule: lam.strong_induct)
(auto simp add: fresh_subst subst_forget)
declare subst_Var [simp del]
lemma subst_eq [simp]: "(Var x)[x::=u] = u"
by (simp add: subst_Var)
lemma subst_neq [simp]: "x \ y \ (Var x)[y::=u] = Var x"
by (simp add: subst_Var)
inductive beta :: "lam \ lam \ bool" (infixl "\\<^sub>\" 50)
where
beta: "x \ t \ (Lam [x].s) \ t \\<^sub>\ s[x::=t]"
| appL [simp, intro!]: "s \\<^sub>\ t \ s \ u \\<^sub>\ t \ u"
| appR [simp, intro!]: "s \\<^sub>\ t \ u \ s \\<^sub>\ u \ t"
| abs [simp, intro!]: "s \\<^sub>\ t \ (Lam [x].s) \\<^sub>\ (Lam [x].t)"
equivariance beta
nominal_inductive beta
by (simp_all add: abs_fresh fresh_subst')
lemma better_beta [simp, intro!]: "(Lam [x].s) \ t \\<^sub>\ s[x::=t]"
proof -
obtain y::name where y: "y \ (x, s, t)"
by (rule exists_fresh) (rule fin_supp)
then have "y \ t" by simp
then have "(Lam [y]. [(y, x)] \ s) \ t \\<^sub>\ ([(y, x)] \ s)[y::=t]"
by (rule beta)
moreover from y have "(Lam [x].s) = (Lam [y]. [(y, x)] \ s)"
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
ultimately show ?thesis using y by (simp add: subst_rename)
qed
abbreviation
beta_reds :: "lam \ lam \ bool" (infixl "\\<^sub>\\<^sup>*" 50) where
"s \\<^sub>\\<^sup>* t \ beta\<^sup>*\<^sup>* s t"
subsection \<open>Application of a term to a list of terms\<close>
abbreviation
list_application :: "lam \ lam list \ lam" (infixl "\\" 150) where
"t \\ ts \ foldl (\) t ts"
lemma apps_eq_tail_conv [iff]: "(r \\ ts = s \\ ts) = (r = s)"
by (induct ts rule: rev_induct) (auto simp add: lam.inject)
lemma Var_eq_apps_conv [iff]: "(Var m = s \\ ss) = (Var m = s \ ss = [])"
by (induct ss arbitrary: s) auto
lemma Var_apps_eq_Var_apps_conv [iff]:
"(Var m \\ rs = Var n \\ ss) = (m = n \ rs = ss)"
apply (induct rs arbitrary: ss rule: rev_induct)
apply (simp add: lam.inject)
apply blast
apply (induct_tac ss rule: rev_induct)
apply (auto simp add: lam.inject)
done
lemma App_eq_foldl_conv:
"(r \ s = t \\ ts) =
(if ts = [] then r \<degree> s = t
else (\<exists>ss. ts = ss @ [s] \<and> r = t \<degree>\<degree> ss))"
apply (rule_tac xs = ts in rev_exhaust)
apply (auto simp add: lam.inject)
done
lemma Abs_eq_apps_conv [iff]:
"((Lam [x].r) = s \\ ss) = ((Lam [x].r) = s \ ss = [])"
by (induct ss rule: rev_induct) auto
lemma apps_eq_Abs_conv [iff]: "(s \\ ss = (Lam [x].r)) = (s = (Lam [x].r) \ ss = [])"
by (induct ss rule: rev_induct) auto
lemma Abs_App_neq_Var_apps [iff]:
"(Lam [x].s) \ t \ Var n \\ ss"
by (induct ss arbitrary: s t rule: rev_induct) (auto simp add: lam.inject)
lemma Var_apps_neq_Abs_apps [iff]:
"Var n \\ ts \ (Lam [x].r) \\ ss"
apply (induct ss arbitrary: ts rule: rev_induct)
apply simp
apply (induct_tac ts rule: rev_induct)
apply (auto simp add: lam.inject)
done
lemma ex_head_tail:
"\ts h. t = h \\ ts \ ((\n. h = Var n) \ (\x u. h = (Lam [x].u)))"
apply (induct t rule: lam.induct)
apply (metis foldl_Nil)
apply (metis foldl_Cons foldl_Nil foldl_append)
apply (metis foldl_Nil)
done
lemma size_apps [simp]:
"size (r \\ rs) = size r + foldl (+) 0 (map size rs) + length rs"
by (induct rs rule: rev_induct) auto
lemma lem0: "(0::nat) < k \ m \ n \ m < n + k"
by simp
lemma subst_map [simp]:
"(t \\ ts)[x::=u] = t[x::=u] \\ map (\t. t[x::=u]) ts"
by (induct ts arbitrary: t) simp_all
lemma app_last: "(t \\ ts) \ u = t \\ (ts @ [u])"
by simp
lemma perm_apps [eqvt]:
"(pi::name prm) \ (t \\ ts) = ((pi \ t) \\ (pi \ ts))"
by (induct ts rule: rev_induct) (auto simp add: append_eqvt)
lemma fresh_apps [simp]: "(x::name) \ (t \\ ts) = (x \ t \ x \ ts)"
by (induct ts rule: rev_induct)
(auto simp add: fresh_list_append fresh_list_nil fresh_list_cons)
text \<open>A customized induction schema for \<open>\<degree>\<degree>\<close>.\<close>
lemma lem:
assumes "\n ts (z::'a::fs_name). (\z. \t \ set ts. P z t) \ P z (Var n \\ ts)"
and "\x u ts z. x \ z \ (\z. P z u) \ (\z. \t \ set ts. P z t) \ P z ((Lam [x].u) \\ ts)"
shows "size t = n \ P z t"
apply (induct n arbitrary: t z rule: nat_less_induct)
apply (cut_tac t = t in ex_head_tail)
apply clarify
apply (erule disjE)
apply clarify
apply (rule assms)
apply clarify
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule impE, rule refl, erule spec)
apply simp
apply (simp only: foldl_conv_fold add.commute fold_plus_sum_list_rev)
apply (fastforce simp add: sum_list_map_remove1)
apply clarify
apply (subgoal_tac "\y::name. y \ (x, u, z)")
prefer 2
apply (blast intro: exists_fresh' fin_supp)
apply (erule exE)
apply (subgoal_tac "(Lam [x].u) = (Lam [y].([(y, x)] \ u))")
prefer 2
apply (auto simp add: lam.inject alpha' fresh_prod fresh_atm)[]
apply (simp (no_asm_simp))
apply (rule assms)
apply (simp add: fresh_prod)
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule impE, rule refl, erule spec)
apply simp
apply clarify
apply (erule allE, erule impE)
prefer 2
apply blast
apply simp
apply (simp only: foldl_conv_fold add.commute fold_plus_sum_list_rev)
apply (fastforce simp add: sum_list_map_remove1)
done
theorem Apps_lam_induct:
assumes "\n ts (z::'a::fs_name). (\z. \t \ set ts. P z t) \ P z (Var n \\ ts)"
and "\x u ts z. x \ z \ (\z. P z u) \ (\z. \t \ set ts. P z t) \ P z ((Lam [x].u) \\ ts)"
shows "P z t"
apply (rule_tac t = t and z = z in lem)
prefer 3
apply (rule refl)
using assms apply blast+
done
subsection \<open>Congruence rules\<close>
lemma apps_preserves_beta [simp]:
"r \\<^sub>\ s \ r \\ ss \\<^sub>\ s \\ ss"
by (induct ss rule: rev_induct) auto
lemma rtrancl_beta_Abs [intro!]:
"s \\<^sub>\\<^sup>* s' \ (Lam [x].s) \\<^sub>\\<^sup>* (Lam [x].s')"
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
lemma rtrancl_beta_AppL:
"s \\<^sub>\\<^sup>* s' \ s \ t \\<^sub>\\<^sup>* s' \ t"
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
lemma rtrancl_beta_AppR:
"t \\<^sub>\\<^sup>* t' \ s \ t \\<^sub>\\<^sup>* s \ t'"
by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
lemma rtrancl_beta_App [intro]:
"s \\<^sub>\\<^sup>* s' \ t \\<^sub>\\<^sup>* t' \ s \ t \\<^sub>\\<^sup>* s' \ t'"
by (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR intro: rtranclp_trans)
subsection \<open>Lifting an order to lists of elements\<close>
definition
step1 :: "('a \ 'a \ bool) \ 'a list \ 'a list \ bool" where
"step1 r =
(\<lambda>ys xs. \<exists>us z z' vs. xs = us @ z # vs \<and> r z' z \<and> ys =
us @ z' # vs)"
lemma not_Nil_step1 [iff]: "\ step1 r [] xs"
apply (unfold step1_def)
apply blast
done
lemma not_step1_Nil [iff]: "\ step1 r xs []"
apply (unfold step1_def)
apply blast
done
lemma Cons_step1_Cons [iff]:
"(step1 r (y # ys) (x # xs)) =
(r y x \<and> xs = ys \<or> x = y \<and> step1 r ys xs)"
apply (unfold step1_def)
apply (rule iffI)
apply (erule exE)
apply (rename_tac ts)
apply (case_tac ts)
apply fastforce
apply force
apply (erule disjE)
apply blast
apply (blast intro: Cons_eq_appendI)
done
lemma append_step1I:
"step1 r ys xs \ vs = us \ ys = xs \ step1 r vs us
\<Longrightarrow> step1 r (ys @ vs) (xs @ us)"
apply (unfold step1_def)
apply auto
apply blast
apply (blast intro: append_eq_appendI)
done
lemma Cons_step1E [elim!]:
assumes "step1 r ys (x # xs)"
and "\y. ys = y # xs \ r y x \ R"
and "\zs. ys = x # zs \ step1 r zs xs \ R"
shows R
using assms
apply (cases ys)
apply (simp add: step1_def)
apply blast
done
lemma Snoc_step1_SnocD:
"step1 r (ys @ [y]) (xs @ [x])
\<Longrightarrow> (step1 r ys xs \<and> y = x \<or> ys = xs \<and> r y x)"
apply (unfold step1_def)
apply (clarify del: disjCI)
apply (rename_tac vs)
apply (rule_tac xs = vs in rev_exhaust)
apply force
apply simp
apply blast
done
subsection \<open>Lifting beta-reduction to lists\<close>
abbreviation
list_beta :: "lam list \ lam list \ bool" (infixl "[\\<^sub>\]\<^sub>1" 50) where
"rs [\\<^sub>\]\<^sub>1 ss \ step1 beta rs ss"
lemma head_Var_reduction:
"Var n \\ rs \\<^sub>\ v \ \ss. rs [\\<^sub>\]\<^sub>1 ss \ v = Var n \\ ss"
apply (induct u \<equiv> "Var n \<degree>\<degree> rs" v arbitrary: rs set: beta)
apply simp
apply (rule_tac xs = rs in rev_exhaust)
apply simp
apply (atomize, force intro: append_step1I iff: lam.inject)
apply (rule_tac xs = rs in rev_exhaust)
apply simp
apply (auto 0 3 intro: disjI2 [THEN append_step1I] simp add: lam.inject)
done
lemma apps_betasE [case_names appL appR beta, consumes 1]:
assumes major: "r \\ rs \\<^sub>\ s"
and cases: "\r'. r \\<^sub>\ r' \ s = r' \\ rs \ R"
"\rs'. rs [\\<^sub>\]\<^sub>1 rs' \ s = r \\ rs' \ R"
"\t u us. (x \ r \ r = (Lam [x].t) \ rs = u # us \ s = t[x::=u] \\ us) \ R"
shows R
proof -
from major have
"(\r'. r \\<^sub>\ r' \ s = r' \\ rs) \
(\<exists>rs'. rs [\<rightarrow>\<^sub>\<beta>]\<^sub>1 rs' \<and> s = r \<degree>\<degree> rs') \<or>
(\<exists>t u us. x \<sharp> r \<longrightarrow> r = (Lam [x].t) \<and> rs = u # us \<and> s = t[x::=u] \<degree>\<degree> us)"
supply [[simproc del: defined_all]]
apply (nominal_induct u \<equiv> "r \<degree>\<degree> rs" s avoiding: x r rs rule: beta.strong_induct)
apply (simp add: App_eq_foldl_conv)
apply (split if_split_asm)
apply simp
apply blast
apply simp
apply (rule impI)+
apply (rule disjI2)
apply (rule disjI2)
apply (subgoal_tac "r = [(xa, x)] \ (Lam [x].s)")
prefer 2
apply (simp add: perm_fresh_fresh)
apply (drule conjunct1)
apply (subgoal_tac "r = (Lam [xa]. [(xa, x)] \ s)")
prefer 2
apply (simp add: calc_atm)
apply (thin_tac "r = _")
apply simp
apply (rule exI)
apply (rule conjI)
apply (rule refl)
apply (simp add: abs_fresh fresh_atm fresh_left calc_atm subst_rename)
apply (drule App_eq_foldl_conv [THEN iffD1])
apply (split if_split_asm)
apply simp
apply blast
apply (force intro!: disjI1 [THEN append_step1I] simp add: fresh_list_append)
apply (drule App_eq_foldl_conv [THEN iffD1])
apply (split if_split_asm)
apply simp
apply blast
apply (clarify, auto 0 3 intro!: exI intro: append_step1I)
done
with cases show ?thesis by blast
qed
lemma apps_preserves_betas [simp]:
"rs [\\<^sub>\]\<^sub>1 ss \ r \\ rs \\<^sub>\ r \\ ss"
apply (induct rs arbitrary: ss rule: rev_induct)
apply simp
apply simp
apply (rule_tac xs = ss in rev_exhaust)
apply simp
apply simp
apply (drule Snoc_step1_SnocD)
apply blast
done
subsection \<open>Standard reduction relation\<close>
text \<open>
Based on lecture notes by Ralph Matthes,
original proof idea due to Ralph Loader.
\<close>
declare listrel_mono [mono_set]
lemma listrelp_eqvt [eqvt]:
fixes f :: "'a::pt_name \ 'b::pt_name \ bool"
assumes xy: "listrelp f (x::'a::pt_name list) y"
shows "listrelp ((pi::name prm) \ f) (pi \ x) (pi \ y)" using xy
by induct (simp_all add: listrelp.intros perm_app [symmetric])
inductive
sred :: "lam \ lam \ bool" (infixl "\\<^sub>s" 50)
and sredlist :: "lam list \ lam list \ bool" (infixl "[\\<^sub>s]" 50)
where
"s [\\<^sub>s] t \ listrelp (\\<^sub>s) s t"
| Var: "rs [\\<^sub>s] rs' \ Var x \\ rs \\<^sub>s Var x \\ rs'"
| Abs: "x \ (ss, ss') \ r \\<^sub>s r' \ ss [\\<^sub>s] ss' \ (Lam [x].r) \\ ss \\<^sub>s (Lam [x].r') \\ ss'"
| Beta: "x \ (s, ss, t) \ r[x::=s] \\ ss \\<^sub>s t \ (Lam [x].r) \ s \\ ss \\<^sub>s t"
equivariance sred
nominal_inductive sred
by (simp add: abs_fresh)+
lemma better_sred_Abs:
assumes H1: "r \\<^sub>s r'"
and H2: "ss [\\<^sub>s] ss'"
shows "(Lam [x].r) \\ ss \\<^sub>s (Lam [x].r') \\ ss'"
proof -
obtain y::name where y: "y \ (x, r, r', ss, ss')"
by (rule exists_fresh) (rule fin_supp)
then have "y \ (ss, ss')" by simp
moreover from H1 have "[(y, x)] \ (r \\<^sub>s r')" by (rule perm_boolI)
then have "([(y, x)] \ r) \\<^sub>s ([(y, x)] \ r')" by (simp add: eqvts)
ultimately have "(Lam [y]. [(y, x)] \ r) \\ ss \\<^sub>s (Lam [y]. [(y, x)] \ r') \\ ss'" using H2
by (rule sred.Abs)
moreover from y have "(Lam [x].r) = (Lam [y]. [(y, x)] \ r)"
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
moreover from y have "(Lam [x].r') = (Lam [y]. [(y, x)] \ r')"
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
ultimately show ?thesis by simp
qed
lemma better_sred_Beta:
assumes H: "r[x::=s] \\ ss \\<^sub>s t"
shows "(Lam [x].r) \ s \\ ss \\<^sub>s t"
proof -
obtain y::name where y: "y \ (x, r, s, ss, t)"
by (rule exists_fresh) (rule fin_supp)
then have "y \ (s, ss, t)" by simp
moreover from y H have "([(y, x)] \ r)[y::=s] \\ ss \\<^sub>s t"
by (simp add: subst_rename)
ultimately have "(Lam [y].[(y, x)] \ r) \ s \\ ss \\<^sub>s t"
by (rule sred.Beta)
moreover from y have "(Lam [x].r) = (Lam [y]. [(y, x)] \ r)"
by (auto simp add: lam.inject alpha' fresh_prod fresh_atm)
ultimately show ?thesis by simp
qed
lemmas better_sred_intros = sred.Var better_sred_Abs better_sred_Beta
lemma refl_listrelp: "\x\set xs. R x x \ listrelp R xs xs"
by (induct xs) (auto intro: listrelp.intros)
lemma refl_sred: "t \\<^sub>s t"
by (nominal_induct t rule: Apps_lam_induct) (auto intro: refl_listrelp better_sred_intros)
lemma listrelp_conj1: "listrelp (\x y. R x y \ S x y) x y \ listrelp R x y"
by (erule listrelp.induct) (auto intro: listrelp.intros)
lemma listrelp_conj2: "listrelp (\x y. R x y \ S x y) x y \ listrelp S x y"
by (erule listrelp.induct) (auto intro: listrelp.intros)
lemma listrelp_app:
assumes xsys: "listrelp R xs ys"
shows "listrelp R xs' ys' \ listrelp R (xs @ xs') (ys @ ys')" using xsys
by (induct arbitrary: xs' ys') (auto intro: listrelp.intros)
lemma lemma1:
assumes r: "r \\<^sub>s r'" and s: "s \\<^sub>s s'"
shows "r \ s \\<^sub>s r' \ s'" using r
proof induct
case (Var rs rs' x)
then have "rs [\\<^sub>s] rs'" by (rule listrelp_conj1)
moreover have "[s] [\\<^sub>s] [s']" by (iprover intro: s listrelp.intros)
ultimately have "rs @ [s] [\\<^sub>s] rs' @ [s']" by (rule listrelp_app)
hence "Var x \\ (rs @ [s]) \\<^sub>s Var x \\ (rs' @ [s'])" by (rule sred.Var)
thus ?case by (simp only: app_last)
next
case (Abs x ss ss' r r')
from Abs(4) have "ss [\\<^sub>s] ss'" by (rule listrelp_conj1)
moreover have "[s] [\\<^sub>s] [s']" by (iprover intro: s listrelp.intros)
ultimately have "ss @ [s] [\\<^sub>s] ss' @ [s']" by (rule listrelp_app)
with \<open>r \<rightarrow>\<^sub>s r'\<close> have "(Lam [x].r) \<degree>\<degree> (ss @ [s]) \<rightarrow>\<^sub>s (Lam [x].r') \<degree>\<degree> (ss' @ [s'])"
by (rule better_sred_Abs)
thus ?case by (simp only: app_last)
next
case (Beta x u ss t r)
hence "r[x::=u] \\ (ss @ [s]) \\<^sub>s t \ s'" by (simp only: app_last)
hence "(Lam [x].r) \ u \\ (ss @ [s]) \\<^sub>s t \ s'" by (rule better_sred_Beta)
thus ?case by (simp only: app_last)
qed
lemma lemma1':
assumes ts: "ts [\\<^sub>s] ts'"
shows "r \\<^sub>s r' \ r \\ ts \\<^sub>s r' \\ ts'" using ts
by (induct arbitrary: r r') (auto intro: lemma1)
lemma listrelp_betas:
assumes ts: "listrelp (\\<^sub>\\<^sup>*) ts ts'"
shows "\t t'. t \\<^sub>\\<^sup>* t' \ t \\ ts \\<^sub>\\<^sup>* t' \\ ts'" using ts
by induct auto
lemma lemma2:
assumes t: "t \\<^sub>s u"
shows "t \\<^sub>\\<^sup>* u" using t
by induct (auto dest: listrelp_conj2
intro: listrelp_betas apps_preserves_beta converse_rtranclp_into_rtranclp)
lemma lemma3:
assumes r: "r \\<^sub>s r'"
shows "s \\<^sub>s s' \ r[x::=s] \\<^sub>s r'[x::=s']" using r
proof (nominal_induct avoiding: x s s' rule: sred.strong_induct)
case (Var rs rs' y)
hence "map (\t. t[x::=s]) rs [\\<^sub>s] map (\t. t[x::=s']) rs'"
by induct (auto intro: listrelp.intros Var)
moreover have "Var y[x::=s] \\<^sub>s Var y[x::=s']"
by (cases "y = x") (auto simp add: Var intro: refl_sred)
ultimately show ?case by simp (rule lemma1')
next
case (Abs y ss ss' r r')
then have "r[x::=s] \\<^sub>s r'[x::=s']" by fast
moreover from Abs(8) \<open>s \<rightarrow>\<^sub>s s'\<close> have "map (\<lambda>t. t[x::=s]) ss [\<rightarrow>\<^sub>s] map (\<lambda>t. t[x::=s']) ss'"
by induct (auto intro: listrelp.intros Abs)
ultimately show ?case using Abs(6) \<open>y \<sharp> x\<close> \<open>y \<sharp> s\<close> \<open>y \<sharp> s'\<close>
by simp (rule better_sred_Abs)
next
case (Beta y u ss t r)
thus ?case by (auto simp add: subst_subst fresh_atm intro: better_sred_Beta)
qed
lemma lemma4_aux:
assumes rs: "listrelp (\t u. t \\<^sub>s u \ (\r. u \\<^sub>\ r \ t \\<^sub>s r)) rs rs'"
shows "rs' [\\<^sub>\]\<^sub>1 ss \ rs [\\<^sub>s] ss" using rs
proof (induct arbitrary: ss)
case Nil
thus ?case by cases (auto intro: listrelp.Nil)
next
case (Cons x y xs ys)
note Cons' = Cons
show ?case
proof (cases ss)
case Nil with Cons show ?thesis by simp
next
case (Cons y' ys')
hence ss: "ss = y' # ys'" by simp
from Cons Cons' have "y \\<^sub>\ y' \ ys' = ys \ y' = y \ ys [\\<^sub>\]\<^sub>1 ys'" by simp
hence "x # xs [\\<^sub>s] y' # ys'"
proof
assume H: "y \\<^sub>\ y' \ ys' = ys"
with Cons' have "x \\<^sub>s y'" by blast
moreover from Cons' have "xs [\\<^sub>s] ys" by (iprover dest: listrelp_conj1)
ultimately have "x # xs [\\<^sub>s] y' # ys" by (rule listrelp.Cons)
with H show ?thesis by simp
next
assume H: "y' = y \ ys [\\<^sub>\]\<^sub>1 ys'"
with Cons' have "x \\<^sub>s y'" by blast
moreover from H have "xs [\\<^sub>s] ys'" by (blast intro: Cons')
ultimately show ?thesis by (rule listrelp.Cons)
qed
with ss show ?thesis by simp
qed
qed
lemma lemma4:
assumes r: "r \\<^sub>s r'"
shows "r' \\<^sub>\ r'' \ r \\<^sub>s r''" using r
proof (nominal_induct avoiding: r'' rule: sred.strong_induct)
case (Var rs rs' x)
then obtain ss where rs: "rs' [\\<^sub>\]\<^sub>1 ss" and r'': "r'' = Var x \\ ss"
by (blast dest: head_Var_reduction)
from Var(1) [simplified] rs have "rs [\\<^sub>s] ss" by (rule lemma4_aux)
hence "Var x \\ rs \\<^sub>s Var x \\ ss" by (rule sred.Var)
with r'' show ?case by simp
next
case (Abs x ss ss' r r')
from \<open>(Lam [x].r') \<degree>\<degree> ss' \<rightarrow>\<^sub>\<beta> r''\<close> show ?case
proof (cases rule: apps_betasE [where x=x])
case (appL s)
then obtain r''' where s: "s = (Lam [x].r''')" and r''': "r' \\<^sub>\ r'''" using \x \ r''\
by (cases rule: beta.strong_cases) (auto simp add: abs_fresh lam.inject alpha)
from r''' have "r \\<^sub>s r'''" by (blast intro: Abs)
moreover from Abs have "ss [\\<^sub>s] ss'" by (iprover dest: listrelp_conj1)
ultimately have "(Lam [x].r) \\ ss \\<^sub>s (Lam [x].r''') \\ ss'" by (rule better_sred_Abs)
with appL s show "(Lam [x].r) \\ ss \\<^sub>s r''" by simp
next
case (appR rs')
from Abs(6) [simplified] \<open>ss' [\<rightarrow>\<^sub>\<beta>]\<^sub>1 rs'\<close>
have "ss [\\<^sub>s] rs'" by (rule lemma4_aux)
with \<open>r \<rightarrow>\<^sub>s r'\<close> have "(Lam [x].r) \<degree>\<degree> ss \<rightarrow>\<^sub>s (Lam [x].r') \<degree>\<degree> rs'" by (rule better_sred_Abs)
with appR show "(Lam [x].r) \\ ss \\<^sub>s r''" by simp
next
case (beta t u' us')
then have Lam_eq: "(Lam [x].r') = (Lam [x].t)" and ss': "ss' = u' # us'"
and r'': "r'' = t[x::=u'] \\ us'"
by (simp_all add: abs_fresh)
from Abs(6) ss' obtain u us where
ss: "ss = u # us" and u: "u \\<^sub>s u'" and us: "us [\\<^sub>s] us'"
by cases (auto dest!: listrelp_conj1)
have "r[x::=u] \\<^sub>s r'[x::=u']" using \r \\<^sub>s r'\ and u by (rule lemma3)
with us have "r[x::=u] \\ us \\<^sub>s r'[x::=u'] \\ us'" by (rule lemma1')
hence "(Lam [x].r) \ u \\ us \\<^sub>s r'[x::=u'] \\ us'" by (rule better_sred_Beta)
with ss r'' Lam_eq show "(Lam [x].r) \\ ss \\<^sub>s r''" by (simp add: lam.inject alpha)
qed
next
case (Beta x s ss t r)
show ?case
by (rule better_sred_Beta) (rule Beta)+
qed
lemma rtrancl_beta_sred:
assumes r: "r \\<^sub>\\<^sup>* r'"
shows "r \\<^sub>s r'" using r
by induct (iprover intro: refl_sred lemma4)+
subsection \<open>Terms in normal form\<close>
lemma listsp_eqvt [eqvt]:
assumes xs: "listsp p (xs::'a::pt_name list)"
shows "listsp ((pi::name prm) \ p) (pi \ xs)" using xs
apply induct
apply simp
apply simp
apply (rule listsp.intros)
apply (drule_tac pi=pi in perm_boolI)
apply perm_simp
apply assumption
done
inductive NF :: "lam \ bool"
where
App: "listsp NF ts \ NF (Var x \\ ts)"
| Abs: "NF t \ NF (Lam [x].t)"
equivariance NF
nominal_inductive NF
by (simp add: abs_fresh)
lemma Abs_NF:
assumes NF: "NF ((Lam [x].t) \\ ts)"
shows "ts = []" using NF
proof cases
case (App us i)
thus ?thesis by (simp add: Var_apps_neq_Abs_apps [THEN not_sym])
next
case (Abs u)
thus ?thesis by simp
qed
text \<open>
\<^term>\<open>NF\<close> characterizes exactly the terms that are in normal form.
\<close>
lemma NF_eq: "NF t = (\t'. \ t \\<^sub>\ t')"
proof
assume H: "NF t"
show "\t'. \ t \\<^sub>\ t'"
proof
fix t'
from H show "\ t \\<^sub>\ t'"
proof (nominal_induct avoiding: t' rule: NF.strong_induct)
case (App ts t)
show ?case
proof
assume "Var t \\ ts \\<^sub>\ t'"
then obtain rs where "ts [\\<^sub>\]\<^sub>1 rs"
by (iprover dest: head_Var_reduction)
with App show False
by (induct rs arbitrary: ts) (auto del: in_listspD)
qed
next
case (Abs t x)
show ?case
proof
assume "(Lam [x].t) \\<^sub>\ t'"
then show False using Abs
by (cases rule: beta.strong_cases) (auto simp add: abs_fresh lam.inject alpha)
qed
qed
qed
next
assume H: "\t'. \ t \\<^sub>\ t'"
then show "NF t"
proof (nominal_induct t rule: Apps_lam_induct)
case (1 n ts)
then have "\ts'. \ ts [\\<^sub>\]\<^sub>1 ts'"
by (iprover intro: apps_preserves_betas)
with 1(1) have "listsp NF ts"
by (induct ts) (auto simp add: in_listsp_conv_set)
then show ?case by (rule NF.App)
next
case (2 x u ts)
show ?case
proof (cases ts)
case Nil thus ?thesis by (metis 2 NF.Abs abs foldl_Nil)
next
case (Cons r rs)
have "(Lam [x].u) \ r \\<^sub>\ u[x::=r]" ..
then have "(Lam [x].u) \ r \\ rs \\<^sub>\ u[x::=r] \\ rs"
by (rule apps_preserves_beta)
with Cons have "(Lam [x].u) \\ ts \\<^sub>\ u[x::=r] \\ rs"
by simp
with 2 show ?thesis by iprover
qed
qed
qed
subsection \<open>Leftmost reduction and weakly normalizing terms\<close>
inductive
lred :: "lam \ lam \ bool" (infixl "\\<^sub>l" 50)
and lredlist :: "lam list \ lam list \ bool" (infixl "[\\<^sub>l]" 50)
where
"s [\\<^sub>l] t \ listrelp (\\<^sub>l) s t"
| Var: "rs [\\<^sub>l] rs' \ Var x \\ rs \\<^sub>l Var x \\ rs'"
| Abs: "r \\<^sub>l r' \ (Lam [x].r) \\<^sub>l (Lam [x].r')"
| Beta: "r[x::=s] \\ ss \\<^sub>l t \ (Lam [x].r) \ s \\ ss \\<^sub>l t"
lemma lred_imp_sred:
assumes lred: "s \\<^sub>l t"
shows "s \\<^sub>s t" using lred
proof induct
case (Var rs rs' x)
then have "rs [\\<^sub>s] rs'"
by induct (iprover intro: listrelp.intros)+
then show ?case by (rule sred.Var)
next
case (Abs r r' x)
from \<open>r \<rightarrow>\<^sub>s r'\<close>
have "(Lam [x].r) \\ [] \\<^sub>s (Lam [x].r') \\ []" using listrelp.Nil
by (rule better_sred_Abs)
then show ?case by simp
next
case (Beta r x s ss t)
from \<open>r[x::=s] \<degree>\<degree> ss \<rightarrow>\<^sub>s t\<close>
show ?case by (rule better_sred_Beta)
qed
inductive WN :: "lam \ bool"
where
Var: "listsp WN rs \ WN (Var n \\ rs)"
| Lambda: "WN r \ WN (Lam [x].r)"
| Beta: "WN ((r[x::=s]) \\ ss) \ WN (((Lam [x].r) \ s) \\ ss)"
lemma listrelp_imp_listsp1:
assumes H: "listrelp (\x y. P x) xs ys"
shows "listsp P xs" using H
by induct auto
lemma listrelp_imp_listsp2:
assumes H: "listrelp (\x y. P y) xs ys"
shows "listsp P ys" using H
by induct auto
lemma lemma5:
assumes lred: "r \\<^sub>l r'"
shows "WN r" and "NF r'" using lred
by induct
(iprover dest: listrelp_conj1 listrelp_conj2
listrelp_imp_listsp1 listrelp_imp_listsp2 intro: WN.intros
NF.intros)+
lemma lemma6:
assumes wn: "WN r"
shows "\r'. r \\<^sub>l r'" using wn
proof induct
case (Var rs n)
then have "\rs'. rs [\\<^sub>l] rs'"
by induct (iprover intro: listrelp.intros)+
then show ?case by (iprover intro: lred.Var)
qed (iprover intro: lred.intros)+
lemma lemma7:
assumes r: "r \\<^sub>s r'"
shows "NF r' \ r \\<^sub>l r'" using r
proof induct
case (Var rs rs' x)
from \<open>NF (Var x \<degree>\<degree> rs')\<close> have "listsp NF rs'"
by cases simp_all
with Var(1) have "rs [\\<^sub>l] rs'"
proof induct
case Nil
show ?case by (rule listrelp.Nil)
next
case (Cons x y xs ys)
hence "x \\<^sub>l y" and "xs [\\<^sub>l] ys" by (auto del: in_listspD)
thus ?case by (rule listrelp.Cons)
qed
thus ?case by (rule lred.Var)
next
case (Abs x ss ss' r r')
from \<open>NF ((Lam [x].r') \<degree>\<degree> ss')\<close>
have ss': "ss' = []" by (rule Abs_NF)
from Abs(4) have ss: "ss = []" using ss'
by cases simp_all
from ss' Abs have "NF (Lam [x].r')" by simp
hence "NF r'" by (cases rule: NF.strong_cases) (auto simp add: abs_fresh lam.inject alpha)
with Abs have "r \\<^sub>l r'" by simp
hence "(Lam [x].r) \\<^sub>l (Lam [x].r')" by (rule lred.Abs)
with ss ss' show ?case by simp
next
case (Beta x s ss t r)
hence "r[x::=s] \\ ss \\<^sub>l t" by simp
thus ?case by (rule lred.Beta)
qed
lemma WN_eq: "WN t = (\t'. t \\<^sub>\\<^sup>* t' \ NF t')"
proof
assume "WN t"
then have "\t'. t \\<^sub>l t'" by (rule lemma6)
then obtain t' where t': "t \\<^sub>l t'" ..
then have NF: "NF t'" by (rule lemma5)
from t' have "t \\<^sub>s t'" by (rule lred_imp_sred)
then have "t \\<^sub>\\<^sup>* t'" by (rule lemma2)
with NF show "\t'. t \\<^sub>\\<^sup>* t' \ NF t'" by iprover
next
assume "\t'. t \\<^sub>\\<^sup>* t' \ NF t'"
then obtain t' where t': "t \\<^sub>\\<^sup>* t'" and NF: "NF t'"
by iprover
from t' have "t \\<^sub>s t'" by (rule rtrancl_beta_sred)
then have "t \\<^sub>l t'" using NF by (rule lemma7)
then show "WN t" by (rule lemma5)
qed
end
¤ Dauer der Verarbeitung: 0.26 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|