(* Title: HOL/Tools/Function/function_context_tree.ML
Author: Alexander Krauss, TU Muenchen
Construction and traversal of trees of nested contexts along a term.
*)
signature FUNCTION_CONTEXT_TREE =
sig
(* poor man's contexts: fixes + assumes *)
type ctxt = (string * typ) list * thm list
type ctx_tree
val get_function_congs : Proof.context -> thm list
val add_function_cong : thm -> Context.generic -> Context.generic
val cong_add: attribute
val cong_del: attribute
val mk_tree: term -> term -> Proof.context -> term -> ctx_tree
val inst_tree: Proof.context -> term -> term -> ctx_tree -> ctx_tree
val export_term : ctxt -> term -> term
val export_thm : Proof.context -> ctxt -> thm -> thm
val import_thm : Proof.context -> ctxt -> thm -> thm
val traverse_tree :
(ctxt -> term ->
(ctxt * thm) list ->
(ctxt * thm) list * 'b ->
(ctxt * thm) list * 'b)
-> ctx_tree -> 'b -> 'b
val rewrite_by_tree : Proof.context -> term -> thm -> (thm * thm) list ->
ctx_tree -> thm * (thm * thm) list
end
structure Function_Context_Tree : FUNCTION_CONTEXT_TREE =
struct
type ctxt = (string * typ) list * thm list
open Function_Common
open Function_Lib
structure FunctionCongs = Generic_Data
(
type T = thm list
val empty = []
val extend = I
val merge = Thm.merge_thms
);
fun get_function_congs ctxt =
FunctionCongs.get (Context.Proof ctxt)
|> map (Thm.transfer' ctxt);
val add_function_cong = FunctionCongs.map o Thm.add_thm o Thm.trim_context;
(* congruence rules *)
val cong_add = Thm.declaration_attribute (add_function_cong o safe_mk_meta_eq);
val cong_del = Thm.declaration_attribute (FunctionCongs.map o Thm.del_thm o safe_mk_meta_eq);
type depgraph = int Int_Graph.T
datatype ctx_tree =
Leaf of term
| Cong of (thm * depgraph * (ctxt * ctx_tree) list)
| RCall of (term * ctx_tree)
(* Maps "Trueprop A = B" to "A" *)
val rhs_of = snd o HOLogic.dest_eq o HOLogic.dest_Trueprop
(*** Dependency analysis for congruence rules ***)
fun branch_vars t =
let
val t' = snd (dest_all_all t)
val (assumes, concl) = Logic.strip_horn t'
in
(fold Term.add_vars assumes [], Term.add_vars concl [])
end
fun cong_deps crule =
let
val num_branches = map_index (apsnd branch_vars) (Thm.prems_of crule)
in
Int_Graph.empty
|> fold (fn (i,_)=> Int_Graph.new_node (i,i)) num_branches
|> fold_product (fn (i, (c1, _)) => fn (j, (_, t2)) =>
if i = j orelse null (inter (op =) c1 t2)
then I else Int_Graph.add_edge_acyclic (i,j))
num_branches num_branches
end
val default_congs =
map (fn c => c RS eq_reflection) [@{thm "cong"}, @{thm "ext"}]
(* Called on the INSTANTIATED branches of the congruence rule *)
fun mk_branch ctxt t =
let
val ((params, impl), ctxt') = Variable.focus NONE t ctxt
val (assms, concl) = Logic.strip_horn impl
in
(ctxt', map #2 params, assms, rhs_of concl)
end
fun find_cong_rule ctxt fvar h ((r,dep)::rs) t =
(let
val thy = Proof_Context.theory_of ctxt
val tt' = Logic.mk_equals (Pattern.rewrite_term thy [(fvar, h)] [] t, t)
val (c, subs) = (Thm.concl_of r, Thm.prems_of r)
val subst = Pattern.match thy (c, tt') (Vartab.empty, Vartab.empty)
val branches = map (mk_branch ctxt o Envir.beta_norm o Envir.subst_term subst) subs
val inst =
map (fn v => (#1 v, Thm.cterm_of ctxt (Envir.subst_term subst (Var v))))
(Term.add_vars c [])
in
(infer_instantiate ctxt inst r, dep, branches)
end handle Pattern.MATCH => find_cong_rule ctxt fvar h rs t)
| find_cong_rule _ _ _ [] _ = raise General.Fail "No cong rule found!"
fun mk_tree fvar h ctxt t =
let
val congs = get_function_congs ctxt
(* FIXME: Save in theory: *)
val congs_deps = map (fn c => (c, cong_deps c)) (congs @ default_congs)
fun matchcall (a $ b) = if a = fvar then SOME b else NONE
| matchcall _ = NONE
fun mk_tree' ctxt t =
case matchcall t of
SOME arg => RCall (t, mk_tree' ctxt arg)
| NONE =>
if not (exists_subterm (fn v => v = fvar) t) then Leaf t
else
let
val (r, dep, branches) = find_cong_rule ctxt fvar h congs_deps t
fun subtree (ctxt', fixes, assumes, st) =
((fixes,
map (Thm.assume o Thm.cterm_of ctxt) assumes),
mk_tree' ctxt' st)
in
Cong (r, dep, map subtree branches)
end
in
mk_tree' ctxt t
end
fun inst_tree ctxt fvar f tr =
let
val cfvar = Thm.cterm_of ctxt fvar
val cf = Thm.cterm_of ctxt f
fun inst_term t =
subst_bound(f, abstract_over (fvar, t))
val inst_thm = Thm.forall_elim cf o Thm.forall_intr cfvar
fun inst_tree_aux (Leaf t) = Leaf t
| inst_tree_aux (Cong (crule, deps, branches)) =
Cong (inst_thm crule, deps, map inst_branch branches)
| inst_tree_aux (RCall (t, str)) =
RCall (inst_term t, inst_tree_aux str)
and inst_branch ((fxs, assms), str) =
((fxs, map (Thm.assume o Thm.cterm_of ctxt o inst_term o Thm.prop_of) assms),
inst_tree_aux str)
in
inst_tree_aux tr
end
(* Poor man's contexts: Only fixes and assumes *)
fun compose (fs1, as1) (fs2, as2) = (fs1 @ fs2, as1 @ as2)
fun export_term (fixes, assumes) =
fold_rev (curry Logic.mk_implies o Thm.prop_of) assumes
#> fold_rev (Logic.all o Free) fixes
fun export_thm ctxt (fixes, assumes) =
fold_rev (Thm.implies_intr o Thm.cprop_of) assumes
#> fold_rev (Thm.forall_intr o Thm.cterm_of ctxt o Free) fixes
fun import_thm ctxt (fixes, athms) =
fold (Thm.forall_elim o Thm.cterm_of ctxt o Free) fixes
#> fold Thm.elim_implies athms
(* folds in the order of the dependencies of a graph. *)
fun fold_deps G f x =
let
fun fill_table i (T, x) =
case Inttab.lookup T i of
SOME _ => (T, x)
| NONE =>
let
val (T', x') = Int_Graph.Keys.fold fill_table (Int_Graph.imm_succs G i) (T, x)
val (v, x'') = f (the o Inttab.lookup T') i x'
in
(Inttab.update (i, v) T', x'')
end
val (T, x) = fold fill_table (Int_Graph.keys G) (Inttab.empty, x)
in
(Inttab.fold (cons o snd) T [], x)
end
fun traverse_tree rcOp tr =
let
fun traverse_help ctxt (Leaf _) _ x = ([], x)
| traverse_help ctxt (RCall (t, st)) u x =
rcOp ctxt t u (traverse_help ctxt st u x)
| traverse_help ctxt (Cong (_, deps, branches)) u x =
let
fun sub_step lu i x =
let
val (ctxt', subtree) = nth branches i
val used = Int_Graph.Keys.fold_rev (append o lu) (Int_Graph.imm_succs deps i) u
val (subs, x') = traverse_help (compose ctxt ctxt') subtree used x
val exported_subs = map (apfst (compose ctxt')) subs (* FIXME: Right order of composition? *)
in
(exported_subs, x')
end
in
fold_deps deps sub_step x
|> apfst flat
end
in
snd o traverse_help ([], []) tr []
end
fun rewrite_by_tree ctxt h ih x tr =
let
fun rewrite_help _ _ x (Leaf t) = (Thm.reflexive (Thm.cterm_of ctxt t), x)
| rewrite_help fix h_as x (RCall (_ $ arg, st)) =
let
val (inner, (lRi,ha)::x') = rewrite_help fix h_as x st (* "a' = a" *)
val iha = import_thm ctxt (fix, h_as) ha (* (a', h a') : G *)
|> Conv.fconv_rule (Conv.arg_conv (Conv.comb_conv (Conv.arg_conv (K inner))))
(* (a, h a) : G *)
val inst_ih = Thm.instantiate' [] [SOME (Thm.cterm_of ctxt arg)] ih
val eq = Thm.implies_elim (Thm.implies_elim inst_ih lRi) iha (* h a = f a *)
val h_a'_eq_h_a = Thm.combination (Thm.reflexive (Thm.cterm_of ctxt h)) inner
val h_a_eq_f_a = eq RS eq_reflection
val result = Thm.transitive h_a'_eq_h_a h_a_eq_f_a
in
(result, x')
end
| rewrite_help fix h_as x (Cong (crule, deps, branches)) =
let
fun sub_step lu i x =
let
val ((fixes, assumes), st) = nth branches i
val used = map lu (Int_Graph.immediate_succs deps i)
|> map (fn u_eq => (u_eq RS sym) RS eq_reflection)
|> filter_out Thm.is_reflexive
val assumes' = map (simplify (put_simpset HOL_basic_ss ctxt addsimps used)) assumes
val (subeq, x') =
rewrite_help (fix @ fixes) (h_as @ assumes') x st
val subeq_exp =
export_thm ctxt (fixes, assumes) (HOLogic.mk_obj_eq subeq)
in
(subeq_exp, x')
end
val (subthms, x') = fold_deps deps sub_step x
in
(fold_rev (curry op COMP) subthms crule, x')
end
in
rewrite_help [] [] x tr
end
end
¤ Dauer der Verarbeitung: 0.16 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|