{-
A narrowing-based Evaluator for Formulas in Prefix Normal Form based on the compilation technique of LazySmallCheck
-}
module Narrowing_Engine where
import Control.Monad
import Control.Exception
import System.IO
import System.Exit
import Data.Maybe
import Data.List (partition, findIndex)
import qualified Generated_Code
import qualified Typerep
type Pos = [Int]
-- Refinement Tree
data Quantifier = Existential | Universal
data Truth = Eval Bool | Unevaluated | Unknown deriving Eq
conj :: Truth -> Truth -> Truth
conj (Eval True) b = b
conj (Eval False) _ = Eval False
conj b (Eval True) = b
conj _ (Eval False) = Eval False
conj Unevaluated _ = Unevaluated
conj _ Unevaluated = Unevaluated
conj Unknown Unknown = Unknown
disj :: Truth -> Truth -> Truth
disj (Eval True) _ = Eval True
disj (Eval False) b = b
disj _ (Eval True) = Eval True
disj b (Eval False) = b
disj Unknown _ = Unknown
disj _ Unknown = Unknown
disj Unevaluated Unevaluated = Unevaluated
ball ts = foldl (\s t -> conj s (value_of t)) (Eval True) ts
bexists ts = foldl (\s t -> disj s (value_of t)) (Eval False) ts
data Tree = Leaf Truth
| Variable Quantifier Truth Pos Generated_Code.Narrowing_type Tree
| Constructor Quantifier Truth Pos [Tree]
value_of :: Tree -> Truth
value_of (Leaf r) = r
value_of (Variable _ r _ _ _) = r
value_of (Constructor _ r _ _) = r
data Edge = V Pos Generated_Code.Narrowing_type | C Pos Int
type Path = [Edge]
position_of :: Edge -> Pos
position_of (V pos _) = pos
position_of (C pos _) = pos
-- Operation find: finds first relevant unevaluated node and returns its path
find :: Tree -> Path
find (Leaf Unevaluated) = []
find (Variable _ _ pos ty t) = V pos ty : (find t)
find (Constructor _ _ pos ts) = C pos i : find (ts !! i)
where
Just i = findIndex (\t -> value_of t == Unevaluated) ts
-- Operation update: updates the leaf and the cached truth values results along the path
update :: Path -> Truth -> Tree -> Tree
update [] v (Leaf _) = Leaf v
update (V _ _ : es) v (Variable q r p ty t) = Variable q (value_of t') p ty t'
where
t' = update es v t
update (C _ i : es) v (Constructor q r pos ts) = Constructor q r' pos ts'
where
(xs, y : ys) = splitAt i ts
y' = update es v y
ts' = xs ++ (y' : ys)
r' = valueOf ts'
valueOf = case q of { Universal -> ball; Existential -> bexists}
-- Operation: refineTree
replace :: (Tree -> Tree) -> Path -> Tree -> Tree
replace f [] t = (f t)
replace f (V _ _ : es) (Variable q r pos ty t) = Variable q r pos ty (replace f es t)
replace f (C _ i : es) (Constructor q r pos ts) = Constructor q r pos (xs ++ (replace f es y : ys))
where
(xs, y : ys) = splitAt i ts
refine_tree :: [Edge] -> Pos -> Tree -> Tree
refine_tree es p t = replace refine (path_of_position p es) t
where
path_of_position p es = takeWhile (\e -> position_of e /= p) es
refine (Variable q r p (Generated_Code.Narrowing_sum_of_products ps) t) =
Constructor q r p [ foldr (\(i,ty) t -> Variable q r (p++[i]) ty t) t (zip [0..] ts) | ts <- ps ]
-- refute
refute :: ([Generated_Code.Narrowing_term] -> Bool) -> Bool -> Int -> Tree -> IO Tree
refute exec genuine_only d t = ref t
where
ref t =
let path = find t in
do
t' <- answer genuine_only (exec (terms_of [] path)) (\b -> return (update path (Eval b) t))
(\p -> return (if length p < d then refine_tree path p t else update path Unknown t));
case value_of t' of
Unevaluated -> ref t'
_ -> return t'
depthCheck :: Bool -> Int -> Generated_Code.Property -> IO ()
depthCheck genuine_only d p = refute (checkOf p) genuine_only d (treeOf 0 p) >>= (\t ->
case value_of t of
Eval False -> putStrLn ("SOME (" ++ show (counterexampleOf (reifysOf p) (exampleOf 0 t)) ++ ")")
_ -> putStrLn ("NONE"))
-- Term refinement
-- Operation: termOf
term_of :: Pos -> Path -> Generated_Code.Narrowing_term
term_of p (C [] i : es) = Generated_Code.Narrowing_constructor i (terms_of p es)
term_of p [V [] ty] = Generated_Code.Narrowing_variable p ty
terms_of :: Pos -> Path -> [Generated_Code.Narrowing_term]
terms_of p es = terms_of' 0 es
where
terms_of' i [] = []
terms_of' i (e : es) = (t : terms_of' (i + 1) rs)
where
(ts, rs) = Data.List.partition (\e -> head (position_of e) == i) (e : es)
t = term_of (p ++ [i]) (map (map_pos tail) ts)
map_pos f (V p ty) = V (f p) ty
map_pos f (C p ts) = C (f p) ts
-- Answers
data Answer = Known Bool | Refine Pos;
answeri :: a -> (a -> IO b) -> (Pos -> IO b) -> IO b;
answeri a known unknown =
do res <- try (evaluate a)
case res of
Right b -> known b
Left (ErrorCall ('\0':p)) -> unknown (map fromEnum p)
Left e -> throw e
answer :: Bool -> Bool -> (Bool -> IO b) -> (Pos -> IO b) -> IO b;
answer genuine_only a known unknown =
Control.Exception.catch (answeri a known unknown)
(\ (PatternMatchFail _) -> known genuine_only)
-- presentation of counterexample
instance Show Typerep.Typerep where {
show (Typerep.Typerep c ts) = "Type (\"" ++ c ++ "\", " ++ show ts ++ ")";
};
instance Show Generated_Code.Term where {
show (Generated_Code.Const c t) = "Const (\"" ++ c ++ "\", " ++ show t ++ ")";
show (Generated_Code.App s t) = "(" ++ show s ++ ") $ (" ++ show t ++ ")";
show (Generated_Code.Abs s ty t) = "Abs (\"" ++ s ++ "\", " ++ show ty ++ ", " ++ show t ++ ")";
show (Generated_Code.Free s ty) = "Free (\"" ++ s ++ "\", " ++ show ty ++ ")";
};
{-
posOf :: Edge -> Pos
posOf (VN pos _) = pos
posOf (CtrB pos _) = pos
tailPosEdge :: Edge -> Edge
tailPosEdge (VN pos ty) = VN (tail pos) ty
tailPosEdge (CtrB pos ts) = CtrB (tail pos) ts
termOf :: Pos -> Tree -> (Narrowing_term, Tree)
termOf pos = if Ctr i (termListOf (pos ++ [i]) )
termOf pos [VN [] ty] = Var pos ty
termListOf :: Pos -> [Narrowing_term]
termListOf pos es = termListOf' 0 es
where
termListOf' i [] = []
termListOf' i (e : es) =
let
(ts, rs) = List.partition (\e -> head (posOf e) == i) (e : es)
t = termOf (pos ++ [i]) (map tailPosEdge ts)
in
(t : termListOf' (i + 1) rs)
termlist_of :: Pos -> QuantTree -> ([Term], QuantTree)
termlist_of p' (Node r)
term_of p' (VarNode _ _ p ty t) = if p == p' then
(Some (Var ty), t)
else
(None, t)
term_of p' (CtrBranch q _ p ts) =
if p == p' then
let
i = findindex (\t -> evalOf t == Eval False)
in
Ctr i (termlist_of (p ++ [i]) (ts ! i) [])
else
error ""
-}
termlist_of :: Pos -> ([Generated_Code.Narrowing_term], Tree) -> ([Generated_Code.Narrowing_term], Tree)
termlist_of p' (terms, Leaf b) = (terms, Leaf b)
termlist_of p' (terms, Variable q r p ty t) = if p' == take (length p') p then
termlist_of p' (terms ++ [Generated_Code.Narrowing_variable p ty], t)
else
(terms, Variable q r p ty t)
termlist_of p' (terms, Constructor q r p ts) = if p' == take (length p') p then
let
Just i = findIndex (\t -> value_of t == Eval False) ts
(subterms, t') = fixp (\j -> termlist_of (p ++ [j])) 0 ([], ts !! i)
in
(terms ++ [Generated_Code.Narrowing_constructor i subterms], t')
else
(terms, Constructor q r p ts)
where
fixp f j s = if length (fst (f j s)) == length (fst s) then s else fixp f (j + 1) (f j s)
alltermlist_of :: Pos -> ([Generated_Code.Narrowing_term], Tree) -> [([Generated_Code.Narrowing_term], Tree)]
alltermlist_of p' (terms, Leaf b) = [(terms, Leaf b)]
alltermlist_of p' (terms, Variable q r p ty t) = if p' == take (length p') p then
alltermlist_of p' (terms ++ [Generated_Code.Narrowing_variable p ty], t)
else
[(terms, Variable q r p ty t)]
alltermlist_of p' (terms, Constructor q r p ts) =
if p' == take (length p') p then
let
its = filter (\(i, t) -> value_of t == Eval False) (zip [0..] ts)
in
concatMap
(\(i, t) -> map (\(subterms, t') -> (terms ++ [Generated_Code.Narrowing_constructor i subterms], t'))
(fixp (\j -> alltermlist_of (p ++ [j])) 0 ([], t))) its
else
[(terms, Constructor q r p ts)]
where
fixp f j s = case (f j s) of
[s'] -> if length (fst s') == length (fst s) then [s'] else concatMap (fixp f (j + 1)) (f j s)
_ -> concatMap (fixp f (j + 1)) (f j s)
data Example = UnivExample Generated_Code.Narrowing_term Example | ExExample [(Generated_Code.Narrowing_term, Example)] | EmptyExample
quantifierOf (Variable q _ _ _ _) = q
quantifierOf (Constructor q _ _ _) = q
exampleOf :: Int -> Tree -> Example
exampleOf _ (Leaf _) = EmptyExample
exampleOf p t =
case quantifierOf t of
Universal ->
let
([term], rt) = termlist_of [p] ([], t)
in UnivExample term (exampleOf (p + 1) rt)
Existential ->
ExExample (map (\([term], rt) -> (term, exampleOf (p + 1) rt)) (alltermlist_of [p] ([], t)))
data Counterexample = Universal_Counterexample (Generated_Code.Term, Counterexample)
| Existential_Counterexample [(Generated_Code.Term, Counterexample)] | Empty_Assignment
instance Show Counterexample where {
show Empty_Assignment = "Narrowing_Generators.Empty_Assignment";
show (Universal_Counterexample x) = "Narrowing_Generators.Universal_Counterexample" ++ show x;
show (Existential_Counterexample x) = "Narrowing_Generators.Existential_Counterexample" ++ show x;
};
counterexampleOf :: [Generated_Code.Narrowing_term -> Generated_Code.Term] -> Example -> Counterexample
counterexampleOf [] EmptyExample = Empty_Assignment
counterexampleOf (reify : reifys) (UnivExample t ex) = Universal_Counterexample (reify t, counterexampleOf reifys ex)
counterexampleOf (reify : reifys) (ExExample exs) = Existential_Counterexample (map (\(t, ex) -> (reify t, counterexampleOf reifys ex)) exs)
checkOf :: Generated_Code.Property -> [Generated_Code.Narrowing_term] -> Bool
checkOf (Generated_Code.Property b) = (\[] -> b)
checkOf (Generated_Code.Universal _ f _) = (\(t : ts) -> checkOf (f t) ts)
checkOf (Generated_Code.Existential _ f _) = (\(t : ts) -> checkOf (f t) ts)
treeOf :: Int -> Generated_Code.Property -> Tree
treeOf n (Generated_Code.Property _) = Leaf Unevaluated
treeOf n (Generated_Code.Universal ty f _) = Variable Universal Unevaluated [n] ty (treeOf (n + 1) (f undefined))
treeOf n (Generated_Code.Existential ty f _) = Variable Existential Unevaluated [n] ty (treeOf (n + 1) (f undefined))
reifysOf :: Generated_Code.Property -> [Generated_Code.Narrowing_term -> Generated_Code.Term]
reifysOf (Generated_Code.Property _) = []
reifysOf (Generated_Code.Universal _ f r) = (r : (reifysOf (f undefined)))
reifysOf (Generated_Code.Existential _ f r) = (r : (reifysOf (f undefined)))
¤ Dauer der Verarbeitung: 0.29 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|