(* Title: HOL/ex/Transfer_Int_Nat.thy
Author: Brian Huffman, TU Muenchen
*)
section \<open>Using the transfer method between nat and int\<close>
theory Transfer_Int_Nat
imports Main
begin
subsection \<open>Correspondence relation\<close>
definition ZN :: "int \ nat \ bool"
where "ZN = (\z n. z = of_nat n)"
subsection \<open>Transfer domain rules\<close>
lemma Domainp_ZN [transfer_domain_rule]: "Domainp ZN = (\x. x \ 0)"
unfolding ZN_def Domainp_iff[abs_def] by (auto intro: zero_le_imp_eq_int)
subsection \<open>Transfer rules\<close>
context includes lifting_syntax
begin
lemma bi_unique_ZN [transfer_rule]: "bi_unique ZN"
unfolding ZN_def bi_unique_def by simp
lemma right_total_ZN [transfer_rule]: "right_total ZN"
unfolding ZN_def right_total_def by simp
lemma ZN_0 [transfer_rule]: "ZN 0 0"
unfolding ZN_def by simp
lemma ZN_1 [transfer_rule]: "ZN 1 1"
unfolding ZN_def by simp
lemma ZN_add [transfer_rule]: "(ZN ===> ZN ===> ZN) (+) (+)"
unfolding rel_fun_def ZN_def by simp
lemma ZN_mult [transfer_rule]: "(ZN ===> ZN ===> ZN) ((*)) ((*))"
unfolding rel_fun_def ZN_def by simp
definition tsub :: "int \ int \ int"
where "tsub k l = max 0 (k - l)"
lemma ZN_diff [transfer_rule]: "(ZN ===> ZN ===> ZN) tsub (-)"
unfolding rel_fun_def ZN_def by (auto simp add: of_nat_diff tsub_def)
lemma ZN_power [transfer_rule]: "(ZN ===> (=) ===> ZN) (^) (^)"
unfolding rel_fun_def ZN_def by simp
lemma ZN_nat_id [transfer_rule]: "(ZN ===> (=)) nat id"
unfolding rel_fun_def ZN_def by simp
lemma ZN_id_int [transfer_rule]: "(ZN ===> (=)) id int"
unfolding rel_fun_def ZN_def by simp
lemma ZN_All [transfer_rule]:
"((ZN ===> (=)) ===> (=)) (Ball {0..}) All"
unfolding rel_fun_def ZN_def by (auto dest: zero_le_imp_eq_int)
lemma ZN_transfer_forall [transfer_rule]:
"((ZN ===> (=)) ===> (=)) (transfer_bforall (\x. 0 \ x)) transfer_forall"
unfolding transfer_forall_def transfer_bforall_def
unfolding rel_fun_def ZN_def by (auto dest: zero_le_imp_eq_int)
lemma ZN_Ex [transfer_rule]: "((ZN ===> (=)) ===> (=)) (Bex {0..}) Ex"
unfolding rel_fun_def ZN_def Bex_def atLeast_iff
by (metis zero_le_imp_eq_int of_nat_0_le_iff)
lemma ZN_le [transfer_rule]: "(ZN ===> ZN ===> (=)) (\) (\)"
unfolding rel_fun_def ZN_def by simp
lemma ZN_less [transfer_rule]: "(ZN ===> ZN ===> (=)) (<) (<)"
unfolding rel_fun_def ZN_def by simp
lemma ZN_eq [transfer_rule]: "(ZN ===> ZN ===> (=)) (=) (=)"
unfolding rel_fun_def ZN_def by simp
lemma ZN_Suc [transfer_rule]: "(ZN ===> ZN) (\x. x + 1) Suc"
unfolding rel_fun_def ZN_def by simp
lemma ZN_numeral [transfer_rule]:
"((=) ===> ZN) numeral numeral"
unfolding rel_fun_def ZN_def by simp
lemma ZN_dvd [transfer_rule]: "(ZN ===> ZN ===> (=)) (dvd) (dvd)"
unfolding rel_fun_def ZN_def by simp
lemma ZN_div [transfer_rule]: "(ZN ===> ZN ===> ZN) (div) (div)"
unfolding rel_fun_def ZN_def by (simp add: zdiv_int)
lemma ZN_mod [transfer_rule]: "(ZN ===> ZN ===> ZN) (mod) (mod)"
unfolding rel_fun_def ZN_def by (simp add: zmod_int)
lemma ZN_gcd [transfer_rule]: "(ZN ===> ZN ===> ZN) gcd gcd"
unfolding rel_fun_def ZN_def by (simp add: gcd_int_def)
lemma ZN_atMost [transfer_rule]:
"(ZN ===> rel_set ZN) (atLeastAtMost 0) atMost"
unfolding rel_fun_def ZN_def rel_set_def
by (clarsimp simp add: Bex_def, arith)
lemma ZN_atLeastAtMost [transfer_rule]:
"(ZN ===> ZN ===> rel_set ZN) atLeastAtMost atLeastAtMost"
unfolding rel_fun_def ZN_def rel_set_def
by (clarsimp simp add: Bex_def, arith)
lemma ZN_sum [transfer_rule]:
"bi_unique A \ ((A ===> ZN) ===> rel_set A ===> ZN) sum sum"
apply (intro rel_funI)
apply (erule (1) bi_unique_rel_set_lemma)
apply (simp add: sum.reindex int_sum ZN_def rel_fun_def)
apply (rule sum.cong)
apply simp_all
done
text \<open>For derived operations, we can use the \<open>transfer_prover\<close>
method to help generate transfer rules.\<close>
lemma ZN_sum_list [transfer_rule]: "(list_all2 ZN ===> ZN) sum_list sum_list"
by transfer_prover
end
subsection \<open>Transfer examples\<close>
lemma
assumes "\i::int. 0 \ i \ i + 0 = i"
shows "\i::nat. i + 0 = i"
apply transfer
apply fact
done
lemma
assumes "\i k::int. \0 \ i; 0 \ k; i < k\ \ \j\{0..}. i + j = k"
shows "\i k::nat. i < k \ \j. i + j = k"
apply transfer
apply fact
done
lemma
assumes "\x\{0::int..}. \y\{0..}. x * y div y = x"
shows "\x y :: nat. x * y div y = x"
apply transfer
apply fact
done
lemma
assumes "\m n::int. \0 \ m; 0 \ n; m * n = 0\ \ m = 0 \ n = 0"
shows "m * n = (0::nat) \ m = 0 \ n = 0"
apply transfer
apply fact
done
lemma
assumes "\x\{0::int..}. \y\{0..}. \z\{0..}. x + 3 * y = 5 * z"
shows "\x::nat. \y z. x + 3 * y = 5 * z"
apply transfer
apply fact
done
text \<open>The \<open>fixing\<close> option prevents generalization over the free
variable \<open>n\<close>, allowing the local transfer rule to be used.\<close>
lemma
assumes [transfer_rule]: "ZN x n"
assumes "\i\{0..}. i < x \ 2 * i < 3 * x"
shows "\i. i < n \ 2 * i < 3 * n"
apply (transfer fixing: n)
apply fact
done
lemma
assumes "gcd (2^i) (3^j) = (1::int)"
shows "gcd (2^i) (3^j) = (1::nat)"
apply (transfer fixing: i j)
apply fact
done
lemma
assumes "\x y z::int. \0 \ x; 0 \ y; 0 \ z\ \
sum_list [x, y, z] = 0 \<longleftrightarrow> list_all (\<lambda>x. x = 0) [x, y, z]"
shows "sum_list [x, y, z] = (0::nat) \ list_all (\x. x = 0) [x, y, z]"
apply transfer
apply fact
done
text \<open>Quantifiers over higher types (e.g. \<open>nat list\<close>) are
transferred to a readable formula thanks to the transfer domain rule @{thm Domainp_ZN}\<close>
lemma
assumes "\xs::int list. list_all (\x. x \ 0) xs \
(sum_list xs = 0) = list_all (\<lambda>x. x = 0) xs"
shows "sum_list xs = (0::nat) \ list_all (\x. x = 0) xs"
apply transfer
apply fact
done
text \<open>Equality on a higher type can be transferred if the relations
involved are bi-unique.\<close>
lemma
assumes "\xs::int list. \list_all (\x. x \ 0) xs; xs \ []\ \
sum_list xs < sum_list (map (\<lambda>x. x + 1) xs)"
shows "xs \ [] \ sum_list xs < sum_list (map Suc xs)"
apply transfer
apply fact
done
end
¤ Dauer der Verarbeitung: 0.16 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|