products/Sources/formale Sprachen/JAVA/openjdk-20-36_src/src/hotspot/share/memory image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: universe.cpp   Sprache: C

/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#include "precompiled.hpp"
#include "cds/archiveHeapLoader.hpp"
#include "cds/dynamicArchive.hpp"
#include "cds/heapShared.hpp"
#include "cds/metaspaceShared.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/stringTable.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmClasses.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeBehaviours.hpp"
#include "code/codeCache.hpp"
#include "compiler/oopMap.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/shared/gcConfig.hpp"
#include "gc/shared/gcLogPrecious.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/oopStorageSet.hpp"
#include "gc/shared/plab.hpp"
#include "gc/shared/stringdedup/stringDedup.hpp"
#include "gc/shared/tlab_globals.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/metaspaceClosure.hpp"
#include "memory/metaspaceCounters.hpp"
#include "memory/metaspaceUtils.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oopHandle.inline.hpp"
#include "oops/typeArrayKlass.hpp"
#include "prims/resolvedMethodTable.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/flags/jvmFlagLimit.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/java.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/jniHandles.hpp"
#include "runtime/threads.hpp"
#include "runtime/timerTrace.hpp"
#include "services/memoryService.hpp"
#include "utilities/align.hpp"
#include "utilities/autoRestore.hpp"
#include "utilities/debug.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#include "utilities/preserveException.hpp"

// Known objects
Klass* Universe::_typeArrayKlassObjs[T_LONG+1]        = { NULL /*, NULL...*/ };
Klass* Universe::_objectArrayKlassObj                 = NULL;
Klass* Universe::_fillerArrayKlassObj                 = NULL;
OopHandle Universe::_basic_type_mirrors[T_VOID+1];
#if INCLUDE_CDS_JAVA_HEAP
int Universe::_archived_basic_type_mirror_indices[T_VOID+1];
#endif

OopHandle Universe::_main_thread_group;
OopHandle Universe::_system_thread_group;
OopHandle Universe::_the_empty_class_array;
OopHandle Universe::_the_null_string;
OopHandle Universe::_the_min_jint_string;

OopHandle Universe::_the_null_sentinel;

// _out_of_memory_errors is an objArray
enum OutOfMemoryInstance { _oom_java_heap,
                           _oom_c_heap,
                           _oom_metaspace,
                           _oom_class_metaspace,
                           _oom_array_size,
                           _oom_gc_overhead_limit,
                           _oom_realloc_objects,
                           _oom_retry,
                           _oom_count };

OopHandle Universe::_out_of_memory_errors;
OopHandle Universe::_delayed_stack_overflow_error_message;
OopHandle Universe::_preallocated_out_of_memory_error_array;
volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;

// Message details for OOME objects, preallocate these objects since they could be
// used when throwing OOME, we should try to avoid further allocation in such case
OopHandle Universe::_msg_metaspace;
OopHandle Universe::_msg_class_metaspace;

OopHandle Universe::_null_ptr_exception_instance;
OopHandle Universe::_arithmetic_exception_instance;
OopHandle Universe::_virtual_machine_error_instance;

OopHandle Universe::_reference_pending_list;

Array<Klass*>* Universe::_the_array_interfaces_array = NULL;
LatestMethodCache* Universe::_finalizer_register_cache = NULL;
LatestMethodCache* Universe::_loader_addClass_cache    = NULL;
LatestMethodCache* Universe::_throw_illegal_access_error_cache = NULL;
LatestMethodCache* Universe::_throw_no_such_method_error_cache = NULL;
LatestMethodCache* Universe::_do_stack_walk_cache     = NULL;

long Universe::verify_flags                           = Universe::Verify_All;

Array<int>* Universe::_the_empty_int_array            = NULL;
Array<u2>* Universe::_the_empty_short_array           = NULL;
Array<Klass*>* Universe::_the_empty_klass_array     = NULL;
Array<InstanceKlass*>* Universe::_the_empty_instance_klass_array  = NULL;
Array<Method*>* Universe::_the_empty_method_array   = NULL;

// These variables are guarded by FullGCALot_lock.
debug_only(OopHandle Universe::_fullgc_alot_dummy_array;)
debug_only(int Universe::_fullgc_alot_dummy_next = 0;)

// Heap
int             Universe::_verify_count = 0;

// Oop verification (see MacroAssembler::verify_oop)
uintptr_t       Universe::_verify_oop_mask = 0;
uintptr_t       Universe::_verify_oop_bits = (uintptr_t) -1;

int             Universe::_base_vtable_size = 0;
bool            Universe::_bootstrapping = false;
bool            Universe::_module_initialized = false;
bool            Universe::_fully_initialized = false;

OopStorage*     Universe::_vm_weak = NULL;
OopStorage*     Universe::_vm_global = NULL;

CollectedHeap*  Universe::_collectedHeap = NULL;

objArrayOop Universe::the_empty_class_array ()  {
  return (objArrayOop)_the_empty_class_array.resolve();
}

oop Universe::main_thread_group()                 { return _main_thread_group.resolve(); }
void Universe::set_main_thread_group(oop group)   { _main_thread_group = OopHandle(vm_global(), group); }

oop Universe::system_thread_group()               { return _system_thread_group.resolve(); }
void Universe::set_system_thread_group(oop group) { _system_thread_group = OopHandle(vm_global(), group); }

oop Universe::the_null_string()                   { return _the_null_string.resolve(); }
oop Universe::the_min_jint_string()               { return _the_min_jint_string.resolve(); }

oop Universe::null_ptr_exception_instance()       { return _null_ptr_exception_instance.resolve(); }
oop Universe::arithmetic_exception_instance()     { return _arithmetic_exception_instance.resolve(); }
oop Universe::virtual_machine_error_instance()    { return _virtual_machine_error_instance.resolve(); }

oop Universe::the_null_sentinel()                 { return _the_null_sentinel.resolve(); }

oop Universe::int_mirror()                        { return check_mirror(_basic_type_mirrors[T_INT].resolve()); }
oop Universe::float_mirror()                      { return check_mirror(_basic_type_mirrors[T_FLOAT].resolve()); }
oop Universe::double_mirror()                     { return check_mirror(_basic_type_mirrors[T_DOUBLE].resolve()); }
oop Universe::byte_mirror()                       { return check_mirror(_basic_type_mirrors[T_BYTE].resolve()); }
oop Universe::bool_mirror()                       { return check_mirror(_basic_type_mirrors[T_BOOLEAN].resolve()); }
oop Universe::char_mirror()                       { return check_mirror(_basic_type_mirrors[T_CHAR].resolve()); }
oop Universe::long_mirror()                       { return check_mirror(_basic_type_mirrors[T_LONG].resolve()); }
oop Universe::short_mirror()                      { return check_mirror(_basic_type_mirrors[T_SHORT].resolve()); }
oop Universe::void_mirror()                       { return check_mirror(_basic_type_mirrors[T_VOID].resolve()); }

oop Universe::java_mirror(BasicType t) {
  assert((uint)t < T_VOID+1, "range check");
  assert(!is_reference_type(t), "sanity");
  return check_mirror(_basic_type_mirrors[t].resolve());
}

void Universe::basic_type_classes_do(KlassClosure *closure) {
  for (int i = T_BOOLEAN; i < T_LONG+1; i++) {
    closure->do_klass(_typeArrayKlassObjs[i]);
  }
  // We don't do the following because it will confuse JVMTI.
  // _fillerArrayKlassObj is used only by GC, which doesn't need to see
  // this klass from basic_type_classes_do().
  //
  // closure->do_klass(_fillerArrayKlassObj);
}

void LatestMethodCache::metaspace_pointers_do(MetaspaceClosure* it) {
  it->push(&_klass);
}

void Universe::metaspace_pointers_do(MetaspaceClosure* it) {
  it->push(&_fillerArrayKlassObj);
  for (int i = 0; i < T_LONG+1; i++) {
    it->push(&_typeArrayKlassObjs[i]);
  }
  it->push(&_objectArrayKlassObj);

  it->push(&_the_empty_int_array);
  it->push(&_the_empty_short_array);
  it->push(&_the_empty_klass_array);
  it->push(&_the_empty_instance_klass_array);
  it->push(&_the_empty_method_array);
  it->push(&_the_array_interfaces_array);

  _finalizer_register_cache->metaspace_pointers_do(it);
  _loader_addClass_cache->metaspace_pointers_do(it);
  _throw_illegal_access_error_cache->metaspace_pointers_do(it);
  _throw_no_such_method_error_cache->metaspace_pointers_do(it);
  _do_stack_walk_cache->metaspace_pointers_do(it);
}

#if INCLUDE_CDS_JAVA_HEAP
void Universe::set_archived_basic_type_mirror_index(BasicType t, int index) {
  assert(DumpSharedSpaces, "dump-time only");
  assert(!is_reference_type(t), "sanity");
  _archived_basic_type_mirror_indices[t] = index;
}

void Universe::update_archived_basic_type_mirrors() {
  if (ArchiveHeapLoader::are_archived_mirrors_available()) {
    for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
      int index = _archived_basic_type_mirror_indices[i];
      if (!is_reference_type((BasicType)i) && index >= 0) {
        oop mirror_oop = HeapShared::get_root(index);
        assert(mirror_oop != NULL, "must be");
        _basic_type_mirrors[i] = OopHandle(vm_global(), mirror_oop);
      }
    }
  }
}
#endif

void Universe::serialize(SerializeClosure* f) {

#if INCLUDE_CDS_JAVA_HEAP
  for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
    f->do_u4((u4*)&_archived_basic_type_mirror_indices[i]);
    // if f->reading(): We can't call HeapShared::get_root() yet, as the heap
    // contents may need to be relocated. _basic_type_mirrors[i] will be
    // updated later in Universe::update_archived_basic_type_mirrors().
  }
#endif

  f->do_ptr((void**)&_fillerArrayKlassObj);
  for (int i = 0; i < T_LONG+1; i++) {
    f->do_ptr((void**)&_typeArrayKlassObjs[i]);
  }

  f->do_ptr((void**)&_objectArrayKlassObj);
  f->do_ptr((void**)&_the_array_interfaces_array);
  f->do_ptr((void**)&_the_empty_int_array);
  f->do_ptr((void**)&_the_empty_short_array);
  f->do_ptr((void**)&_the_empty_method_array);
  f->do_ptr((void**)&_the_empty_klass_array);
  f->do_ptr((void**)&_the_empty_instance_klass_array);
  _finalizer_register_cache->serialize(f);
  _loader_addClass_cache->serialize(f);
  _throw_illegal_access_error_cache->serialize(f);
  _throw_no_such_method_error_cache->serialize(f);
  _do_stack_walk_cache->serialize(f);
}


void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
  if (size < alignment || size % alignment != 0) {
    vm_exit_during_initialization(
      err_msg("Size of %s (" UINTX_FORMAT " bytes) must be aligned to " UINTX_FORMAT " bytes", name, size, alignment));
  }
}

void initialize_basic_type_klass(Klass* k, TRAPS) {
  Klass* ok = vmClasses::Object_klass();
#if INCLUDE_CDS
  if (UseSharedSpaces) {
    ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
    assert(k->super() == ok, "u3");
    if (k->is_instance_klass()) {
      InstanceKlass::cast(k)->restore_unshareable_info(loader_data, Handle(), NULL, CHECK);
    } else {
      ArrayKlass::cast(k)->restore_unshareable_info(loader_data, Handle(), CHECK);
    }
  } else
#endif
  {
    k->initialize_supers(ok, NULL, CHECK);
  }
  k->append_to_sibling_list();
}

void Universe::genesis(TRAPS) {
  ResourceMark rm(THREAD);
  HandleMark   hm(THREAD);

  { AutoModifyRestore<bool> temporarily(_bootstrapping, true);

    { MutexLocker mc(THREAD, Compile_lock);

      java_lang_Class::allocate_fixup_lists();

      // determine base vtable size; without that we cannot create the array klasses
      compute_base_vtable_size();

      if (!UseSharedSpaces) {
        // Initialization of the fillerArrayKlass must come before regular
        // int-TypeArrayKlass so that the int-Array mirror points to the
        // int-TypeArrayKlass.
        _fillerArrayKlassObj = TypeArrayKlass::create_klass(T_INT, "Ljdk/internal/vm/FillerArray;", CHECK);
        for (int i = T_BOOLEAN; i < T_LONG+1; i++) {
          _typeArrayKlassObjs[i] = TypeArrayKlass::create_klass((BasicType)i, CHECK);
        }

        ClassLoaderData* null_cld = ClassLoaderData::the_null_class_loader_data();

        _the_array_interfaces_array     = MetadataFactory::new_array<Klass*>(null_cld, 2, NULL, CHECK);
        _the_empty_int_array            = MetadataFactory::new_array<int>(null_cld, 0, CHECK);
        _the_empty_short_array          = MetadataFactory::new_array<u2>(null_cld, 0, CHECK);
        _the_empty_method_array         = MetadataFactory::new_array<Method*>(null_cld, 0, CHECK);
        _the_empty_klass_array          = MetadataFactory::new_array<Klass*>(null_cld, 0, CHECK);
        _the_empty_instance_klass_array = MetadataFactory::new_array<InstanceKlass*>(null_cld, 0, CHECK);
      }
    }

    vmSymbols::initialize();

    SystemDictionary::initialize(CHECK);

    // Create string constants
    oop s = StringTable::intern("null", CHECK);
    _the_null_string = OopHandle(vm_global(), s);
    s = StringTable::intern("-2147483648", CHECK);
    _the_min_jint_string = OopHandle(vm_global(), s);


#if INCLUDE_CDS
    if (UseSharedSpaces) {
      // Verify shared interfaces array.
      assert(_the_array_interfaces_array->at(0) ==
             vmClasses::Cloneable_klass(), "u3");
      assert(_the_array_interfaces_array->at(1) ==
             vmClasses::Serializable_klass(), "u3");
    } else
#endif
    {
      // Set up shared interfaces array.  (Do this before supers are set up.)
      _the_array_interfaces_array->at_put(0, vmClasses::Cloneable_klass());
      _the_array_interfaces_array->at_put(1, vmClasses::Serializable_klass());
    }

    initialize_basic_type_klass(_fillerArrayKlassObj, CHECK);

    initialize_basic_type_klass(boolArrayKlassObj(), CHECK);
    initialize_basic_type_klass(charArrayKlassObj(), CHECK);
    initialize_basic_type_klass(floatArrayKlassObj(), CHECK);
    initialize_basic_type_klass(doubleArrayKlassObj(), CHECK);
    initialize_basic_type_klass(byteArrayKlassObj(), CHECK);
    initialize_basic_type_klass(shortArrayKlassObj(), CHECK);
    initialize_basic_type_klass(intArrayKlassObj(), CHECK);
    initialize_basic_type_klass(longArrayKlassObj(), CHECK);

    assert(_fillerArrayKlassObj != intArrayKlassObj(),
           "Internal filler array klass should be different to int array Klass");
  } // end of core bootstrapping

  {
    Handle tns = java_lang_String::create_from_str("", CHECK);
    _the_null_sentinel = OopHandle(vm_global(), tns());
  }

  // Create a handle for reference_pending_list
  _reference_pending_list = OopHandle(vm_global(), NULL);

  // Maybe this could be lifted up now that object array can be initialized
  // during the bootstrapping.

  // OLD
  // Initialize _objectArrayKlass after core bootstraping to make
  // sure the super class is set up properly for _objectArrayKlass.
  // ---
  // NEW
  // Since some of the old system object arrays have been converted to
  // ordinary object arrays, _objectArrayKlass will be loaded when
  // SystemDictionary::initialize(CHECK); is run. See the extra check
  // for Object_klass_loaded in objArrayKlassKlass::allocate_objArray_klass_impl.
  _objectArrayKlassObj = InstanceKlass::
    cast(vmClasses::Object_klass())->array_klass(1, CHECK);
  // OLD
  // Add the class to the class hierarchy manually to make sure that
  // its vtable is initialized after core bootstrapping is completed.
  // ---
  // New
  // Have already been initialized.
  _objectArrayKlassObj->append_to_sibling_list();

  #ifdef ASSERT
  if (FullGCALot) {
    // Allocate an array of dummy objects.
    // We'd like these to be at the bottom of the old generation,
    // so that when we free one and then collect,
    // (almost) the whole heap moves
    // and we find out if we actually update all the oops correctly.
    // But we can't allocate directly in the old generation,
    // so we allocate wherever, and hope that the first collection
    // moves these objects to the bottom of the old generation.
    int size = FullGCALotDummies * 2;

    objArrayOop    naked_array = oopFactory::new_objArray(vmClasses::Object_klass(), size, CHECK);
    objArrayHandle dummy_array(THREAD, naked_array);
    int i = 0;
    while (i < size) {
        // Allocate dummy in old generation
      oop dummy = vmClasses::Object_klass()->allocate_instance(CHECK);
      dummy_array->obj_at_put(i++, dummy);
    }
    {
      // Only modify the global variable inside the mutex.
      // If we had a race to here, the other dummy_array instances
      // and their elements just get dropped on the floor, which is fine.
      MutexLocker ml(THREAD, FullGCALot_lock);
      if (_fullgc_alot_dummy_array.is_empty()) {
        _fullgc_alot_dummy_array = OopHandle(vm_global(), dummy_array());
      }
    }
    assert(i == ((objArrayOop)_fullgc_alot_dummy_array.resolve())->length(), "just checking");
  }
  #endif
}

void Universe::initialize_basic_type_mirrors(TRAPS) {
#if INCLUDE_CDS_JAVA_HEAP
    if (UseSharedSpaces &&
        ArchiveHeapLoader::are_archived_mirrors_available() &&
        _basic_type_mirrors[T_INT].resolve() != NULL) {
      assert(ArchiveHeapLoader::can_use(), "Sanity");

      // check that all basic type mirrors are mapped also
      for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
        if (!is_reference_type((BasicType)i)) {
          oop m = _basic_type_mirrors[i].resolve();
          assert(m != NULL, "archived mirrors should not be NULL");
        }
      }
    } else
      // _basic_type_mirrors[T_INT], etc, are NULL if archived heap is not mapped.
#endif
    {
      for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
        BasicType bt = (BasicType)i;
        if (!is_reference_type(bt)) {
          oop m = java_lang_Class::create_basic_type_mirror(type2name(bt), bt, CHECK);
          _basic_type_mirrors[i] = OopHandle(vm_global(), m);
        }
        CDS_JAVA_HEAP_ONLY(_archived_basic_type_mirror_indices[i] = -1);
      }
    }
}

void Universe::fixup_mirrors(TRAPS) {
  // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
  // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
  // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
  // that the number of objects allocated at this point is very small.
  assert(vmClasses::Class_klass_loaded(), "java.lang.Class should be loaded");
  HandleMark hm(THREAD);

  if (!UseSharedSpaces) {
    // Cache the start of the static fields
    InstanceMirrorKlass::init_offset_of_static_fields();
  }

  GrowableArray <Klass*>* list = java_lang_Class::fixup_mirror_list();
  int list_length = list->length();
  for (int i = 0; i < list_length; i++) {
    Klass* k = list->at(i);
    assert(k->is_klass(), "List should only hold classes");
    java_lang_Class::fixup_mirror(k, CATCH);
  }
  delete java_lang_Class::fixup_mirror_list();
  java_lang_Class::set_fixup_mirror_list(NULL);
}

#define assert_pll_locked(test) \
  assert(Heap_lock->test(), "Reference pending list access requires lock")

#define assert_pll_ownership() assert_pll_locked(owned_by_self)

oop Universe::reference_pending_list() {
  if (Thread::current()->is_VM_thread()) {
    assert_pll_locked(is_locked);
  } else {
    assert_pll_ownership();
  }
  return _reference_pending_list.resolve();
}

void Universe::clear_reference_pending_list() {
  assert_pll_ownership();
  _reference_pending_list.replace(NULL);
}

bool Universe::has_reference_pending_list() {
  assert_pll_ownership();
  return _reference_pending_list.peek() != NULL;
}

oop Universe::swap_reference_pending_list(oop list) {
  assert_pll_locked(is_locked);
  return _reference_pending_list.xchg(list);
}

#undef assert_pll_locked
#undef assert_pll_ownership

static void reinitialize_vtables() {
  // The vtables are initialized by starting at java.lang.Object and
  // initializing through the subclass links, so that the super
  // classes are always initialized first.
  for (ClassHierarchyIterator iter(vmClasses::Object_klass()); !iter.done(); iter.next()) {
    Klass* sub = iter.klass();
    sub->vtable().initialize_vtable();
  }
}

static void reinitialize_itables() {

  class ReinitTableClosure : public KlassClosure {
   public:
    void do_klass(Klass* k) {
      if (k->is_instance_klass()) {
         InstanceKlass::cast(k)->itable().initialize_itable();
      }
    }
  };

  MutexLocker mcld(ClassLoaderDataGraph_lock);
  ReinitTableClosure cl;
  ClassLoaderDataGraph::classes_do(&cl);
}

bool Universe::on_page_boundary(void* addr) {
  return is_aligned(addr, os::vm_page_size());
}

// the array of preallocated errors with backtraces
objArrayOop Universe::preallocated_out_of_memory_errors() {
  return (objArrayOop)_preallocated_out_of_memory_error_array.resolve();
}

objArrayOop Universe::out_of_memory_errors() { return (objArrayOop)_out_of_memory_errors.resolve(); }

oop Universe::out_of_memory_error_java_heap() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_java_heap));
}

oop Universe::out_of_memory_error_c_heap() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_c_heap));
}

oop Universe::out_of_memory_error_metaspace() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_metaspace));
}

oop Universe::out_of_memory_error_class_metaspace() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_class_metaspace));
}

oop Universe::out_of_memory_error_array_size() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_array_size));
}

oop Universe::out_of_memory_error_gc_overhead_limit() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_gc_overhead_limit));
}

oop Universe::out_of_memory_error_realloc_objects() {
  return gen_out_of_memory_error(out_of_memory_errors()->obj_at(_oom_realloc_objects));
}

// Throw default _out_of_memory_error_retry object as it will never propagate out of the VM
oop Universe::out_of_memory_error_retry()              { return out_of_memory_errors()->obj_at(_oom_retry);  }
oop Universe::delayed_stack_overflow_error_message()   { return _delayed_stack_overflow_error_message.resolve(); }


bool Universe::should_fill_in_stack_trace(Handle throwable) {
  // never attempt to fill in the stack trace of preallocated errors that do not have
  // backtrace. These errors are kept alive forever and may be "re-used" when all
  // preallocated errors with backtrace have been consumed. Also need to avoid
  // a potential loop which could happen if an out of memory occurs when attempting
  // to allocate the backtrace.
  objArrayOop preallocated_oom = out_of_memory_errors();
  for (int i = 0; i < _oom_count; i++) {
    if (throwable() == preallocated_oom->obj_at(i)) {
      return false;
    }
  }
  return true;
}


oop Universe::gen_out_of_memory_error(oop default_err) {
  // generate an out of memory error:
  // - if there is a preallocated error and stack traces are available
  //   (j.l.Throwable is initialized), then return the preallocated
  //   error with a filled in stack trace, and with the message
  //   provided by the default error.
  // - otherwise, return the default error, without a stack trace.
  int next;
  if ((_preallocated_out_of_memory_error_avail_count > 0) &&
      vmClasses::Throwable_klass()->is_initialized()) {
    next = (int)Atomic::add(&_preallocated_out_of_memory_error_avail_count, -1);
    assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
  } else {
    next = -1;
  }
  if (next < 0) {
    // all preallocated errors have been used.
    // return default
    return default_err;
  } else {
    JavaThread* current = JavaThread::current();
    Handle default_err_h(current, default_err);
    // get the error object at the slot and set set it to NULL so that the
    // array isn't keeping it alive anymore.
    Handle exc(current, preallocated_out_of_memory_errors()->obj_at(next));
    assert(exc() != NULL, "slot has been used already");
    preallocated_out_of_memory_errors()->obj_at_put(next, NULL);

    // use the message from the default error
    oop msg = java_lang_Throwable::message(default_err_h());
    assert(msg != NULL, "no message");
    java_lang_Throwable::set_message(exc(), msg);

    // populate the stack trace and return it.
    java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
    return exc();
  }
}

bool Universe::is_out_of_memory_error_metaspace(oop ex_obj) {
  return java_lang_Throwable::message(ex_obj) == _msg_metaspace.resolve();
}

bool Universe::is_out_of_memory_error_class_metaspace(oop ex_obj) {
  return java_lang_Throwable::message(ex_obj) == _msg_class_metaspace.resolve();
}

// Setup preallocated OutOfMemoryError errors
void Universe::create_preallocated_out_of_memory_errors(TRAPS) {
  InstanceKlass* ik = vmClasses::OutOfMemoryError_klass();
  objArrayOop oa = oopFactory::new_objArray(ik, _oom_count, CHECK);
  objArrayHandle oom_array(THREAD, oa);

  for (int i = 0; i < _oom_count; i++) {
    oop oom_obj = ik->allocate_instance(CHECK);
    oom_array->obj_at_put(i, oom_obj);
  }
  _out_of_memory_errors = OopHandle(vm_global(), oom_array());

  Handle msg = java_lang_String::create_from_str("Java heap space", CHECK);
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_java_heap), msg());

  msg = java_lang_String::create_from_str("C heap space", CHECK);
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_c_heap), msg());

  msg = java_lang_String::create_from_str("Metaspace", CHECK);
  _msg_metaspace = OopHandle(vm_global(), msg());
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_metaspace), msg());

  msg = java_lang_String::create_from_str("Compressed class space", CHECK);
  _msg_class_metaspace = OopHandle(vm_global(), msg());
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_class_metaspace), msg());

  msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK);
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_array_size), msg());

  msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK);
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_gc_overhead_limit), msg());

  msg = java_lang_String::create_from_str("Java heap space: failed reallocation of scalar replaced objects", CHECK);
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_realloc_objects), msg());

  msg = java_lang_String::create_from_str("Java heap space: failed retryable allocation", CHECK);
  java_lang_Throwable::set_message(oom_array->obj_at(_oom_retry), msg());

  // Setup the array of errors that have preallocated backtrace
  int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
  objArrayOop instance = oopFactory::new_objArray(ik, len, CHECK);
  _preallocated_out_of_memory_error_array = OopHandle(vm_global(), instance);
  objArrayHandle preallocated_oom_array(THREAD, instance);

  for (int i=0; i<len; i++) {
    oop err = ik->allocate_instance(CHECK);
    Handle err_h(THREAD, err);
    java_lang_Throwable::allocate_backtrace(err_h, CHECK);
    preallocated_oom_array->obj_at_put(i, err_h());
  }
  _preallocated_out_of_memory_error_avail_count = (jint)len;
}

intptr_t Universe::_non_oop_bits = 0;

void* Universe::non_oop_word() {
  // Neither the high bits nor the low bits of this value is allowed
  // to look like (respectively) the high or low bits of a real oop.
  //
  // High and low are CPU-specific notions, but low always includes
  // the low-order bit.  Since oops are always aligned at least mod 4,
  // setting the low-order bit will ensure that the low half of the
  // word will never look like that of a real oop.
  //
  // Using the OS-supplied non-memory-address word (usually 0 or -1)
  // will take care of the high bits, however many there are.

  if (_non_oop_bits == 0) {
    _non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
  }

  return (void*)_non_oop_bits;
}

bool Universe::contains_non_oop_word(void* p) {
  return *(void**)p == non_oop_word();
}

static void initialize_global_behaviours() {
  CompiledICProtectionBehaviour::set_current(new DefaultICProtectionBehaviour());
}

jint universe_init() {
  assert(!Universe::_fully_initialized, "called after initialize_vtables");
  guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
         "LogHeapWordSize is incorrect.");
  guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
  guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
            "oop size is not not a multiple of HeapWord size");

  TraceTime timer("Genesis", TRACETIME_LOG(Info, startuptime));

  initialize_global_behaviours();

  GCLogPrecious::initialize();

#ifdef _LP64
  MetaspaceShared::adjust_heap_sizes_for_dumping();
#endif // _LP64

  GCConfig::arguments()->initialize_heap_sizes();

  jint status = Universe::initialize_heap();
  if (status != JNI_OK) {
    return status;
  }

  Universe::initialize_tlab();

  Metaspace::global_initialize();

  // Initialize performance counters for metaspaces
  MetaspaceCounters::initialize_performance_counters();

  // Checks 'AfterMemoryInit' constraints.
  if (!JVMFlagLimit::check_all_constraints(JVMFlagConstraintPhase::AfterMemoryInit)) {
    return JNI_EINVAL;
  }

  // Create memory for metadata.  Must be after initializing heap for
  // DumpSharedSpaces.
  ClassLoaderData::init_null_class_loader_data();

  // We have a heap so create the Method* caches before
  // Metaspace::initialize_shared_spaces() tries to populate them.
  Universe::_finalizer_register_cache = new LatestMethodCache();
  Universe::_loader_addClass_cache    = new LatestMethodCache();
  Universe::_throw_illegal_access_error_cache = new LatestMethodCache();
  Universe::_throw_no_such_method_error_cache = new LatestMethodCache();
  Universe::_do_stack_walk_cache = new LatestMethodCache();

#if INCLUDE_CDS
  DynamicArchive::check_for_dynamic_dump();
  if (UseSharedSpaces) {
    // Read the data structures supporting the shared spaces (shared
    // system dictionary, symbol table, etc.).  After that, access to
    // the file (other than the mapped regions) is no longer needed, and
    // the file is closed. Closing the file does not affect the
    // currently mapped regions.
    MetaspaceShared::initialize_shared_spaces();
    StringTable::create_table();
    if (ArchiveHeapLoader::is_loaded()) {
      StringTable::transfer_shared_strings_to_local_table();
    }
  } else
#endif
  {
    SymbolTable::create_table();
    StringTable::create_table();
  }

#if INCLUDE_CDS
  if (Arguments::is_dumping_archive()) {
    MetaspaceShared::prepare_for_dumping();
  }
#endif

  if (strlen(VerifySubSet) > 0) {
    Universe::initialize_verify_flags();
  }

  ResolvedMethodTable::create_table();

  return JNI_OK;
}

jint Universe::initialize_heap() {
  assert(_collectedHeap == NULL, "Heap already created");
  _collectedHeap = GCConfig::arguments()->create_heap();

  log_info(gc)("Using %s", _collectedHeap->name());
  return _collectedHeap->initialize();
}

void Universe::initialize_tlab() {
  ThreadLocalAllocBuffer::set_max_size(Universe::heap()->max_tlab_size());
  PLAB::startup_initialization();
  if (UseTLAB) {
    ThreadLocalAllocBuffer::startup_initialization();
  }
}

ReservedHeapSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {

  assert(alignment <= Arguments::conservative_max_heap_alignment(),
         "actual alignment " SIZE_FORMAT " must be within maximum heap alignment " SIZE_FORMAT,
         alignment, Arguments::conservative_max_heap_alignment());

  size_t total_reserved = align_up(heap_size, alignment);
  assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())),
      "heap size is too big for compressed oops");

  size_t page_size = os::vm_page_size();
  if (UseLargePages && is_aligned(alignment, os::large_page_size())) {
    page_size = os::large_page_size();
  } else {
    // Parallel is the only collector that might opt out of using large pages
    // for the heap.
    assert(!UseLargePages || UseParallelGC , "Wrong alignment to use large pages");
  }

  // Now create the space.
  ReservedHeapSpace total_rs(total_reserved, alignment, page_size, AllocateHeapAt);

  if (total_rs.is_reserved()) {
    assert((total_reserved == total_rs.size()) && ((uintptr_t)total_rs.base() % alignment == 0),
           "must be exactly of required size and alignment");
    // We are good.

    if (AllocateHeapAt != NULL) {
      log_info(gc,heap)("Successfully allocated Java heap at location %s", AllocateHeapAt);
    }

    if (UseCompressedOops) {
      CompressedOops::initialize(total_rs);
    }

    Universe::calculate_verify_data((HeapWord*)total_rs.base(), (HeapWord*)total_rs.end());

    return total_rs;
  }

  vm_exit_during_initialization(
    err_msg("Could not reserve enough space for " SIZE_FORMAT "KB object heap",
            total_reserved/K));

  // satisfy compiler
  ShouldNotReachHere();
  return ReservedHeapSpace(0, 0, os::vm_page_size());
}

OopStorage* Universe::vm_weak() {
  return Universe::_vm_weak;
}

OopStorage* Universe::vm_global() {
  return Universe::_vm_global;
}

void Universe::oopstorage_init() {
  Universe::_vm_global = OopStorageSet::create_strong("VM Global", mtInternal);
  Universe::_vm_weak = OopStorageSet::create_weak("VM Weak", mtInternal);
}

void universe_oopstorage_init() {
  Universe::oopstorage_init();
}

void initialize_known_method(LatestMethodCache* method_cache,
                             InstanceKlass* ik,
                             const char* method,
                             Symbol* signature,
                             bool is_static, TRAPS)
{
  TempNewSymbol name = SymbolTable::new_symbol(method);
  Method* m = NULL;
  // The klass must be linked before looking up the method.
  if (!ik->link_class_or_fail(THREAD) ||
      ((m = ik->find_method(name, signature)) == NULL) ||
      is_static != m->is_static()) {
    ResourceMark rm(THREAD);
    // NoSuchMethodException doesn't actually work because it tries to run the
    // <init> function before java_lang_Class is linked. Print error and exit.
    vm_exit_during_initialization(err_msg("Unable to link/verify %s.%s method",
                                 ik->name()->as_C_string(), method));
  }
  method_cache->init(ik, m);
}

void Universe::initialize_known_methods(TRAPS) {
  // Set up static method for registering finalizers
  initialize_known_method(_finalizer_register_cache,
                          vmClasses::Finalizer_klass(),
                          "register",
                          vmSymbols::object_void_signature(), true, CHECK);

  initialize_known_method(_throw_illegal_access_error_cache,
                          vmClasses::internal_Unsafe_klass(),
                          "throwIllegalAccessError",
                          vmSymbols::void_method_signature(), true, CHECK);

  initialize_known_method(_throw_no_such_method_error_cache,
                          vmClasses::internal_Unsafe_klass(),
                          "throwNoSuchMethodError",
                          vmSymbols::void_method_signature(), true, CHECK);

  // Set up method for registering loaded classes in class loader vector
  initialize_known_method(_loader_addClass_cache,
                          vmClasses::ClassLoader_klass(),
                          "addClass",
                          vmSymbols::class_void_signature(), false, CHECK);

  // Set up method for stack walking
  initialize_known_method(_do_stack_walk_cache,
                          vmClasses::AbstractStackWalker_klass(),
                          "doStackWalk",
                          vmSymbols::doStackWalk_signature(), false, CHECK);
}

void universe2_init() {
  EXCEPTION_MARK;
  Universe::genesis(CATCH);
}

// Set after initialization of the module runtime, call_initModuleRuntime
void universe_post_module_init() {
  Universe::_module_initialized = true;
}

bool universe_post_init() {
  assert(!is_init_completed(), "Error: initialization not yet completed!");
  Universe::_fully_initialized = true;
  EXCEPTION_MARK;
  if (!UseSharedSpaces) {
    reinitialize_vtables();
    reinitialize_itables();
  }

  HandleMark hm(THREAD);
  // Setup preallocated empty java.lang.Class array for Method reflection.

  objArrayOop the_empty_class_array = oopFactory::new_objArray(vmClasses::Class_klass(), 0, CHECK_false);
  Universe::_the_empty_class_array = OopHandle(Universe::vm_global(), the_empty_class_array);

  // Setup preallocated OutOfMemoryError errors
  Universe::create_preallocated_out_of_memory_errors(CHECK_false);

  oop instance;
  // Setup preallocated cause message for delayed StackOverflowError
  if (StackReservedPages > 0) {
    instance = java_lang_String::create_oop_from_str("Delayed StackOverflowError due to ReservedStackAccess annotated method", CHECK_false);
    Universe::_delayed_stack_overflow_error_message = OopHandle(Universe::vm_global(), instance);
  }

  // Setup preallocated NullPointerException
  // (this is currently used for a cheap & dirty solution in compiler exception handling)
  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false);
  instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
  Universe::_null_ptr_exception_instance = OopHandle(Universe::vm_global(), instance);

  // Setup preallocated ArithmeticException
  // (this is currently used for a cheap & dirty solution in compiler exception handling)
  k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false);
  instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
  Universe::_arithmetic_exception_instance = OopHandle(Universe::vm_global(), instance);

  // Virtual Machine Error for when we get into a situation we can't resolve
  k = vmClasses::VirtualMachineError_klass();
  bool linked = InstanceKlass::cast(k)->link_class_or_fail(CHECK_false);
  if (!linked) {
     tty->print_cr("Unable to link/verify VirtualMachineError class");
     return false// initialization failed
  }
  instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false);
  Universe::_virtual_machine_error_instance = OopHandle(Universe::vm_global(), instance);

  Handle msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
  java_lang_Throwable::set_message(Universe::arithmetic_exception_instance(), msg());

  Universe::initialize_known_methods(CHECK_false);

  // This needs to be done before the first scavenge/gc, since
  // it's an input to soft ref clearing policy.
  {
    MutexLocker x(THREAD, Heap_lock);
    Universe::heap()->update_capacity_and_used_at_gc();
  }

  // ("weak") refs processing infrastructure initialization
  Universe::heap()->post_initialize();

  MemoryService::add_metaspace_memory_pools();

  MemoryService::set_universe_heap(Universe::heap());
#if INCLUDE_CDS
  MetaspaceShared::post_initialize(CHECK_false);
#endif
  return true;
}


void Universe::compute_base_vtable_size() {
  _base_vtable_size = ClassLoader::compute_Object_vtable();
}

void Universe::print_on(outputStream* st) {
  GCMutexLocker hl(Heap_lock); // Heap_lock might be locked by caller thread.
  st->print_cr("Heap");
  heap()->print_on(st);
}

void Universe::print_heap_at_SIGBREAK() {
  if (PrintHeapAtSIGBREAK) {
    print_on(tty);
    tty->cr();
    tty->flush();
  }
}

void Universe::initialize_verify_flags() {
  verify_flags = 0;
  const char delimiter[] = " ,";

  size_t length = strlen(VerifySubSet);
  char* subset_list = NEW_C_HEAP_ARRAY(char, length + 1, mtInternal);
  strncpy(subset_list, VerifySubSet, length + 1);
  char* save_ptr;

  char* token = strtok_r(subset_list, delimiter, &save_ptr);
  while (token != NULL) {
    if (strcmp(token, "threads") == 0) {
      verify_flags |= Verify_Threads;
    } else if (strcmp(token, "heap") == 0) {
      verify_flags |= Verify_Heap;
    } else if (strcmp(token, "symbol_table") == 0) {
      verify_flags |= Verify_SymbolTable;
    } else if (strcmp(token, "string_table") == 0) {
      verify_flags |= Verify_StringTable;
    } else if (strcmp(token, "codecache") == 0) {
      verify_flags |= Verify_CodeCache;
    } else if (strcmp(token, "dictionary") == 0) {
      verify_flags |= Verify_SystemDictionary;
    } else if (strcmp(token, "classloader_data_graph") == 0) {
      verify_flags |= Verify_ClassLoaderDataGraph;
    } else if (strcmp(token, "metaspace") == 0) {
      verify_flags |= Verify_MetaspaceUtils;
    } else if (strcmp(token, "jni_handles") == 0) {
      verify_flags |= Verify_JNIHandles;
    } else if (strcmp(token, "codecache_oops") == 0) {
      verify_flags |= Verify_CodeCacheOops;
    } else if (strcmp(token, "resolved_method_table") == 0) {
      verify_flags |= Verify_ResolvedMethodTable;
    } else if (strcmp(token, "stringdedup") == 0) {
      verify_flags |= Verify_StringDedup;
    } else {
      vm_exit_during_initialization(err_msg("VerifySubSet: \'%s\' memory sub-system is unknown, please correct it", token));
    }
    token = strtok_r(NULL, delimiter, &save_ptr);
  }
  FREE_C_HEAP_ARRAY(char, subset_list);
}

bool Universe::should_verify_subset(uint subset) {
  if (verify_flags & subset) {
    return true;
  }
  return false;
}

void Universe::verify(VerifyOption option, const char* prefix) {
  COMPILER2_PRESENT(
    assert(!DerivedPointerTable::is_active(),
         "DPT should not be active during verification "
         "(of thread stacks below)");
  )

  Thread* thread = Thread::current();
  ResourceMark rm(thread);
  HandleMark hm(thread);  // Handles created during verification can be zapped
  _verify_count++;

  FormatBuffer<> title("Verifying %s", prefix);
  GCTraceTime(Info, gc, verify) tm(title.buffer());
  if (should_verify_subset(Verify_Threads)) {
    log_debug(gc, verify)("Threads");
    Threads::verify();
  }
  if (should_verify_subset(Verify_Heap)) {
    log_debug(gc, verify)("Heap");
    heap()->verify(option);
  }
  if (should_verify_subset(Verify_SymbolTable)) {
    log_debug(gc, verify)("SymbolTable");
    SymbolTable::verify();
  }
  if (should_verify_subset(Verify_StringTable)) {
    log_debug(gc, verify)("StringTable");
    StringTable::verify();
  }
  if (should_verify_subset(Verify_CodeCache)) {
    log_debug(gc, verify)("CodeCache");
    CodeCache::verify();
  }
  if (should_verify_subset(Verify_SystemDictionary)) {
    log_debug(gc, verify)("SystemDictionary");
    SystemDictionary::verify();
  }
  if (should_verify_subset(Verify_ClassLoaderDataGraph)) {
    log_debug(gc, verify)("ClassLoaderDataGraph");
    ClassLoaderDataGraph::verify();
  }
  if (should_verify_subset(Verify_MetaspaceUtils)) {
    log_debug(gc, verify)("MetaspaceUtils");
    DEBUG_ONLY(MetaspaceUtils::verify();)
  }
  if (should_verify_subset(Verify_JNIHandles)) {
    log_debug(gc, verify)("JNIHandles");
    JNIHandles::verify();
  }
  if (should_verify_subset(Verify_CodeCacheOops)) {
    log_debug(gc, verify)("CodeCache Oops");
    CodeCache::verify_oops();
  }
  if (should_verify_subset(Verify_ResolvedMethodTable)) {
    log_debug(gc, verify)("ResolvedMethodTable Oops");
    ResolvedMethodTable::verify();
  }
  if (should_verify_subset(Verify_StringDedup)) {
    log_debug(gc, verify)("String Deduplication");
    StringDedup::verify();
  }
}


#ifndef PRODUCT
void Universe::calculate_verify_data(HeapWord* low_boundary, HeapWord* high_boundary) {
  assert(low_boundary < high_boundary, "bad interval");

  // decide which low-order bits we require to be clear:
  size_t alignSize = MinObjAlignmentInBytes;
  size_t min_object_size = CollectedHeap::min_fill_size();

  // make an inclusive limit:
  uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
  uintptr_t min = (uintptr_t)low_boundary;
  assert(min < max, "bad interval");
  uintptr_t diff = max ^ min;

  // throw away enough low-order bits to make the diff vanish
  uintptr_t mask = (uintptr_t)(-1);
  while ((mask & diff) != 0)
    mask <<= 1;
  uintptr_t bits = (min & mask);
  assert(bits == (max & mask), "correct mask");
  // check an intermediate value between min and max, just to make sure:
  assert(bits == ((min + (max-min)/2) & mask), "correct mask");

  // require address alignment, too:
  mask |= (alignSize - 1);

  if (!(_verify_oop_mask == 0 && _verify_oop_bits == (uintptr_t)-1)) {
    assert(_verify_oop_mask == mask && _verify_oop_bits == bits, "mask stability");
  }
  _verify_oop_mask = mask;
  _verify_oop_bits = bits;
}

// Oop verification (see MacroAssembler::verify_oop)

uintptr_t Universe::verify_oop_mask() {
  return _verify_oop_mask;
}

uintptr_t Universe::verify_oop_bits() {
  return _verify_oop_bits;
}

uintptr_t Universe::verify_mark_mask() {
  return markWord::lock_mask_in_place;
}

uintptr_t Universe::verify_mark_bits() {
  intptr_t mask = verify_mark_mask();
  intptr_t bits = (intptr_t)markWord::prototype().value();
  assert((bits & ~mask) == 0, "no stray header bits");
  return bits;
}
#endif // PRODUCT


void LatestMethodCache::init(Klass* k, Method* m) {
  if (!UseSharedSpaces) {
    _klass = k;
  }
#ifndef PRODUCT
  else {
    // sharing initialization should have already set up _klass
    assert(_klass != NULL, "just checking");
  }
#endif

  _method_idnum = m->method_idnum();
  assert(_method_idnum >= 0, "sanity check");
}


Method* LatestMethodCache::get_method() {
  if (klass() == NULL) return NULL;
  InstanceKlass* ik = InstanceKlass::cast(klass());
  Method* m = ik->method_with_idnum(method_idnum());
  assert(m != NULL, "sanity check");
  return m;
}

#ifdef ASSERT
// Release dummy object(s) at bottom of heap
bool Universe::release_fullgc_alot_dummy() {
  MutexLocker ml(FullGCALot_lock);
  objArrayOop fullgc_alot_dummy_array = (objArrayOop)_fullgc_alot_dummy_array.resolve();
  if (fullgc_alot_dummy_array != NULL) {
    if (_fullgc_alot_dummy_next >= fullgc_alot_dummy_array->length()) {
      // No more dummies to release, release entire array instead
      _fullgc_alot_dummy_array.release(Universe::vm_global());
      _fullgc_alot_dummy_array = OopHandle(); // NULL out OopStorage pointer.
      return false;
    }

    // Release dummy at bottom of old generation
    fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
  }
  return true;
}

bool Universe::is_gc_active() {
  return heap()->is_gc_active();
}

bool Universe::is_in_heap(const void* p) {
  return heap()->is_in(p);
}

#endif // ASSERT

¤ Dauer der Verarbeitung: 0.44 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff