products/sources/formale sprachen/Java/openjdk-20-36_src/src/hotspot/cpu/s390 image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei:   Sprache: JAVA

/*
 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


/*
 * @test
 * @bug 4851638 4900189 4939441
 * @summary Tests for {Math, StrictMath}.expm1
 */


/*
 * The Taylor expansion of expxm1(x) = exp(x) -1 is
 *
 * 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
 *
 * x + x^2/2! + x^3/3 + ...
 *
 * Therefore, for small values of x, expxm1 ~= x.
 *
 * For large values of x, expxm1(x) ~= exp(x)
 *
 * For large negative x, expxm1(x) ~= -1.
 */


public class Expm1Tests {

    private Expm1Tests(){}

    static final double infinityD = Double.POSITIVE_INFINITY;
    static final double NaNd = Double.NaN;

    static int testExpm1() {
        int failures = 0;

        double [][] testCases = {
            {Double.NaN,                NaNd},
            {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
            {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
            {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
            {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
            {infinityD,                 infinityD},
            {-infinityD,                -1.0},
            {-0.0,                      -0.0},
            {+0.0,                      +0.0},
        };

        // Test special cases
        for(int i = 0; i < testCases.length; i++) {
            failures += testExpm1CaseWithUlpDiff(testCases[i][0],
                                                 testCases[i][1], 0, null);
        }


        // For |x| < 2^-54 expm1(x) ~= x
        for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
            double d = Math.scalb(2, i);
            failures += testExpm1Case(d, d);
            failures += testExpm1Case(-d, -d);
        }


        // For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
        // The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
        // overflows for x > ~= 709.8

        // Use a 2-ulp error threshold to account for errors in the
        // exp implementation; the increments of d in the loop will be
        // exact.
        for(double d = 37.5; d <= 709.5; d += 1.0) {
            failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
        }

        // For x > 710, expm1(x) should be infinity
        for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
            double d = Math.scalb(2, i);
            failures += testExpm1Case(d, infinityD);
        }

        // By monotonicity, once the limit is reached, the
        // implemenation should return the limit for all smaller
        // values.
        boolean reachedLimit [] = {falsefalse};

        // Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
        // The greatest such y is ln(2^-53) ~= -36.7368005696771.
        for(double d = -36.75; d >= -127.75; d -= 1.0) {
            failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
                                                 reachedLimit);
        }

        for(int i = 7; i <= Double.MAX_EXPONENT; i++) {
            double d = -Math.scalb(2, i);
            failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
        }

        // Test for monotonicity failures near multiples of log(2).
        // Test two numbers before and two numbers after each chosen
        // value; i.e.
        //
        // pcNeighbors[] =
        // {nextDown(nextDown(pc)),
        // nextDown(pc),
        // pc,
        // nextUp(pc),
        // nextUp(nextUp(pc))}
        //
        // and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
        {
            double pcNeighbors[] = new double[5];
            double pcNeighborsExpm1[] = new double[5];
            double pcNeighborsStrictExpm1[] = new double[5];

            for(int i = -50; i <= 50; i++) {
                double pc = StrictMath.log(2)*i;

                pcNeighbors[2] = pc;
                pcNeighbors[1] = Math.nextDown(pc);
                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
                pcNeighbors[3] = Math.nextUp(pc);
                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);

                for(int j = 0; j < pcNeighbors.length; j++) {
                    pcNeighborsExpm1[j]       =       Math.expm1(pcNeighbors[j]);
                    pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
                }

                for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
                    if(pcNeighborsExpm1[j] >  pcNeighborsExpm1[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for Math.expm1 on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsExpm1[j] + " and " +
                                          pcNeighborsExpm1[j+1] );
                    }

                    if(pcNeighborsStrictExpm1[j] >  pcNeighborsStrictExpm1[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for StrictMath.expm1 on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsStrictExpm1[j] + " and " +
                                          pcNeighborsStrictExpm1[j+1] );
                    }


                }

            }
        }

        return failures;
    }

    public static int testExpm1Case(double input,
                                    double expected) {
        return testExpm1CaseWithUlpDiff(input, expected, 1, null);
    }

    public static int testExpm1CaseWithUlpDiff(double input,
                                               double expected,
                                               double ulps,
                                               boolean [] reachedLimit) {
        int failures = 0;
        double mathUlps = ulps, strictUlps = ulps;
        double mathOutput;
        double strictOutput;

        if (reachedLimit != null) {
            if (reachedLimit[0])
                mathUlps = 0;

            if (reachedLimit[1])
                strictUlps = 0;
        }

        failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
                                                    input, mathOutput=Math.expm1(input),
                                                    expected, mathUlps, -1.0);
        failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
                                                    input, strictOutput=StrictMath.expm1(input),
                                                    expected, strictUlps, -1.0);
        if (reachedLimit != null) {
            reachedLimit[0] |= (mathOutput   == -1.0);
            reachedLimit[1] |= (strictOutput == -1.0);
        }

        return failures;
    }

    public static void main(String... argv) {
        int failures = 0;

        failures += testExpm1();

        if (failures > 0) {
            System.err.println("Testing expm1 incurred "
                               + failures + " failures.");
            throw new RuntimeException();
        }
    }
}

¤ Dauer der Verarbeitung: 0.2 Sekunden  (vorverarbeitet)  ¤





zum Wurzelverzeichnis wechseln
Diese Quellcodebibliothek enthält Beispiele in vielen Programmiersprachen. Man kann per Verzeichnistruktur darin navigieren. Der Code wird farblich markiert angezeigt.
zum Wurzelverzeichnis wechseln
sprechenden Kalenders

Eigene Datei ansehen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff