products/sources/formale Sprachen/Coq/proofs image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: nixpkgs.nix   Sprache: SML

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Util
open Names
open Nameops
open Constr
open Vars
open Termops
open Environ
open Reductionops
open Inductiveops
open Typing
open Type_errors
open Retyping

module NamedDecl = Context.Named.Declaration

type refiner_error =

  (* Errors raised by the refiner *)
  | BadType of constr * constr * constr
  | UnresolvedBindings of Name.t list
  | CannotApply of constr * constr
  | NotWellTyped of constr
  | NonLinearProof of constr
  | MetaInType of EConstr.constr

  (* Errors raised by the tactics *)
  | IntroNeedsProduct
  | DoesNotOccurIn of constr * Id.t
  | NoSuchHyp of Id.t

exception RefinerError of Environ.env * Evd.evar_map * refiner_error

open Pretype_errors

(** FIXME: this is quite brittle. Why not accept any PretypeError? *)
let is_typing_error = function
| UnexpectedType (_, _) | NotProduct _
| VarNotFound _ | TypingError _ -> true
| _ -> false

let is_unification_error = function
| CannotUnify _ | CannotUnifyLocal _| CannotGeneralize _
| NoOccurrenceFound _ | CannotUnifyBindingType _
| ActualTypeNotCoercible _ | UnifOccurCheck _
| CannotFindWellTypedAbstraction _ | WrongAbstractionType _
| UnsolvableImplicit _| AbstractionOverMeta _
| UnsatisfiableConstraints _ -> true
| _ -> false

let catchable_exception = function
  | CErrors.UserError _ | TypeError _
  | Proof.OpenProof _
  (* abstract will call close_proof inside a tactic *)
  | Notation.PrimTokenNotationError _
  | RefinerError _ | Indrec.RecursionSchemeError _
  | Nametab.GlobalizationError _
  (* reduction errors *)
  | Tacred.ReductionTacticError _ -> true
  (* unification and typing errors *)
  | PretypeError(_,_, e) -> is_unification_error e || is_typing_error e 
  | _ -> false

let error_no_such_hypothesis env sigma id = raise (RefinerError (env, sigma, NoSuchHyp id))

(* Tells if the refiner should check that the submitted rules do not
   produce invalid subgoals *)

let check = ref false
let with_check = Flags.with_option check

(* [apply_to_hyp sign id f] splits [sign] into [tail::[id,_,_]::head] and
   returns [tail::(f head (id,_,_) (rev tail))] *)

let apply_to_hyp env sigma check sign id f =
  try apply_to_hyp sign id f
  with Hyp_not_found ->
    if check then error_no_such_hypothesis env sigma id
    else sign

let check_typability env sigma c =
  if !check then let _ = unsafe_type_of env sigma (EConstr.of_constr c) in ()

(************************************************************************)
(************************************************************************)
(* Implementation of the structural rules (moving and deleting
   hypotheses around) *)


(* The ClearBody tactic *)

(* Reordering of the context *)

(* faire le minimum d'echanges pour que l'ordre donne soit un *)
(* sous-ordre du resultat. Par exemple, 2 hyps non mentionnee ne sont *)
(* pas echangees. Choix: les hyps mentionnees ne peuvent qu'etre *)
(* reculees par rapport aux autres (faire le contraire!) *)

let mt_q = (Id.Map.empty,[])
let push_val y = function
    (_,[] as q) -> q
  | (m, (x,l)::q) -> (m, (x,Id.Set.add y l)::q)
let push_item x v (m,l) =
  (Id.Map.add x v m, (x,Id.Set.empty)::l)
let mem_q x (m,_) = Id.Map.mem x m
let find_q x (m,q) =
  let v = Id.Map.find x m in
  let m' = Id.Map.remove x m in
  let rec find accs acc = function
      [] -> raise Not_found
    | [(x',l)] ->
        if Id.equal x x' then ((v,Id.Set.union accs l),(m',List.rev acc))
        else raise Not_found
    | (x',l as i)::((x'',l'')::q as itl) ->
        if Id.equal x x' then
          ((v,Id.Set.union accs l),
           (m',List.rev acc@(x'',Id.Set.add x (Id.Set.union l l''))::q))
        else find (Id.Set.union l accs) (i::acc) itl in
  find Id.Set.empty [] q

let occur_vars_in_decl env sigma hyps d =
  if Id.Set.is_empty hyps then false else
    let ohyps = global_vars_set_of_decl env sigma d in
    Id.Set.exists (fun h -> Id.Set.mem h ohyps) hyps

let reorder_context env sigma sign ord =
  let ords = List.fold_right Id.Set.add ord Id.Set.empty in
  if not (Int.equal (List.length ord) (Id.Set.cardinal ords)) then
    user_err Pp.(str "Order list has duplicates");
  let rec step ord expected ctxt_head moved_hyps ctxt_tail =
    match ord with
      | [] -> List.rev ctxt_tail @ ctxt_head
      | top::ord' when mem_q top moved_hyps ->
          let ((d,h),mh) = find_q top moved_hyps in
          if occur_vars_in_decl env sigma h d then
            user_err ~hdr:"reorder_context"
              (str "Cannot move declaration " ++ Id.print top ++ spc() ++
              str "before " ++
              pr_sequence Id.print
                (Id.Set.elements (Id.Set.inter h
                  (global_vars_set_of_decl env sigma d))));
          step ord' expected ctxt_head mh (d::ctxt_tail)
      | _ ->
          (match ctxt_head with
            | [] -> error_no_such_hypothesis env sigma (List.hd ord)
            | d :: ctxt ->
                let x = NamedDecl.get_id d in
                if Id.Set.mem x expected then
                  step ord (Id.Set.remove x expected)
                    ctxt (push_item x d moved_hyps) ctxt_tail
                else
                  step ord expected
                    ctxt (push_val x moved_hyps) (d::ctxt_tail)) in
  step ord ords sign mt_q []

let reorder_val_context env sigma sign ord =
  let open EConstr in
  val_of_named_context (reorder_context env sigma (named_context_of_val sign) ord)




let check_decl_position env sigma sign d =
  let open EConstr in
  let x = NamedDecl.get_id d in
  let needed = global_vars_set_of_decl env sigma d in
  let deps = dependency_closure env sigma (named_context_of_val sign) needed in
  if Id.List.mem x deps then
    user_err ~hdr:"Logic.check_decl_position"
      (str "Cannot create self-referring hypothesis " ++ Id.print x);
  x::deps

(* Auxiliary functions for primitive MOVE tactic
 *
 * [move_hyp with_dep toleft (left,(hfrom,typfrom),right) hto] moves
 * hyp [hfrom] at location [hto] which belongs to the hyps on the
 * left side [left] of the full signature if [toleft=true] or to the hyps
 * on the right side [right] if [toleft=false].
 * If [with_dep] then dependent hypotheses are moved accordingly. *)


(** Move destination for hypothesis *)

type 'id move_location =
  | MoveAfter of 'id
  | MoveBefore of 'id
  | MoveFirst
  | MoveLast (** can be seen as "no move" when doing intro *)

(** Printing of [move_location] *)

let pr_move_location pr_id = function
  | MoveAfter id -> brk(1,1) ++ str "after " ++ pr_id id
  | MoveBefore id -> brk(1,1) ++ str "before " ++ pr_id id
  | MoveFirst -> str " at top"
  | MoveLast -> str " at bottom"

let move_location_eq m1 m2 = match m1, m2 with
| MoveAfter id1, MoveAfter id2 -> Id.equal id1 id2
| MoveBefore id1, MoveBefore id2 -> Id.equal id1 id2
| MoveLast, MoveLast -> true
| MoveFirst, MoveFirst -> true
| _ -> false

let split_sign env sigma hfrom hto l =
  let rec splitrec left toleft = function
    | [] -> error_no_such_hypothesis env sigma hfrom
    | d :: right ->
        let hyp = NamedDecl.get_id d in
       if Id.equal hyp hfrom then
   (left,right,d, toleft || move_location_eq hto MoveLast)
       else
          let is_toleft = match hto with
          | MoveAfter h' | MoveBefore h' -> Id.equal hyp h'
          | _ -> false
          in
   splitrec (d::left) (toleft || is_toleft)
     right
  in
    splitrec [] false l

let hyp_of_move_location = function
  | MoveAfter id -> id
  | MoveBefore id -> id
  | _ -> assert false

let move_hyp env sigma toleft (left,declfrom,right) hto =
  let test_dep d d2 =
    if toleft
    then occur_var_in_decl env sigma (NamedDecl.get_id d2) d
    else occur_var_in_decl env sigma (NamedDecl.get_id d) d2
  in
  let rec moverec first middle = function
    | [] ->
 if match hto with MoveFirst | MoveLast -> false | _ -> true then
          error_no_such_hypothesis env sigma (hyp_of_move_location hto);
 List.rev first @ List.rev middle
    | d :: _ as right when move_location_eq hto (MoveBefore (NamedDecl.get_id d)) ->
 List.rev first @ List.rev middle @ right
    | d :: right ->
        let hyp = NamedDecl.get_id d in
 let (first',middle') =
         if List.exists (test_dep d) middle then
     if not (move_location_eq hto (MoveAfter hyp)) then
       (first, d::middle)
            else
       user_err ~hdr:"move_hyp" (str "Cannot move " ++ Id.print (NamedDecl.get_id declfrom) ++
                pr_move_location Id.print hto ++
         str (if toleft then ": it occurs in the type of " else ": it depends on ")
         ++ Id.print hyp ++ str ".")
          else
     (d::first, middle)
 in
       if move_location_eq hto (MoveAfter hyp) then
   List.rev first' @ List.rev middle' @ right
       else
   moverec first' middle' right
  in
  let open EConstr in
  if toleft then
    let right =
      List.fold_right push_named_context_val right empty_named_context_val in
    List.fold_left (fun sign d -> push_named_context_val d sign)
      right (moverec [] [declfrom] left)
  else
    let right =
      List.fold_right push_named_context_val
 (moverec [] [declfrom] right) empty_named_context_val in
    List.fold_left (fun sign d -> push_named_context_val d sign)
      right left

let move_hyp_in_named_context env sigma hfrom hto sign =
  let open EConstr in
  let (left,right,declfrom,toleft) =
    split_sign env sigma hfrom hto (named_context_of_val sign) in
  move_hyp env sigma toleft (left,declfrom,right) hto

let insert_decl_in_named_context env sigma decl hto sign =
  let open EConstr in
  move_hyp env sigma false ([],decl,named_context_of_val sign) hto

(**********************************************************************)


(************************************************************************)
(************************************************************************)
(* Implementation of the logical rules *)

(* Will only be used on terms given to the Refine rule which have meta
variables only in Application and Case *)


let error_unsupported_deep_meta c =
  user_err  (strbrk "Application of lemmas whose beta-iota normal " ++
    strbrk "form contains metavariables deep inside the term is not " ++
    strbrk "supported; try \"refine\" instead.")

let collect_meta_variables c =
  let rec collrec deep acc c = match kind c with
    | Meta mv -> if deep then error_unsupported_deep_meta () else mv::acc
    | Cast(c,_,_) -> collrec deep acc c
    | Case(ci,p,c,br) ->
        (* Hack assuming only two situations: the legacy one that branches,
           if with Metas, are Meta, and the new one with eta-let-expanded
           branches *)

        let br = Array.map2 (fun n b -> try snd (Term.decompose_lam_n_decls n b) with UserError _ -> b) ci.ci_cstr_ndecls br in
        Array.fold_left (collrec deep)
          (Constr.fold (collrec deep) (Constr.fold (collrec deep) acc p) c)
          br
    | App _ -> Constr.fold (collrec deep) acc c
    | Proj (_, c) -> collrec deep acc c
    | _ -> Constr.fold (collrec true) acc c
  in
  List.rev (collrec false [] c)

let check_meta_variables env sigma c =
  if not (List.distinct_f Int.compare (collect_meta_variables c)) then
    raise (RefinerError (env, sigma, NonLinearProof c))

let check_conv_leq_goal env sigma arg ty conclty =
  if !check then
    let ans = Reductionops.infer_conv env sigma (EConstr.of_constr ty) (EConstr.of_constr conclty) in
    match ans with
    | Some evm -> evm
    | None -> raise (RefinerError (env, sigma, BadType (arg,ty,conclty)))
  else sigma

exception Stop of EConstr.t list
let meta_free_prefix sigma a =
  try
    let a = Array.map EConstr.of_constr a in
    let _ = Array.fold_left (fun acc a -> 
      if occur_meta sigma a then raise (Stop acc)
      else a :: acc) [] a
    in a
  with Stop acc -> Array.rev_of_list acc

let goal_type_of env sigma c =
  if !check then
    let (sigma,t) = type_of env sigma (EConstr.of_constr c) in
    (sigma, EConstr.Unsafe.to_constr t)
  else (sigma, EConstr.Unsafe.to_constr (Retyping.get_type_of env sigma (EConstr.of_constr c)))

let rec mk_refgoals sigma goal goalacc conclty trm =
  let env = Goal.V82.env sigma goal in
  let hyps = Goal.V82.hyps sigma goal in
  let mk_goal hyps concl =
    Goal.V82.mk_goal sigma hyps concl
  in
    if (not !check) && not (occur_meta sigma (EConstr.of_constr trm)) then
      let t'ty = Retyping.get_type_of env sigma (EConstr.of_constr trm) in
      let t'ty = EConstr.Unsafe.to_constr t'ty in
      let sigma = check_conv_leq_goal env sigma trm t'ty conclty in
        (goalacc,t'ty,sigma,trm)
    else
      match kind trm with
      | Meta _ ->
        let conclty = nf_betaiota env sigma (EConstr.of_constr conclty) in
   if !check && occur_meta sigma conclty then
            raise (RefinerError (env, sigma, MetaInType conclty));
   let (gl,ev,sigma) = mk_goal hyps conclty in
   let ev = EConstr.Unsafe.to_constr ev in
   let conclty = EConstr.Unsafe.to_constr conclty in
   gl::goalacc, conclty, sigma, ev

      | Cast (t,k, ty) ->
 check_typability env sigma ty;
        let sigma = check_conv_leq_goal env sigma trm ty conclty in
 let res = mk_refgoals sigma goal goalacc ty t in
        (* we keep the casts (in particular VMcast and NATIVEcast) except
           when they are annotating metas *)

 if isMeta t then begin
   assert (k != VMcast && k != NATIVEcast);
   res
 end else
   let (gls,cty,sigma,ans) = res in
          let ans = if ans == t then trm else mkCast(ans,k,ty) in
   (gls,cty,sigma,ans)

      | App (f,l) ->
 let (acc',hdty,sigma,applicand) =
          if Termops.is_template_polymorphic_ind env sigma (EConstr.of_constr f) then
     let ty = 
       (* Template polymorphism of definitions and inductive types *)
       let firstmeta = Array.findi (fun i x -> occur_meta sigma (EConstr.of_constr x)) l in
       let args, _ = Option.cata (fun i -> CArray.chop i l) (l, [||]) firstmeta in
         type_of_global_reference_knowing_parameters env sigma (EConstr.of_constr f) (Array.map EConstr.of_constr args)
     in
     let ty = EConstr.Unsafe.to_constr ty in
       goalacc, ty, sigma, f
   else
     mk_hdgoals sigma goal goalacc f
 in
 let ((acc'',conclty',sigma), args) = mk_arggoals sigma goal acc' hdty l in
        let sigma = check_conv_leq_goal env sigma trm conclty' conclty in
        let ans = if applicand == f && args == l then trm else mkApp (applicand, args) in
        (acc'',conclty',sigma, ans)

      | Proj (p,c) ->
 let (acc',cty,sigma,c') = mk_hdgoals sigma goal goalacc c in
 let c = mkProj (p, c') in
 let ty = get_type_of env sigma (EConstr.of_constr c) in
 let ty = EConstr.Unsafe.to_constr ty in
   (acc',ty,sigma,c)

      | Case (ci,p,c,lf) ->
 let (acc',lbrty,conclty',sigma,p',c') = mk_casegoals sigma goal goalacc p c in
 let sigma = check_conv_leq_goal env sigma trm conclty' conclty in
        let (acc'',sigma,rbranches) = treat_case sigma goal ci lbrty lf acc' in
        let lf' = Array.rev_of_list rbranches in
        let ans =
          if p' == p && c' == c && Array.equal (==) lf' lf then trm
          else mkCase (ci,p',c',lf')
        in
 (acc'',conclty',sigma, ans)

      | _ ->
 if occur_meta sigma (EConstr.of_constr trm) then
   anomaly (Pp.str "refiner called with a meta in non app/case subterm.");
 let (sigma, t'ty) = goal_type_of env sigma trm in
 let sigma = check_conv_leq_goal env sigma trm t'ty conclty in
          (goalacc,t'ty,sigma, trm)

(* Same as mkREFGOALS but without knowing the type of the term. Therefore,
 * Metas should be casted. *)


and mk_hdgoals sigma goal goalacc trm =
  let env = Goal.V82.env sigma goal in
  let hyps = Goal.V82.hyps sigma goal in
  let mk_goal hyps concl = 
    Goal.V82.mk_goal sigma hyps concl in
  match kind trm with
    | Cast (c,_, ty) when isMeta c ->
 check_typability env sigma ty;
        let (gl,ev,sigma) = mk_goal hyps (nf_betaiota env sigma (EConstr.of_constr ty)) in
 let ev = EConstr.Unsafe.to_constr ev in
 gl::goalacc,ty,sigma,ev

    | Cast (t,_, ty) ->
 check_typability env sigma ty;
 mk_refgoals sigma goal goalacc ty t

    | App (f,l) ->
 let (acc',hdty,sigma,applicand) =
          if Termops.is_template_polymorphic_ind env sigma (EConstr.of_constr f)
   then
     let l' = meta_free_prefix sigma l in
    (goalacc,EConstr.Unsafe.to_constr (type_of_global_reference_knowing_parameters env sigma (EConstr.of_constr f) l'),sigma,f)
   else mk_hdgoals sigma goal goalacc f
 in
 let ((acc'',conclty',sigma), args) = mk_arggoals sigma goal acc' hdty l in
        let ans = if applicand == f && args == l then trm else mkApp (applicand, args) in
 (acc'',conclty',sigma, ans)

    | Case (ci,p,c,lf) ->
 let (acc',lbrty,conclty',sigma,p',c') = mk_casegoals sigma goal goalacc p c in
        let (acc'',sigma,rbranches) = treat_case sigma goal ci lbrty lf acc' in
 let lf' = Array.rev_of_list rbranches in
 let ans =
          if p' == p && c' == c && Array.equal (==) lf' lf then trm
          else mkCase (ci,p',c',lf')
 in
 (acc'',conclty',sigma, ans)

    | Proj (p,c) ->
         let (acc',cty,sigma,c') = mk_hdgoals sigma goal goalacc c in
  let c = mkProj (p, c') in
         let ty = get_type_of env sigma (EConstr.of_constr c) in
         let ty = EConstr.Unsafe.to_constr ty in
    (acc',ty,sigma,c)

    | _ ->
 if !check && occur_meta sigma (EConstr.of_constr trm) then
   anomaly (Pp.str "refine called with a dependent meta.");
        let (sigma, ty) = goal_type_of env sigma trm in
 goalacc, ty, sigma, trm

and mk_arggoals sigma goal goalacc funty allargs =
  let foldmap (goalacc, funty, sigma) harg =
    let t = whd_all (Goal.V82.env sigma goal) sigma (EConstr.of_constr funty) in
    let t = EConstr.Unsafe.to_constr t in
    let rec collapse t = match kind t with
    | LetIn (_, c1, _, b) -> collapse (subst1 c1 b)
    | _ -> t
    in
    let t = collapse t in
    match kind t with
    | Prod (_, c1, b) ->
      let (acc, hargty, sigma, arg) = mk_refgoals sigma goal goalacc c1 harg in
      (acc, subst1 harg b, sigma), arg
    | _ ->
      let env = Goal.V82.env sigma goal in
      raise (RefinerError (env,sigma,CannotApply (t, harg)))
  in
  Array.Smart.fold_left_map foldmap (goalacc, funty, sigma) allargs

and mk_casegoals sigma goal goalacc p c =
  let env = Goal.V82.env sigma goal in
  let (acc',ct,sigma,c') = mk_hdgoals sigma goal goalacc c in
  let ct = EConstr.of_constr ct in
  let (acc'',pt,sigma,p') = mk_hdgoals sigma goal acc' p in
  let ((ind, u), spec) =
    try Tacred.find_hnf_rectype env sigma ct
    with Not_found -> anomaly (Pp.str "mk_casegoals."in
  let indspec = ((ind, EConstr.EInstance.kind sigma u), spec) in
  let (lbrty,conclty) = type_case_branches_with_names env sigma indspec p c in
  (acc'',lbrty,conclty,sigma,p',c')

and treat_case sigma goal ci lbrty lf acc' =
  let rec strip_outer_cast c = match kind c with
  | Cast (c,_,_) -> strip_outer_cast c
  | _ -> c in
  let decompose_app_vect c = match kind c with
  | App (f,cl) -> (f, cl)
  | _ -> (c,[||]) in
  let env = Goal.V82.env sigma goal in
  Array.fold_left3
    (fun (lacc,sigma,bacc) ty fi l ->
        if isMeta (strip_outer_cast fi) then
          (* Support for non-eta-let-expanded Meta as found in *)
          (* destruct/case with an non eta-let expanded elimination scheme *)
          let (r,_,s,fi') = mk_refgoals sigma goal lacc ty fi in
          r,s,(fi'::bacc)
        else
        (* Deal with a branch in expanded form of the form
           Case(ci,p,c,[|eta-let-exp(Meta);...;eta-let-exp(Meta)|]) as
           if it were not so, so as to preserve compatibility with when
           destruct/case generated schemes of the form
           Case(ci,p,c,[|Meta;...;Meta|];
           CAUTION: it does not deal with the general case of eta-zeta
           reduced branches having a form different from Meta, as it
           would be theoretically the case with third-party code *)

        let n = List.length l in
        let ctx, body = Term.decompose_lam_n_decls n fi in
        let head, args = decompose_app_vect body in
        (* Strip cast because clenv_cast_meta adds a cast when the branch is
           eta-expanded but when not when the branch has the single-meta
           form [Meta] *)

        let head = strip_outer_cast head in
        if isMeta head then begin
          assert (args = Context.Rel.to_extended_vect mkRel 0 ctx);
          let head' = lift (-n) head in
          let (r,_,s,head'') = mk_refgoals sigma goal lacc ty head' in
          let fi' = it_mkLambda_or_LetIn (mkApp (head'',args)) ctx in
          (r,s,fi'::bacc)
        end
        else
          (* Supposed to be meta-free *)
          let sigma, t'ty = goal_type_of env sigma fi in
          let sigma = check_conv_leq_goal env sigma fi t'ty ty in
          (lacc,sigma,fi::bacc))
    (acc',sigma,[]) lbrty lf ci.ci_pp_info.cstr_tags

let convert_hyp check sign sigma d =
  let id = NamedDecl.get_id d in
  let b = NamedDecl.get_value d in
  let env = Global.env () in
  let reorder = ref [] in
  let sign' =
    apply_to_hyp env sigma check sign id
      (fun _ d' _ ->
        let c = Option.map EConstr.of_constr (NamedDecl.get_value d') in
        let env = Global.env_of_context sign in
        if check && not (is_conv env sigma (NamedDecl.get_type d) (EConstr.of_constr (NamedDecl.get_type d'))) then
   user_err ~hdr:"Logic.convert_hyp"
            (str "Incorrect change of the type of " ++ Id.print id ++ str ".");
        if check && not (Option.equal (is_conv env sigma) b c) then
   user_err ~hdr:"Logic.convert_hyp"
            (str "Incorrect change of the body of "++ Id.print id ++ str ".");
       if check then reorder := check_decl_position env sigma sign d;
       map_named_decl EConstr.Unsafe.to_constr d) in
  reorder_val_context env sigma sign' !reorder

(************************************************************************)
(************************************************************************)
(* Primitive tactics are handled here *)

let prim_refiner r sigma goal =
  let env = Goal.V82.env sigma goal in
  let cl = Goal.V82.concl sigma goal in
  let cl = EConstr.Unsafe.to_constr cl in
  check_meta_variables env sigma r;
  let (sgl,cl',sigma,oterm) = mk_refgoals sigma goal [] cl r in
  let sgl = List.rev sgl in
  let sigma = Goal.V82.partial_solution env sigma goal (EConstr.of_constr oterm) in
  (sgl, sigma)

let prim_refiner ~check r sigma goal =
  if check then
    with_check (prim_refiner r sigma) goal
  else
    prim_refiner r sigma goal

¤ Dauer der Verarbeitung: 0.39 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff