(* Title: HOL/Algebra/Coset.thy
Authors: Florian Kammueller, L C Paulson, Stephan Hohe
With additional contributions from Martin Baillon and Paulo Emílio de Vilhena.
*)
theory Coset
imports Group
begin
section \<open>Cosets and Quotient Groups\<close>
definition
r_coset :: "[_, 'a set, 'a] \ 'a set" (infixl "#>\" 60)
where "H #>\<^bsub>G\<^esub> a = (\h\H. {h \\<^bsub>G\<^esub> a})"
definition
l_coset :: "[_, 'a, 'a set] \ 'a set" (infixl "<#\" 60)
where "a <#\<^bsub>G\<^esub> H = (\h\H. {a \\<^bsub>G\<^esub> h})"
definition
RCOSETS :: "[_, 'a set] \ ('a set)set" ("rcosets\ _" [81] 80)
where "rcosets\<^bsub>G\<^esub> H = (\a\carrier G. {H #>\<^bsub>G\<^esub> a})"
definition
set_mult :: "[_, 'a set ,'a set] \ 'a set" (infixl "<#>\" 60)
where "H <#>\<^bsub>G\<^esub> K = (\h\H. \k\K. {h \\<^bsub>G\<^esub> k})"
definition
SET_INV :: "[_,'a set] \ 'a set" ("set'_inv\ _" [81] 80)
where "set_inv\<^bsub>G\<^esub> H = (\h\H. {inv\<^bsub>G\<^esub> h})"
locale normal = subgroup + group +
assumes coset_eq: "(\x \ carrier G. H #> x = x <# H)"
abbreviation
normal_rel :: "['a set, ('a, 'b) monoid_scheme] \ bool" (infixl "\" 60) where
"H \ G \ normal H G"
lemma (in comm_group) subgroup_imp_normal: "subgroup A G \ A \ G"
by (simp add: normal_def normal_axioms_def is_group l_coset_def r_coset_def m_comm subgroup.mem_carrier)
lemma l_coset_eq_set_mult: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
fixes G (structure)
shows "x <# H = {x} <#> H"
unfolding l_coset_def set_mult_def by simp
lemma r_coset_eq_set_mult: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
fixes G (structure)
shows "H #> x = H <#> {x}"
unfolding r_coset_def set_mult_def by simp
lemma (in subgroup) rcosets_non_empty: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "R \ rcosets H"
shows "R \ {}"
proof -
obtain g where "g \ carrier G" "R = H #> g"
using assms unfolding RCOSETS_def by blast
hence "\ \ g \ R"
using one_closed unfolding r_coset_def by blast
thus ?thesis by blast
qed
lemma (in group) diff_neutralizes: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "subgroup H G" "R \ rcosets H"
shows "\r1 r2. \ r1 \ R; r2 \ R \ \ r1 \ (inv r2) \ H"
proof -
fix r1 r2 assume r1: "r1 \ R" and r2: "r2 \ R"
obtain g where g: "g \ carrier G" "R = H #> g"
using assms unfolding RCOSETS_def by blast
then obtain h1 h2 where h1: "h1 \ H" "r1 = h1 \ g"
and h2: "h2 \ H" "r2 = h2 \ g"
using r1 r2 unfolding r_coset_def by blast
hence "r1 \ (inv r2) = (h1 \ g) \ ((inv g) \ (inv h2))"
using inv_mult_group is_group assms(1) g(1) subgroup.mem_carrier by fastforce
also have " ... = (h1 \ (g \ inv g) \ inv h2)"
using h1 h2 assms(1) g(1) inv_closed m_closed monoid.m_assoc
monoid_axioms subgroup.mem_carrier
proof -
have "h1 \ carrier G"
by (meson subgroup.mem_carrier assms(1) h1(1))
moreover have "h2 \ carrier G"
by (meson subgroup.mem_carrier assms(1) h2(1))
ultimately show ?thesis
using g(1) inv_closed m_assoc m_closed by presburger
qed
finally have "r1 \ inv r2 = h1 \ inv h2"
using assms(1) g(1) h1(1) subgroup.mem_carrier by fastforce
thus "r1 \ inv r2 \ H" by (metis assms(1) h1(1) h2(1) subgroup_def)
qed
lemma mono_set_mult: "\ H \ H'; K \ K' \ \ H <#>\<^bsub>G\<^esub> K \ H' <#>\<^bsub>G\<^esub> K'" \<^marker>\contributor \Paulo Emílio de Vilhena\\
unfolding set_mult_def by (simp add: UN_mono)
subsection \<open>Stable Operations for Subgroups\<close>
lemma set_mult_consistent [simp]: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
"N <#>\<^bsub>(G \ carrier := H \)\<^esub> K = N <#>\<^bsub>G\<^esub> K"
unfolding set_mult_def by simp
lemma r_coset_consistent [simp]: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
"I #>\<^bsub>G \ carrier := H \\<^esub> h = I #>\<^bsub>G\<^esub> h"
unfolding r_coset_def by simp
lemma l_coset_consistent [simp]: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
"h <#\<^bsub>G \ carrier := H \\<^esub> I = h <#\<^bsub>G\<^esub> I"
unfolding l_coset_def by simp
subsection \<open>Basic Properties of set multiplication\<close>
lemma (in group) setmult_subset_G:
assumes "H \ carrier G" "K \ carrier G"
shows "H <#> K \ carrier G" using assms
by (auto simp add: set_mult_def subsetD)
lemma (in monoid) set_mult_closed:
assumes "H \ carrier G" "K \ carrier G"
shows "H <#> K \ carrier G"
using assms by (auto simp add: set_mult_def subsetD)
lemma (in group) set_mult_assoc: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "M \ carrier G" "H \ carrier G" "K \ carrier G"
shows "(M <#> H) <#> K = M <#> (H <#> K)"
proof
show "(M <#> H) <#> K \ M <#> (H <#> K)"
proof
fix x assume "x \ (M <#> H) <#> K"
then obtain m h k where x: "m \ M" "h \ H" "k \ K" "x = (m \ h) \ k"
unfolding set_mult_def by blast
hence "x = m \ (h \ k)"
using assms m_assoc by blast
thus "x \ M <#> (H <#> K)"
unfolding set_mult_def using x by blast
qed
next
show "M <#> (H <#> K) \ (M <#> H) <#> K"
proof
fix x assume "x \ M <#> (H <#> K)"
then obtain m h k where x: "m \ M" "h \ H" "k \ K" "x = m \ (h \ k)"
unfolding set_mult_def by blast
hence "x = (m \ h) \ k"
using assms m_assoc rev_subsetD by metis
thus "x \ (M <#> H) <#> K"
unfolding set_mult_def using x by blast
qed
qed
subsection \<open>Basic Properties of Cosets\<close>
lemma (in group) coset_mult_assoc:
assumes "M \ carrier G" "g \ carrier G" "h \ carrier G"
shows "(M #> g) #> h = M #> (g \ h)"
using assms by (force simp add: r_coset_def m_assoc)
lemma (in group) coset_assoc:
assumes "x \ carrier G" "y \ carrier G" "H \ carrier G"
shows "x <# (H #> y) = (x <# H) #> y"
using set_mult_assoc[of "{x}" H "{y}"]
by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult assms)
lemma (in group) coset_mult_one [simp]: "M \ carrier G ==> M #> \ = M"
by (force simp add: r_coset_def)
lemma (in group) coset_mult_inv1:
assumes "M #> (x \ (inv y)) = M"
and "x \ carrier G" "y \ carrier G" "M \ carrier G"
shows "M #> x = M #> y" using assms
by (metis coset_mult_assoc group.inv_solve_right is_group subgroup_def subgroup_self)
lemma (in group) coset_mult_inv2:
assumes "M #> x = M #> y"
and "x \ carrier G" "y \ carrier G" "M \ carrier G"
shows "M #> (x \ (inv y)) = M " using assms
by (metis group.coset_mult_assoc group.coset_mult_one inv_closed is_group r_inv)
lemma (in group) coset_join1:
assumes "H #> x = H"
and "x \ carrier G" "subgroup H G"
shows "x \ H"
using assms r_coset_def l_one subgroup.one_closed sym by fastforce
lemma (in group) solve_equation:
assumes "subgroup H G" "x \ H" "y \ H"
shows "\h \ H. y = h \ x"
proof -
have "y = (y \ (inv x)) \ x" using assms
by (simp add: m_assoc subgroup.mem_carrier)
moreover have "y \ (inv x) \ H" using assms
by (simp add: subgroup_def)
ultimately show ?thesis by blast
qed
lemma (in group_hom) inj_on_one_iff:
"inj_on h (carrier G) \ (\x. x \ carrier G \ h x = one H \ x = one G)"
using G.solve_equation G.subgroup_self by (force simp: inj_on_def)
lemma inj_on_one_iff':
"\h \ hom G H; group G; group H\ \ inj_on h (carrier G) \ (\x. x \ carrier G \ h x = one H \ x = one G)"
using group_hom.inj_on_one_iff group_hom.intro group_hom_axioms.intro by blast
lemma mon_iff_hom_one:
"\group G; group H\ \ f \ mon G H \ f \ hom G H \ (\x. x \ carrier G \ f x = \\<^bsub>H\<^esub> \ x = \\<^bsub>G\<^esub>)"
by (auto simp: mon_def inj_on_one_iff')
lemma (in group_hom) iso_iff: "h \ iso G H \ carrier H \ h ` carrier G \ (\x\carrier G. h x = \\<^bsub>H\<^esub> \ x = \)"
by (auto simp: iso_def bij_betw_def inj_on_one_iff)
lemma (in group) repr_independence:
assumes "y \ H #> x" "x \ carrier G" "subgroup H G"
shows "H #> x = H #> y" using assms
by (auto simp add: r_coset_def m_assoc [symmetric]
subgroup.subset [THEN subsetD]
subgroup.m_closed solve_equation)
lemma (in group) coset_join2:
assumes "x \ carrier G" "subgroup H G" "x \ H"
shows "H #> x = H" using assms
\<comment> \<open>Alternative proof is to put \<^term>\<open>x=\<one>\<close> in \<open>repr_independence\<close>.\<close>
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
lemma (in group) coset_join3:
assumes "x \ carrier G" "subgroup H G" "x \ H"
shows "x <# H = H"
proof
have "\h. h \ H \ x \ h \ H" using assms
by (simp add: subgroup.m_closed)
thus "x <# H \ H" unfolding l_coset_def by blast
next
have "\h. h \ H \ x \ ((inv x) \ h) = h"
by (metis (no_types, lifting) assms group.inv_closed group.inv_solve_left is_group
monoid.m_closed monoid_axioms subgroup.mem_carrier)
moreover have "\h. h \ H \ (inv x) \ h \ H"
by (simp add: assms subgroup.m_closed subgroup.m_inv_closed)
ultimately show "H \ x <# H" unfolding l_coset_def by blast
qed
lemma (in monoid) r_coset_subset_G:
"\ H \ carrier G; x \ carrier G \ \ H #> x \ carrier G"
by (auto simp add: r_coset_def)
lemma (in group) rcosI:
"\ h \ H; H \ carrier G; x \ carrier G \ \ h \ x \ H #> x"
by (auto simp add: r_coset_def)
lemma (in group) rcosetsI:
"\H \ carrier G; x \ carrier G\ \ H #> x \ rcosets H"
by (auto simp add: RCOSETS_def)
lemma (in group) rcos_self:
"\ x \ carrier G; subgroup H G \ \ x \ H #> x"
by (metis l_one rcosI subgroup_def)
text (in group) \<open>Opposite of @{thm [source] "repr_independence"}\<close>
lemma (in group) repr_independenceD:
assumes "subgroup H G" "y \ carrier G"
and "H #> x = H #> y"
shows "y \ H #> x"
using assms by (simp add: rcos_self)
text \<open>Elements of a right coset are in the carrier\<close>
lemma (in subgroup) elemrcos_carrier:
assumes "group G" "a \ carrier G"
and "a' \ H #> a"
shows "a' \ carrier G"
by (meson assms group.is_monoid monoid.r_coset_subset_G subset subsetCE)
lemma (in subgroup) rcos_const:
assumes "group G" "h \ H"
shows "H #> h = H"
using group.coset_join2[OF assms(1), of h H]
by (simp add: assms(2) subgroup_axioms)
lemma (in subgroup) rcos_module_imp:
assumes "group G" "x \ carrier G"
and "x' \ H #> x"
shows "(x' \ inv x) \ H"
proof -
obtain h where h: "h \ H" "x' = h \ x"
using assms(3) unfolding r_coset_def by blast
hence "x' \ inv x = h"
by (metis assms elemrcos_carrier group.inv_solve_right mem_carrier)
thus ?thesis using h by blast
qed
lemma (in subgroup) rcos_module_rev:
assumes "group G" "x \ carrier G" "x' \ carrier G"
and "(x' \ inv x) \ H"
shows "x' \ H #> x"
proof -
obtain h where h: "h \ H" "x' \ inv x = h"
using assms(4) unfolding r_coset_def by blast
hence "x' = h \ x"
by (metis assms group.inv_solve_right mem_carrier)
thus ?thesis using h unfolding r_coset_def by blast
qed
text \<open>Module property of right cosets\<close>
lemma (in subgroup) rcos_module:
assumes "group G" "x \ carrier G" "x' \ carrier G"
shows "(x' \ H #> x) = (x' \ inv x \ H)"
using rcos_module_rev rcos_module_imp assms by blast
text \<open>Right cosets are subsets of the carrier.\<close>
lemma (in subgroup) rcosets_carrier:
assumes "group G" "X \ rcosets H"
shows "X \ carrier G"
using assms elemrcos_carrier singletonD
subset_eq unfolding RCOSETS_def by force
text \<open>Multiplication of general subsets\<close>
lemma (in comm_group) mult_subgroups:
assumes HG: "subgroup H G" and KG: "subgroup K G"
shows "subgroup (H <#> K) G"
proof (rule subgroup.intro)
show "H <#> K \ carrier G"
by (simp add: setmult_subset_G assms subgroup.subset)
next
have "\ \ \ \ H <#> K"
unfolding set_mult_def using assms subgroup.one_closed by blast
thus "\ \ H <#> K" by simp
next
show "\x. x \ H <#> K \ inv x \ H <#> K"
proof -
fix x assume "x \ H <#> K"
then obtain h k where hk: "h \ H" "k \ K" "x = h \ k"
unfolding set_mult_def by blast
hence "inv x = (inv k) \ (inv h)"
by (meson inv_mult_group assms subgroup.mem_carrier)
hence "inv x = (inv h) \ (inv k)"
by (metis hk inv_mult assms subgroup.mem_carrier)
thus "inv x \ H <#> K"
unfolding set_mult_def using hk assms
by (metis (no_types, lifting) UN_iff singletonI subgroup_def)
qed
next
show "\x y. x \ H <#> K \ y \ H <#> K \ x \ y \ H <#> K"
proof -
fix x y assume "x \ H <#> K" "y \ H <#> K"
then obtain h1 k1 h2 k2 where h1k1: "h1 \ H" "k1 \ K" "x = h1 \ k1"
and h2k2: "h2 \ H" "k2 \ K" "y = h2 \ k2"
unfolding set_mult_def by blast
with KG HG have carr: "k1 \ carrier G" "h1 \ carrier G" "k2 \ carrier G" "h2 \ carrier G"
by (meson subgroup.mem_carrier)+
have "x \ y = (h1 \ k1) \ (h2 \ k2)"
using h1k1 h2k2 by simp
also have " ... = h1 \ (k1 \ h2) \ k2"
by (simp add: carr comm_groupE(3) comm_group_axioms)
also have " ... = h1 \ (h2 \ k1) \ k2"
by (simp add: carr m_comm)
finally have "x \ y = (h1 \ h2) \ (k1 \ k2)"
by (simp add: carr comm_groupE(3) comm_group_axioms)
thus "x \ y \ H <#> K" unfolding set_mult_def
using subgroup.m_closed[OF assms(1) h1k1(1) h2k2(1)]
subgroup.m_closed[OF assms(2) h1k1(2) h2k2(2)] by blast
qed
qed
lemma (in subgroup) lcos_module_rev:
assumes "group G" "x \ carrier G" "x' \ carrier G"
and "(inv x \ x') \ H"
shows "x' \ x <# H"
proof -
obtain h where h: "h \ H" "inv x \ x' = h"
using assms(4) unfolding l_coset_def by blast
hence "x' = x \ h"
by (metis assms group.inv_solve_left mem_carrier)
thus ?thesis using h unfolding l_coset_def by blast
qed
subsection \<open>Normal subgroups\<close>
lemma normal_imp_subgroup: "H \ G \ subgroup H G"
by (rule normal.axioms(1))
lemma (in group) normalI:
"subgroup H G \ (\x \ carrier G. H #> x = x <# H) \ H \ G"
by (simp add: normal_def normal_axioms_def is_group)
lemma (in normal) inv_op_closed1:
assumes "x \ carrier G" and "h \ H"
shows "(inv x) \ h \ x \ H"
proof -
have "h \ x \ x <# H"
using assms coset_eq assms(1) unfolding r_coset_def by blast
then obtain h' where "h' \<in> H" "h \<otimes> x = x \<otimes> h'"
unfolding l_coset_def by blast
thus ?thesis by (metis assms inv_closed l_inv l_one m_assoc mem_carrier)
qed
lemma (in normal) inv_op_closed2:
assumes "x \ carrier G" and "h \ H"
shows "x \ h \ (inv x) \ H"
using assms inv_op_closed1 by (metis inv_closed inv_inv)
lemma (in comm_group) normal_iff_subgroup:
"N \ G \ subgroup N G"
proof
assume "subgroup N G"
then show "N \ G"
by unfold_locales (auto simp: subgroupE subgroup.one_closed l_coset_def r_coset_def m_comm subgroup.mem_carrier)
qed (simp add: normal_imp_subgroup)
text\<open>Alternative characterization of normal subgroups\<close>
lemma (in group) normal_inv_iff:
"(N \ G) =
(subgroup N G \<and> (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))"
(is "_ = ?rhs")
proof
assume N: "N \ G"
show ?rhs
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
assume ?rhs
hence sg: "subgroup N G"
and closed: "\x. x\carrier G \ \h\N. x \ h \ inv x \ N" by auto
hence sb: "N \ carrier G" by (simp add: subgroup.subset)
show "N \ G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
fix x
assume x: "x \ carrier G"
show "(\h\N. {h \ x}) = (\h\N. {x \ h})"
proof
show "(\h\N. {h \ x}) \ (\h\N. {x \ h})"
proof clarify
fix n
assume n: "n \ N"
show "n \ x \ (\h\N. {x \ h})"
proof
from closed [of "inv x"]
show "inv x \ n \ x \ N" by (simp add: x n)
show "n \ x \ {x \ (inv x \ n \ x)}"
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
qed
qed
next
show "(\h\N. {x \ h}) \ (\h\N. {h \ x})"
proof clarify
fix n
assume n: "n \ N"
show "x \ n \ (\h\N. {h \ x})"
proof
show "x \ n \ inv x \ N" by (simp add: x n closed)
show "x \ n \ {x \ n \ inv x \ x}"
by (simp add: x n m_assoc sb [THEN subsetD])
qed
qed
qed
qed
qed
corollary (in group) normal_invI:
assumes "subgroup N G" and "\x h. \ x \ carrier G; h \ N \ \ x \ h \ inv x \ N"
shows "N \ G"
using assms normal_inv_iff by blast
corollary (in group) normal_invE:
assumes "N \ G"
shows "subgroup N G" and "\x h. \ x \ carrier G; h \ N \ \ x \ h \ inv x \ N"
using assms normal_inv_iff apply blast
by (simp add: assms normal.inv_op_closed2)
lemma (in group) one_is_normal: "{\} \ G"
proof(intro normal_invI)
show "subgroup {\} G"
by (simp add: subgroup_def)
qed simp
subsection\<open>More Properties of Left Cosets\<close>
lemma (in group) l_repr_independence:
assumes "y \ x <# H" "x \ carrier G" and HG: "subgroup H G"
shows "x <# H = y <# H"
proof -
obtain h' where h': "h' \ H" "y = x \ h'"
using assms(1) unfolding l_coset_def by blast
hence "x \ h = y \ ((inv h') \ h)" if "h \ H" for h
proof -
have "h' \ carrier G"
by (meson HG h'(1) subgroup.mem_carrier)
moreover have "h \ carrier G"
by (meson HG subgroup.mem_carrier that)
ultimately show ?thesis
by (metis assms(2) h'(2) inv_closed inv_solve_right m_assoc m_closed)
qed
hence "\xh. xh \ x <# H \ xh \ y <# H"
unfolding l_coset_def by (metis (no_types, lifting) UN_iff HG h'(1) subgroup_def)
moreover have "\h. h \ H \ y \ h = x \ (h' \ h)"
using h' by (meson assms(2) HG m_assoc subgroup.mem_carrier)
hence "\yh. yh \ y <# H \ yh \ x <# H"
unfolding l_coset_def using subgroup.m_closed[OF HG h'(1)] by blast
ultimately show ?thesis by blast
qed
lemma (in group) lcos_m_assoc:
"\ M \ carrier G; g \ carrier G; h \ carrier G \ \ g <# (h <# M) = (g \ h) <# M"
by (force simp add: l_coset_def m_assoc)
lemma (in group) lcos_mult_one: "M \ carrier G \ \ <# M = M"
by (force simp add: l_coset_def)
lemma (in group) l_coset_subset_G:
"\ H \ carrier G; x \ carrier G \ \ x <# H \ carrier G"
by (auto simp add: l_coset_def subsetD)
lemma (in group) l_coset_carrier:
"\ y \ x <# H; x \ carrier G; subgroup H G \ \ y \ carrier G"
by (auto simp add: l_coset_def m_assoc subgroup.subset [THEN subsetD] subgroup.m_closed)
lemma (in group) l_coset_swap:
assumes "y \ x <# H" "x \ carrier G" "subgroup H G"
shows "x \ y <# H"
using assms(2) l_repr_independence[OF assms] subgroup.one_closed[OF assms(3)]
unfolding l_coset_def by fastforce
lemma (in group) subgroup_mult_id:
assumes "subgroup H G"
shows "H <#> H = H"
proof
show "H <#> H \ H"
unfolding set_mult_def using subgroup.m_closed[OF assms] by (simp add: UN_subset_iff)
show "H \ H <#> H"
proof
fix x assume x: "x \ H" thus "x \ H <#> H" unfolding set_mult_def
using subgroup.m_closed[OF assms subgroup.one_closed[OF assms] x] subgroup.one_closed[OF assms]
using assms subgroup.mem_carrier by force
qed
qed
subsubsection \<open>Set of Inverses of an \<open>r_coset\<close>.\<close>
lemma (in normal) rcos_inv:
assumes x: "x \ carrier G"
shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume h: "h \ H"
show "inv x \ inv h \ (\j\H. {j \ inv x})"
proof
show "inv x \ inv h \ x \ H"
by (simp add: inv_op_closed1 h x)
show "inv x \ inv h \ {inv x \ inv h \ x \ inv x}"
by (simp add: h x m_assoc)
qed
show "h \ inv x \ (\j\H. {inv x \ inv j})"
proof
show "x \ inv h \ inv x \ H"
by (simp add: inv_op_closed2 h x)
show "h \ inv x \ {inv x \ inv (x \ inv h \ inv x)}"
by (simp add: h x m_assoc [symmetric] inv_mult_group)
qed
qed
subsubsection \<open>Theorems for \<open><#>\<close> with \<open>#>\<close> or \<open><#\<close>.\<close>
lemma (in group) setmult_rcos_assoc:
"\H \ carrier G; K \ carrier G; x \ carrier G\ \
H <#> (K #> x) = (H <#> K) #> x"
using set_mult_assoc[of H K "{x}"] by (simp add: r_coset_eq_set_mult)
lemma (in group) rcos_assoc_lcos:
"\H \ carrier G; K \ carrier G; x \ carrier G\ \
(H #> x) <#> K = H <#> (x <# K)"
using set_mult_assoc[of H "{x}" K]
by (simp add: l_coset_eq_set_mult r_coset_eq_set_mult)
lemma (in normal) rcos_mult_step1:
"\x \ carrier G; y \ carrier G\ \
(H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
by (simp add: setmult_rcos_assoc r_coset_subset_G
subset l_coset_subset_G rcos_assoc_lcos)
lemma (in normal) rcos_mult_step2:
"\x \ carrier G; y \ carrier G\
\<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
"\x \ carrier G; y \ carrier G\
\<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc
subgroup_mult_id normal.axioms subset normal_axioms)
lemma (in normal) rcos_sum:
"\x \ carrier G; y \ carrier G\
\<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
lemma (in normal) rcosets_mult_eq: "M \ rcosets H \ H <#> M = M"
\<comment> \<open>generalizes \<open>subgroup_mult_id\<close>\<close>
by (auto simp add: RCOSETS_def subset
setmult_rcos_assoc subgroup_mult_id normal.axioms normal_axioms)
subsubsection\<open>An Equivalence Relation\<close>
definition
r_congruent :: "[('a,'b)monoid_scheme, 'a set] \ ('a*'a)set" ("rcong\ _")
where "rcong\<^bsub>G\<^esub> H = {(x,y). x \ carrier G \ y \ carrier G \ inv\<^bsub>G\<^esub> x \\<^bsub>G\<^esub> y \ H}"
lemma (in subgroup) equiv_rcong:
assumes "group G"
shows "equiv (carrier G) (rcong H)"
proof -
interpret group G by fact
show ?thesis
proof (intro equivI)
show "refl_on (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_on_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
assume [simp]: "x \ carrier G" "y \ carrier G"
and "inv x \ y \ H"
hence "inv (inv x \ y) \ H" by simp
thus "inv y \ x \ H" by (simp add: inv_mult_group)
qed
next
show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)
fix x y z
assume [simp]: "x \ carrier G" "y \ carrier G" "z \ carrier G"
and "inv x \ y \ H" and "inv y \ z \ H"
hence "(inv x \ y) \ (inv y \ z) \ H" by simp
hence "inv x \ (y \ inv y) \ z \ H"
by (simp add: m_assoc del: r_inv Units_r_inv)
thus "inv x \ z \ H" by simp
qed
qed
qed
text\<open>Equivalence classes of \<open>rcong\<close> correspond to left cosets.
Was there a mistake in the definitions? I'd have expected them to
correspond to right cosets.\<close>
(* CB: This is correct, but subtle.
We call H #> a the right coset of a relative to H. According to
Jacobson, this is what the majority of group theory literature does.
He then defines the notion of congruence relation ~ over monoids as
equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'.
Our notion of right congruence induced by K: rcong K appears only in
the context where K is a normal subgroup. Jacobson doesn't name it.
But in this context left and right cosets are identical.
*)
lemma (in subgroup) l_coset_eq_rcong:
assumes "group G"
assumes a: "a \ carrier G"
shows "a <# H = (rcong H) `` {a}"
proof -
interpret group G by fact
show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a )
qed
subsubsection\<open>Two Distinct Right Cosets are Disjoint\<close>
lemma (in group) rcos_equation:
assumes "subgroup H G"
assumes p: "ha \ a = h \ b" "a \ carrier G" "b \ carrier G" "h \ H" "ha \ H" "hb \ H"
shows "hb \ a \ (\h\H. {h \ b})"
proof -
interpret subgroup H G by fact
from p show ?thesis
by (rule_tac UN_I [of "hb \ ((inv ha) \ h)"]) (auto simp: inv_solve_left m_assoc)
qed
lemma (in group) rcos_disjoint:
assumes "subgroup H G"
shows "pairwise disjnt (rcosets H)"
proof -
interpret subgroup H G by fact
show ?thesis
unfolding RCOSETS_def r_coset_def pairwise_def disjnt_def
by (blast intro: rcos_equation assms sym)
qed
subsection \<open>Further lemmas for \<open>r_congruent\<close>\<close>
text \<open>The relation is a congruence\<close>
lemma (in normal) congruent_rcong:
shows "congruent2 (rcong H) (rcong H) (\a b. a \ b <# H)"
proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)
fix a b c
assume abrcong: "(a, b) \ rcong H"
and ccarr: "c \ carrier G"
from abrcong
have acarr: "a \ carrier G"
and bcarr: "b \ carrier G"
and abH: "inv a \ b \ H"
unfolding r_congruent_def
by fast+
note carr = acarr bcarr ccarr
from ccarr and abH
have "inv c \ (inv a \ b) \ c \ H" by (rule inv_op_closed1)
moreover
from carr and inv_closed
have "inv c \ (inv a \ b) \ c = (inv c \ inv a) \ (b \ c)"
by (force cong: m_assoc)
moreover
from carr and inv_closed
have "\ = (inv (a \ c)) \ (b \ c)"
by (simp add: inv_mult_group)
ultimately
have "(inv (a \ c)) \ (b \ c) \ H" by simp
from carr and this
have "(b \ c) \ (a \ c) <# H"
by (simp add: lcos_module_rev[OF is_group])
from carr and this and is_subgroup
show "(a \ c) <# H = (b \ c) <# H" by (intro l_repr_independence, simp+)
next
fix a b c
assume abrcong: "(a, b) \ rcong H"
and ccarr: "c \ carrier G"
from ccarr have "c \ Units G" by simp
hence cinvc_one: "inv c \ c = \" by (rule Units_l_inv)
from abrcong
have acarr: "a \ carrier G"
and bcarr: "b \ carrier G"
and abH: "inv a \ b \ H"
by (unfold r_congruent_def, fast+)
note carr = acarr bcarr ccarr
from carr and inv_closed
have "inv a \ b = inv a \ (\ \ b)" by simp
also from carr and inv_closed
have "\ = inv a \ (inv c \ c) \ b" by simp
also from carr and inv_closed
have "\ = (inv a \ inv c) \ (c \ b)" by (force cong: m_assoc)
also from carr and inv_closed
have "\ = inv (c \ a) \ (c \ b)" by (simp add: inv_mult_group)
finally
have "inv a \ b = inv (c \ a) \ (c \ b)" .
from abH and this
have "inv (c \ a) \ (c \ b) \ H" by simp
from carr and this
have "(c \ b) \ (c \ a) <# H"
by (simp add: lcos_module_rev[OF is_group])
from carr and this and is_subgroup
show "(c \ a) <# H = (c \ b) <# H" by (intro l_repr_independence, simp+)
qed
subsection \<open>Order of a Group and Lagrange's Theorem\<close>
definition
order :: "('a, 'b) monoid_scheme \ nat"
where "order S = card (carrier S)"
lemma (in monoid) order_gt_0_iff_finite: "0 < order G \ finite (carrier G)"
by(auto simp add: order_def card_gt_0_iff)
lemma (in group) rcosets_part_G:
assumes "subgroup H G"
shows "\(rcosets H) = carrier G"
proof -
interpret subgroup H G by fact
show ?thesis
unfolding RCOSETS_def r_coset_def by auto
qed
lemma (in group) cosets_finite:
"\c \ rcosets H; H \ carrier G; finite (carrier G)\ \ finite c"
unfolding RCOSETS_def
by (auto simp add: r_coset_subset_G [THEN finite_subset])
text\<open>The next two lemmas support the proof of \<open>card_cosets_equal\<close>.\<close>
lemma (in group) inj_on_f:
assumes "H \ carrier G" and a: "a \ carrier G"
shows "inj_on (\y. y \ inv a) (H #> a)"
proof
fix x y
assume "x \ H #> a" "y \ H #> a" and xy: "x \ inv a = y \ inv a"
then have "x \ carrier G" "y \ carrier G"
using assms r_coset_subset_G by blast+
with xy a show "x = y"
by auto
qed
lemma (in group) inj_on_g:
"\H \ carrier G; a \ carrier G\ \ inj_on (\y. y \ a) H"
by (force simp add: inj_on_def subsetD)
(* ************************************************************************** *)
lemma (in group) card_cosets_equal:
assumes "R \ rcosets H" "H \ carrier G"
shows "\f. bij_betw f H R"
proof -
obtain g where g: "g \ carrier G" "R = H #> g"
using assms(1) unfolding RCOSETS_def by blast
let ?f = "\h. h \ g"
have "\r. r \ R \ \h \ H. ?f h = r"
proof -
fix r assume "r \ R"
then obtain h where "h \ H" "r = h \ g"
using g unfolding r_coset_def by blast
thus "\h \ H. ?f h = r" by blast
qed
hence "R \ ?f ` H" by blast
moreover have "?f ` H \ R"
using g unfolding r_coset_def by blast
ultimately show ?thesis using inj_on_g unfolding bij_betw_def
using assms(2) g(1) by auto
qed
corollary (in group) card_rcosets_equal:
assumes "R \ rcosets H" "H \ carrier G"
shows "card H = card R"
using card_cosets_equal assms bij_betw_same_card by blast
corollary (in group) rcosets_finite:
assumes "R \ rcosets H" "H \ carrier G" "finite H"
shows "finite R"
using card_cosets_equal assms bij_betw_finite is_group by blast
(* ************************************************************************** *)
lemma (in group) rcosets_subset_PowG:
"subgroup H G \ rcosets H \ Pow(carrier G)"
using rcosets_part_G by auto
proposition (in group) lagrange_finite:
assumes "finite(carrier G)" and HG: "subgroup H G"
shows "card(rcosets H) * card(H) = order(G)"
proof -
have "card H * card (rcosets H) = card (\(rcosets H))"
proof (rule card_partition)
show "\c1 c2. \c1 \ rcosets H; c2 \ rcosets H; c1 \ c2\ \ c1 \ c2 = {}"
using HG rcos_disjoint by (auto simp: pairwise_def disjnt_def)
qed (auto simp: assms finite_UnionD rcosets_part_G card_rcosets_equal subgroup.subset)
then show ?thesis
by (simp add: HG mult.commute order_def rcosets_part_G)
qed
theorem (in group) lagrange:
assumes "subgroup H G"
shows "card (rcosets H) * card H = order G"
proof (cases "finite (carrier G)")
case True thus ?thesis using lagrange_finite assms by simp
next
case False
thus ?thesis
proof (cases "finite H")
case False thus ?thesis using \<open>infinite (carrier G)\<close> by (simp add: order_def)
next
case True
have "infinite (rcosets H)"
proof
assume "finite (rcosets H)"
hence finite_rcos: "finite (rcosets H)" by simp
hence "card (\(rcosets H)) = (\R\(rcosets H). card R)"
using card_Union_disjoint[of "rcosets H"] \<open>finite H\<close> rcos_disjoint[OF assms(1)]
rcosets_finite[where ?H = H] by (simp add: assms subgroup.subset)
hence "order G = (\R\(rcosets H). card R)"
by (simp add: assms order_def rcosets_part_G)
hence "order G = (\R\(rcosets H). card H)"
using card_rcosets_equal by (simp add: assms subgroup.subset)
hence "order G = (card H) * (card (rcosets H))" by simp
hence "order G \ 0" using finite_rcos \finite H\ assms ex_in_conv
rcosets_part_G subgroup.one_closed by fastforce
thus False using \<open>infinite (carrier G)\<close> order_gt_0_iff_finite by blast
qed
thus ?thesis using \<open>infinite (carrier G)\<close> by (simp add: order_def)
qed
qed
subsection \<open>Quotient Groups: Factorization of a Group\<close>
definition
FactGroup :: "[('a,'b) monoid_scheme, 'a set] \ ('a set) monoid" (infixl "Mod" 65)
\<comment> \<open>Actually defined for groups rather than monoids\<close>
where "FactGroup G H = \carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\"
lemma (in normal) setmult_closed:
"\K1 \ rcosets H; K2 \ rcosets H\ \ K1 <#> K2 \ rcosets H"
by (auto simp add: rcos_sum RCOSETS_def)
lemma (in normal) setinv_closed:
"K \ rcosets H \ set_inv K \ rcosets H"
by (auto simp add: rcos_inv RCOSETS_def)
lemma (in normal) rcosets_assoc:
"\M1 \ rcosets H; M2 \ rcosets H; M3 \ rcosets H\
\<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
by (simp add: group.set_mult_assoc is_group rcosets_carrier)
lemma (in subgroup) subgroup_in_rcosets:
assumes "group G"
shows "H \ rcosets H"
proof -
interpret group G by fact
from _ subgroup_axioms have "H #> \ = H"
by (rule coset_join2) auto
then show ?thesis
by (auto simp add: RCOSETS_def)
qed
lemma (in normal) rcosets_inv_mult_group_eq:
"M \ rcosets H \ set_inv M <#> M = H"
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms normal_axioms)
theorem (in normal) factorgroup_is_group:
"group (G Mod H)"
unfolding FactGroup_def
apply (rule groupI)
apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup
subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done
lemma carrier_FactGroup: "carrier(G Mod N) = (\x. r_coset G N x) ` carrier G"
by (auto simp: FactGroup_def RCOSETS_def)
lemma one_FactGroup [simp]: "one(G Mod N) = N"
by (auto simp: FactGroup_def)
lemma mult_FactGroup [simp]: "monoid.mult (G Mod N) = set_mult G"
by (auto simp: FactGroup_def)
lemma (in normal) inv_FactGroup:
assumes "X \ carrier (G Mod H)"
shows "inv\<^bsub>G Mod H\<^esub> X = set_inv X"
proof -
have X: "X \ rcosets H"
using assms by (simp add: FactGroup_def)
moreover have "set_inv X <#> X = H"
using X by (simp add: normal.rcosets_inv_mult_group_eq normal_axioms)
moreover have "Group.group (G Mod H)"
using normal.factorgroup_is_group normal_axioms by blast
moreover have "set_inv X \ rcosets H"
by (simp add: \<open>X \<in> rcosets H\<close> setinv_closed)
ultimately show ?thesis
by (simp add: FactGroup_def group.inv_equality)
qed
text\<open>The coset map is a homomorphism from \<^term>\<open>G\<close> to the quotient group
\<^term>\<open>G Mod H\<close>\<close>
lemma (in normal) r_coset_hom_Mod:
"(\a. H #> a) \ hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
lemma (in comm_group) set_mult_commute:
assumes "N \ carrier G" "x \ rcosets N" "y \ rcosets N"
shows "x <#> y = y <#> x"
using assms unfolding set_mult_def RCOSETS_def
by auto (metis m_comm r_coset_subset_G subsetCE)+
lemma (in comm_group) abelian_FactGroup:
assumes "subgroup N G" shows "comm_group(G Mod N)"
proof (rule group.group_comm_groupI)
have "N \ G"
by (simp add: assms normal_iff_subgroup)
then show "Group.group (G Mod N)"
by (simp add: normal.factorgroup_is_group)
fix x :: "'a set" and y :: "'a set"
assume "x \ carrier (G Mod N)" "y \ carrier (G Mod N)"
then show "x \\<^bsub>G Mod N\<^esub> y = y \\<^bsub>G Mod N\<^esub> x"
apply (simp add: FactGroup_def subgroup_def)
apply (rule set_mult_commute)
using assms apply (auto simp: subgroup_def)
done
qed
lemma FactGroup_universal:
assumes "h \ hom G H" "N \ G"
and h: "\x y. \x \ carrier G; y \ carrier G; r_coset G N x = r_coset G N y\ \ h x = h y"
obtains g
where "g \ hom (G Mod N) H" "\x. x \ carrier G \ g(r_coset G N x) = h x"
proof -
obtain g where g: "\x. x \ carrier G \ h x = g(r_coset G N x)"
using h function_factors_left_gen [of "\x. x \ carrier G" "r_coset G N" h] by blast
show thesis
proof
show "g \ hom (G Mod N) H"
proof (rule homI)
show "g (u \\<^bsub>G Mod N\<^esub> v) = g u \\<^bsub>H\<^esub> g v"
if "u \ carrier (G Mod N)" "v \ carrier (G Mod N)" for u v
proof -
from that
obtain x y where xy: "x \ carrier G" "u = r_coset G N x" "y \ carrier G" "v = r_coset G N y"
by (auto simp: carrier_FactGroup)
then have "h (x \\<^bsub>G\<^esub> y) = h x \\<^bsub>H\<^esub> h y"
by (metis hom_mult [OF \<open>h \<in> hom G H\<close>])
then show ?thesis
by (metis Coset.mult_FactGroup xy \<open>N \<lhd> G\<close> g group.subgroup_self normal.axioms(2) normal.rcos_sum subgroup_def)
qed
qed (use \<open>h \<in> hom G H\<close> in \<open>auto simp: carrier_FactGroup Pi_iff hom_def simp flip: g\<close>)
qed (auto simp flip: g)
qed
lemma (in normal) FactGroup_pow:
fixes k::nat
assumes "a \ carrier G"
shows "pow (FactGroup G H) (r_coset G H a) k = r_coset G H (pow G a k)"
proof (induction k)
case 0
then show ?case
by (simp add: r_coset_def)
next
case (Suc k)
then show ?case
by (simp add: assms rcos_sum)
qed
lemma (in normal) FactGroup_int_pow:
fixes k::int
assumes "a \ carrier G"
shows "pow (FactGroup G H) (r_coset G H a) k = r_coset G H (pow G a k)"
by (metis Group.group.axioms(1) image_eqI is_group monoid.nat_pow_closed int_pow_def2 assms
FactGroup_pow carrier_FactGroup inv_FactGroup rcos_inv)
subsection\<open>The First Isomorphism Theorem\<close>
text\<open>The quotient by the kernel of a homomorphism is isomorphic to the
range of that homomorphism.\<close>
definition
kernel :: "('a, 'm) monoid_scheme \ ('b, 'n) monoid_scheme \ ('a \ 'b) \ 'a set"
\<comment> \<open>the kernel of a homomorphism\<close>
where "kernel G H h = {x. x \ carrier G \ h x = \\<^bsub>H\<^esub>}"
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
by (auto simp add: kernel_def group.intro is_group intro: subgroup.intro)
text\<open>The kernel of a homomorphism is a normal subgroup\<close>
lemma (in group_hom) normal_kernel: "(kernel G H h) \ G"
apply (simp only: G.normal_inv_iff subgroup_kernel)
apply (simp add: kernel_def)
done
lemma iso_kernel_image:
assumes "group G" "group H"
shows "f \ iso G H \ f \ hom G H \ kernel G H f = {\\<^bsub>G\<^esub>} \ f ` carrier G = carrier H"
(is "?lhs = ?rhs")
proof (intro iffI conjI)
assume f: ?lhs
show "f \ hom G H"
using Group.iso_iff f by blast
show "kernel G H f = {\\<^bsub>G\<^esub>}"
using assms f Group.group_def hom_one
by (fastforce simp add: kernel_def iso_iff_mon_epi mon_iff_hom_one set_eq_iff)
show "f ` carrier G = carrier H"
by (meson Group.iso_iff f)
next
assume ?rhs
with assms show ?lhs
by (auto simp: kernel_def iso_def bij_betw_def inj_on_one_iff')
qed
lemma (in group_hom) FactGroup_nonempty:
assumes X: "X \ carrier (G Mod kernel G H h)"
shows "X \ {}"
proof -
from X
obtain g where "g \ carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
lemma (in group_hom) FactGroup_universal_kernel:
assumes "N \ G" and h: "N \ kernel G H h"
obtains g where "g \ hom (G Mod N) H" "\x. x \ carrier G \ g(r_coset G N x) = h x"
proof -
have "h x = h y"
if "x \ carrier G" "y \ carrier G" "r_coset G N x = r_coset G N y" for x y
proof -
have "x \\<^bsub>G\<^esub> inv\<^bsub>G\<^esub> y \ N"
using \<open>N \<lhd> G\<close> group.rcos_self normal.axioms(2) normal_imp_subgroup
subgroup.rcos_module_imp that by metis
with h have xy: "x \\<^bsub>G\<^esub> inv\<^bsub>G\<^esub> y \ kernel G H h"
by blast
have "h x \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub>(h y) = h (x \\<^bsub>G\<^esub> inv\<^bsub>G\<^esub> y)"
by (simp add: that)
also have "\ = \\<^bsub>H\<^esub>"
using xy by (simp add: kernel_def)
finally have "h x \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub>(h y) = \\<^bsub>H\<^esub>" .
then show ?thesis
using H.inv_equality that by fastforce
qed
with FactGroup_universal [OF homh \<open>N \<lhd> G\<close>] that show thesis
by metis
qed
lemma (in group_hom) FactGroup_the_elem_mem:
assumes X: "X \ carrier (G Mod (kernel G H h))"
shows "the_elem (h`X) \ carrier H"
proof -
from X
obtain g where g: "g \ carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def g intro!: imageI)
thus ?thesis by (auto simp add: g)
qed
lemma (in group_hom) FactGroup_hom:
"(\X. the_elem (h`X)) \ hom (G Mod (kernel G H h)) H"
proof -
have "the_elem (h ` (X <#> X')) = the_elem (h ` X) \\<^bsub>H\<^esub> the_elem (h ` X')"
if X: "X \ carrier (G Mod kernel G H h)" and X': "X' \ carrier (G Mod kernel G H h)" for X X'
proof -
obtain g and g'
where "g \ carrier G" and "g' \ carrier G"
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
using X X' by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "\x\X. h x = h g" "\x\X'. h x = h g'"
and Xsub: "X \ carrier G" and X'sub: "X' \ carrier G"
by (force simp add: kernel_def r_coset_def image_def)+
hence "h ` (X <#> X') = {h g \\<^bsub>H\<^esub> h g'}" using X X'
by (auto dest!: FactGroup_nonempty intro!: image_eqI
simp add: set_mult_def
subsetD [OF Xsub] subsetD [OF X'sub])
then show "the_elem (h ` (X <#> X')) = the_elem (h ` X) \\<^bsub>H\<^esub> the_elem (h ` X')"
by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique)
qed
then show ?thesis
by (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)
qed
text\<open>Lemma for the following injectivity result\<close>
lemma (in group_hom) FactGroup_subset:
assumes "g \ carrier G" "g' \ carrier G" "h g = h g'"
shows "kernel G H h #> g \ kernel G H h #> g'"
unfolding kernel_def r_coset_def
proof clarsimp
fix y
assume "y \ carrier G" "h y = \\<^bsub>H\<^esub>"
with assms show "\x. x \ carrier G \ h x = \\<^bsub>H\<^esub> \ y \ g = x \ g'"
by (rule_tac x="y \ g \ inv g'" in exI) (auto simp: G.m_assoc)
qed
lemma (in group_hom) FactGroup_inj_on:
"inj_on (\X. the_elem (h ` X)) (carrier (G Mod kernel G H h))"
proof (simp add: inj_on_def, clarify)
fix X and X'
assume X: "X \ carrier (G Mod kernel G H h)"
and X': "X' \<in> carrier (G Mod kernel G H h)"
then
obtain g and g'
where gX: "g \ carrier G" "g' \ carrier G"
"X = kernel G H h #> g" "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "\x\X. h x = h g" "\x\X'. h x = h g'"
by (force simp add: kernel_def r_coset_def image_def)+
assume "the_elem (h ` X) = the_elem (h ` X')"
hence h: "h g = h g'"
by (simp add: all FactGroup_nonempty X X' the_elem_image_unique)
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed
text\<open>If the homomorphism \<^term>\<open>h\<close> is onto \<^term>\<open>H\<close>, then so is the
homomorphism from the quotient group\<close>
lemma (in group_hom) FactGroup_onto:
assumes h: "h ` carrier G = carrier H"
shows "(\X. the_elem (h ` X)) ` carrier (G Mod kernel G H h) = carrier H"
proof
show "(\X. the_elem (h ` X)) ` carrier (G Mod kernel G H h) \ carrier H"
by (auto simp add: FactGroup_the_elem_mem)
show "carrier H \ (\X. the_elem (h ` X)) ` carrier (G Mod kernel G H h)"
proof
fix y
assume y: "y \ carrier H"
with h obtain g where g: "g \ carrier G" "h g = y"
by (blast elim: equalityE)
hence "(\x\kernel G H h #> g. {h x}) = {y}"
by (auto simp add: y kernel_def r_coset_def)
with g show "y \ (\X. the_elem (h ` X)) ` carrier (G Mod kernel G H h)"
apply (auto intro!: bexI image_eqI simp add: FactGroup_def RCOSETS_def)
apply (subst the_elem_image_unique)
apply auto
done
qed
qed
text\<open>If \<^term>\<open>h\<close> is a homomorphism from \<^term>\<open>G\<close> onto \<^term>\<open>H\<close>, then the
quotient group \<^term>\<open>G Mod (kernel G H h)\<close> is isomorphic to \<^term>\<open>H\<close>.\<close>
theorem (in group_hom) FactGroup_iso_set:
"h ` carrier G = carrier H
\<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> iso (G Mod (kernel G H h)) H"
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
FactGroup_onto)
corollary (in group_hom) FactGroup_iso :
"h ` carrier G = carrier H
\<Longrightarrow> (G Mod (kernel G H h))\<cong> H"
using FactGroup_iso_set unfolding is_iso_def by auto
lemma (in group_hom) trivial_hom_iff: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
"h ` (carrier G) = { \\<^bsub>H\<^esub> } \ kernel G H h = carrier G"
unfolding kernel_def using one_closed by force
lemma (in group_hom) trivial_ker_imp_inj: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "kernel G H h = { \ }"
shows "inj_on h (carrier G)"
proof (rule inj_onI)
fix g1 g2 assume A: "g1 \ carrier G" "g2 \ carrier G" "h g1 = h g2"
hence "h (g1 \ (inv g2)) = \\<^bsub>H\<^esub>" by simp
hence "g1 \ (inv g2) = \"
using A assms unfolding kernel_def by blast
thus "g1 = g2"
using A G.inv_equality G.inv_inv by blast
qed
lemma (in group_hom) inj_iff_trivial_ker:
shows "inj_on h (carrier G) \ kernel G H h = { \ }"
proof
assume inj: "inj_on h (carrier G)" show "kernel G H h = { \ }"
unfolding kernel_def
proof (auto)
fix a assume "a \ carrier G" "h a = \\<^bsub>H\<^esub>" thus "a = \"
using inj hom_one unfolding inj_on_def by force
qed
next
show "kernel G H h = { \ } \ inj_on h (carrier G)"
using trivial_ker_imp_inj by simp
qed
lemma (in group_hom) induced_group_hom':
assumes "subgroup I G" shows "group_hom (G \ carrier := I \) H h"
proof -
have "h \ hom (G \ carrier := I \) H"
using homh subgroup.subset[OF assms] unfolding hom_def by (auto, meson hom_mult subsetCE)
thus ?thesis
using subgroup.subgroup_is_group[OF assms G.group_axioms] group_axioms
unfolding group_hom_def group_hom_axioms_def by auto
qed
lemma (in group_hom) inj_on_subgroup_iff_trivial_ker:
assumes "subgroup I G"
shows "inj_on h I \ kernel (G \ carrier := I \) H h = { \ }"
using group_hom.inj_iff_trivial_ker[OF induced_group_hom'[OF assms]] by simp
lemma set_mult_hom:
assumes "h \ hom G H" "I \ carrier G" and "J \ carrier G"
shows "h ` (I <#>\<^bsub>G\<^esub> J) = (h ` I) <#>\<^bsub>H\<^esub> (h ` J)"
proof
show "h ` (I <#>\<^bsub>G\<^esub> J) \ (h ` I) <#>\<^bsub>H\<^esub> (h ` J)"
proof
fix a assume "a \ h ` (I <#>\<^bsub>G\<^esub> J)"
then obtain i j where i: "i \ I" and j: "j \ J" and "a = h (i \\<^bsub>G\<^esub> j)"
unfolding set_mult_def by auto
hence "a = (h i) \\<^bsub>H\<^esub> (h j)"
using assms unfolding hom_def by blast
thus "a \ (h ` I) <#>\<^bsub>H\<^esub> (h ` J)"
using i and j unfolding set_mult_def by auto
qed
next
show "(h ` I) <#>\<^bsub>H\<^esub> (h ` J) \ h ` (I <#>\<^bsub>G\<^esub> J)"
proof
fix a assume "a \ (h ` I) <#>\<^bsub>H\<^esub> (h ` J)"
then obtain i j where i: "i \ I" and j: "j \ J" and "a = (h i) \\<^bsub>H\<^esub> (h j)"
unfolding set_mult_def by auto
hence "a = h (i \\<^bsub>G\<^esub> j)"
using assms unfolding hom_def by fastforce
thus "a \ h ` (I <#>\<^bsub>G\<^esub> J)"
using i and j unfolding set_mult_def by auto
qed
qed
corollary coset_hom:
assumes "h \ hom G H" "I \ carrier G" "a \ carrier G"
shows "h ` (a <#\<^bsub>G\<^esub> I) = h a <#\<^bsub>H\<^esub> (h ` I)" and "h ` (I #>\<^bsub>G\<^esub> a) = (h ` I) #>\<^bsub>H\<^esub> h a"
unfolding l_coset_eq_set_mult r_coset_eq_set_mult using assms set_mult_hom[OF assms(1)] by auto
corollary (in group_hom) set_mult_ker_hom:
assumes "I \ carrier G"
shows "h ` (I <#> (kernel G H h)) = h ` I" and "h ` ((kernel G H h) <#> I) = h ` I"
proof -
have ker_in_carrier: "kernel G H h \ carrier G"
unfolding kernel_def by auto
have "h ` (kernel G H h) = { \\<^bsub>H\<^esub> }"
unfolding kernel_def by force
moreover have "h ` I \ carrier H"
using assms by auto
hence "(h ` I) <#>\<^bsub>H\<^esub> { \\<^bsub>H\<^esub> } = h ` I" and "{ \\<^bsub>H\<^esub> } <#>\<^bsub>H\<^esub> (h ` I) = h ` I"
unfolding set_mult_def by force+
ultimately show "h ` (I <#> (kernel G H h)) = h ` I" and "h ` ((kernel G H h) <#> I) = h ` I"
using set_mult_hom[OF homh assms ker_in_carrier] set_mult_hom[OF homh ker_in_carrier assms] by simp+
qed
subsubsection\<open>Trivial homomorphisms\<close>
definition trivial_homomorphism where
"trivial_homomorphism G H f \ f \ hom G H \ (\x \ carrier G. f x = one H)"
lemma trivial_homomorphism_kernel:
"trivial_homomorphism G H f \ f \ hom G H \ kernel G H f = carrier G"
by (auto simp: trivial_homomorphism_def kernel_def)
lemma (in group) trivial_homomorphism_image:
"trivial_homomorphism G H f \ f \ hom G H \ f ` carrier G = {one H}"
by (auto simp: trivial_homomorphism_def) (metis one_closed rev_image_eqI)
subsection \<open>Image kernel theorems\<close>
lemma group_Int_image_ker:
assumes f: "f \ hom G H" and g: "g \ hom H K" and "inj_on (g \ f) (carrier G)" "group G" "group H" "group K"
shows "(f ` carrier G) \ (kernel H K g) = {\\<^bsub>H\<^esub>}"
proof -
have "(f ` carrier G) \ (kernel H K g) \ {\\<^bsub>H\<^esub>}"
using assms
apply (clarsimp simp: kernel_def o_def)
by (metis group.is_monoid hom_one inj_on_eq_iff monoid.one_closed)
moreover have "one H \ f ` carrier G"
by (metis f \<open>group G\<close> \<open>group H\<close> group.is_monoid hom_one image_iff monoid.one_closed)
moreover have "one H \ kernel H K g"
apply (simp add: kernel_def)
using g group.is_monoid hom_one \<open>group H\<close> \<open>group K\<close> by blast
ultimately show ?thesis
by blast
qed
lemma group_sum_image_ker:
assumes f: "f \ hom G H" and g: "g \ hom H K" and eq: "(g \ f) ` (carrier G) = carrier K"
and "group G" "group H" "group K"
shows "set_mult H (f ` carrier G) (kernel H K g) = carrier H" (is "?lhs = ?rhs")
proof
show "?lhs \ ?rhs"
apply (auto simp: kernel_def set_mult_def)
by (meson Group.group_def assms(5) f hom_carrier image_eqI monoid.m_closed subset_iff)
have "\x\carrier G. \z. z \ carrier H \ g z = \\<^bsub>K\<^esub> \ y = f x \\<^bsub>H\<^esub> z"
if y: "y \ carrier H" for y
proof -
have "g y \ carrier K"
using g hom_carrier that by blast
with assms obtain x where x: "x \ carrier G" "(g \ f) x = g y"
by (metis image_iff)
with assms have "inv\<^bsub>H\<^esub> f x \\<^bsub>H\<^esub> y \ carrier H"
by (metis group.subgroup_self hom_carrier image_subset_iff subgroup_def y)
moreover
have "g (inv\<^bsub>H\<^esub> f x \\<^bsub>H\<^esub> y) = \\<^bsub>K\<^esub>"
proof -
have "inv\<^bsub>H\<^esub> f x \ carrier H"
by (meson \<open>group H\<close> f group.inv_closed hom_carrier image_subset_iff x(1))
then have "g (inv\<^bsub>H\<^esub> f x \\<^bsub>H\<^esub> y) = g (inv\<^bsub>H\<^esub> f x) \\<^bsub>K\<^esub> g y"
by (simp add: hom_mult [OF g] y)
also have "\ = inv\<^bsub>K\<^esub> (g (f x)) \\<^bsub>K\<^esub> g y"
using assms x(1)
by (metis (mono_tags, lifting) group_hom.hom_inv group_hom.intro group_hom_axioms.intro hom_carrier image_subset_iff)
also have "\ = \\<^bsub>K\<^esub>"
using \<open>g y \<in> carrier K\<close> assms(6) group.l_inv x(2) by fastforce
finally show ?thesis .
qed
moreover
have "y = f x \\<^bsub>H\<^esub> (inv\<^bsub>H\<^esub> f x \\<^bsub>H\<^esub> y)"
using x y
by (metis (no_types, hide_lams) assms(5) f group.inv_solve_left group.subgroup_self hom_carrier image_subset_iff subgroup_def that)
ultimately
show ?thesis
using x y by force
qed
then show "?rhs \ ?lhs"
by (auto simp: kernel_def set_mult_def)
qed
lemma group_sum_ker_image:
assumes f: "f \ hom G H" and g: "g \ hom H K" and eq: "(g \ f) ` (carrier G) = carrier K"
and "group G" "group H" "group K"
shows "set_mult H (kernel H K g) (f ` carrier G) = carrier H" (is "?lhs = ?rhs")
proof
show "?lhs \ ?rhs"
apply (auto simp: kernel_def set_mult_def)
by (meson Group.group_def \<open>group H\<close> f hom_carrier image_eqI monoid.m_closed subset_iff)
have "\w\carrier H. \x \ carrier G. g w = \\<^bsub>K\<^esub> \ y = w \\<^bsub>H\<^esub> f x"
if y: "y \ carrier H" for y
proof -
have "g y \ carrier K"
using g hom_carrier that by blast
with assms obtain x where x: "x \ carrier G" "(g \ f) x = g y"
by (metis image_iff)
with assms have carr: "(y \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> f x) \ carrier H"
by (metis group.subgroup_self hom_carrier image_subset_iff subgroup_def y)
moreover
have "g (y \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> f x) = \\<^bsub>K\<^esub>"
proof -
have "inv\<^bsub>H\<^esub> f x \ carrier H"
by (meson \<open>group H\<close> f group.inv_closed hom_carrier image_subset_iff x(1))
then have "g (y \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> f x) = g y \\<^bsub>K\<^esub> g (inv\<^bsub>H\<^esub> f x)"
by (simp add: hom_mult [OF g] y)
also have "\ = g y \\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> (g (f x))"
using assms x(1)
by (metis (mono_tags, lifting) group_hom.hom_inv group_hom.intro group_hom_axioms.intro hom_carrier image_subset_iff)
also have "\ = \\<^bsub>K\<^esub>"
using \<open>g y \<in> carrier K\<close> assms(6) group.l_inv x(2)
by (simp add: group.r_inv)
finally show ?thesis .
qed
moreover
have "y = (y \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> f x) \\<^bsub>H\<^esub> f x"
using x y by (meson \<open>group H\<close> carr f group.inv_solve_right hom_carrier image_subset_iff)
ultimately
show ?thesis
using x y by force
qed
then show "?rhs \ ?lhs"
by (force simp: kernel_def set_mult_def)
qed
lemma group_semidirect_sum_ker_image:
assumes "(g \ f) \ iso G K" "f \ hom G H" "g \ hom H K" "group G" "group H" "group K"
shows "(kernel H K g) \ (f ` carrier G) = {\\<^bsub>H\<^esub>}"
"kernel H K g <#>\<^bsub>H\<^esub> (f ` carrier G) = carrier H"
using assms
by (simp_all add: iso_iff_mon_epi group_Int_image_ker group_sum_ker_image epi_def mon_def Int_commute [of "kernel H K g"])
lemma group_semidirect_sum_image_ker:
assumes f: "f \ hom G H" and g: "g \ hom H K" and iso: "(g \ f) \ iso G K"
and "group G" "group H" "group K"
shows "(f ` carrier G) \ (kernel H K g) = {\\<^bsub>H\<^esub>}"
"f ` carrier G <#>\<^bsub>H\<^esub> (kernel H K g) = carrier H"
using group_Int_image_ker [OF f g] group_sum_image_ker [OF f g] assms
by (simp_all add: iso_def bij_betw_def)
subsection \<open>Factor Groups and Direct product\<close>
lemma (in group) DirProd_normal : \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "group K"
and "H \ G"
and "N \ K"
shows "H \ N \ G \\ K"
proof (intro group.normal_invI[OF DirProd_group[OF group_axioms assms(1)]])
show sub : "subgroup (H \ N) (G \\ K)"
using DirProd_subgroups[OF group_axioms normal_imp_subgroup[OF assms(2)]assms(1)
normal_imp_subgroup[OF assms(3)]].
show "\x h. x \ carrier (G\\K) \ h \ H\N \ x \\<^bsub>G\\K\<^esub> h \\<^bsub>G\\K\<^esub> inv\<^bsub>G\\K\<^esub> x \ H\N"
proof-
fix x h assume xGK : "x \ carrier (G \\ K)" and hHN : " h \ H \ N"
hence hGK : "h \ carrier (G \\ K)" using subgroup.subset[OF sub] by auto
from xGK obtain x1 x2 where x1x2 :"x1 \ carrier G" "x2 \ carrier K" "x = (x1,x2)"
unfolding DirProd_def by fastforce
from hHN obtain h1 h2 where h1h2 : "h1 \ H" "h2 \ N" "h = (h1,h2)"
unfolding DirProd_def by fastforce
hence h1h2GK : "h1 \ carrier G" "h2 \ carrier K"
using normal_imp_subgroup subgroup.subset assms by blast+
have "inv\<^bsub>G \\ K\<^esub> x = (inv\<^bsub>G\<^esub> x1,inv\<^bsub>K\<^esub> x2)"
using inv_DirProd[OF group_axioms assms(1) x1x2(1)x1x2(2)] x1x2 by auto
hence "x \\<^bsub>G \\ K\<^esub> h \\<^bsub>G \\ K\<^esub> inv\<^bsub>G \\ K\<^esub> x = (x1 \ h1 \ inv x1,x2 \\<^bsub>K\<^esub> h2 \\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)"
using h1h2 x1x2 h1h2GK by auto
moreover have "x1 \ h1 \ inv x1 \ H" "x2 \\<^bsub>K\<^esub> h2 \\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2 \ N"
using assms x1x2 h1h2 assms by (simp_all add: normal.inv_op_closed2)
hence "(x1 \ h1 \ inv x1, x2 \\<^bsub>K\<^esub> h2 \\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)\ H \ N" by auto
ultimately show " x \\<^bsub>G \\ K\<^esub> h \\<^bsub>G \\ K\<^esub> inv\<^bsub>G \\ K\<^esub> x \ H \ N" by auto
qed
qed
lemma (in group) FactGroup_DirProd_multiplication_iso_set : \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "group K"
and "H \ G"
and "N \ K"
shows "(\ (X, Y). X \ Y) \ iso ((G Mod H) \\ (K Mod N)) (G \\ K Mod H \ N)"
proof-
have R :"(\(X, Y). X \ Y) \ carrier (G Mod H) \ carrier (K Mod N) \ carrier (G \\ K Mod H \ N)"
unfolding r_coset_def Sigma_def DirProd_def FactGroup_def RCOSETS_def by force
moreover have "(\x\carrier (G Mod H). \y\carrier (K Mod N). \xa\carrier (G Mod H).
\<forall>ya\<in>carrier (K Mod N). (x <#> xa) \<times> (y <#>\<^bsub>K\<^esub> ya) = x \<times> y <#>\<^bsub>G \<times>\<times> K\<^esub> xa \<times> ya)"
unfolding set_mult_def by force
moreover have "(\x\carrier (G Mod H). \y\carrier (K Mod N). \xa\carrier (G Mod H).
\<forall>ya\<in>carrier (K Mod N). x \<times> y = xa \<times> ya \<longrightarrow> x = xa \<and> y = ya)"
unfolding FactGroup_def using times_eq_iff subgroup.rcosets_non_empty
by (metis assms(2) assms(3) normal_def partial_object.select_convs(1))
moreover have "(\(X, Y). X \ Y) ` (carrier (G Mod H) \ carrier (K Mod N)) =
carrier (G \<times>\<times> K Mod H \<times> N)"
proof -
have 1: "\x a b. \a \ carrier (G Mod H); b \ carrier (K Mod N)\ \ a \ b \ carrier (G \\ K Mod H \ N)"
using R by force
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.82 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|