products/sources/formale Sprachen/Java/openjdk-20-36_src/src/hotspot/share/opto image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: superword.hpp   Sprache: C

/*
 * Copyright (c) 2007, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


#ifndef SHARE_OPTO_SUPERWORD_HPP
#define SHARE_OPTO_SUPERWORD_HPP

#include "opto/loopnode.hpp"
#include "opto/node.hpp"
#include "opto/phaseX.hpp"
#include "opto/vectornode.hpp"
#include "utilities/growableArray.hpp"
#include "libadt/dict.hpp"

//
//                  S U P E R W O R D   T R A N S F O R M
//
// SuperWords are short, fixed length vectors.
//
// Algorithm from:
//
// Exploiting SuperWord Level Parallelism with
//   Multimedia Instruction Sets
// by
//   Samuel Larsen and Saman Amarasinghe
//   MIT Laboratory for Computer Science
// date
//   May 2000
// published in
//   ACM SIGPLAN Notices
//   Proceedings of ACM PLDI '00,  Volume 35 Issue 5
//
// Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
// s1,...,sn are independent isomorphic statements in a basic
// block.
//
// Definition 3.2 A PackSet is a set of Packs.
//
// Definition 3.3 A Pair is a Pack of size two, where the
// first statement is considered the left element, and the
// second statement is considered the right element.

class SWPointer;
class OrderedPair;

// ========================= Dependence Graph =====================

class DepMem;

//------------------------------DepEdge---------------------------
// An edge in the dependence graph.  The edges incident to a dependence
// node are threaded through _next_in for incoming edges and _next_out
// for outgoing edges.
class DepEdge : public ArenaObj {
 protected:
  DepMem* _pred;
  DepMem* _succ;
  DepEdge* _next_in;   // list of in edges, null terminated
  DepEdge* _next_out;  // list of out edges, null terminated

 public:
  DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
    _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}

  DepEdge* next_in()  { return _next_in; }
  DepEdge* next_out() { return _next_out; }
  DepMem*  pred()     { return _pred; }
  DepMem*  succ()     { return _succ; }

  void print();
};

//------------------------------DepMem---------------------------
// A node in the dependence graph.  _in_head starts the threaded list of
// incoming edges, and _out_head starts the list of outgoing edges.
class DepMem : public ArenaObj {
 protected:
  Node*    _node;     // Corresponding ideal node
  DepEdge* _in_head;  // Head of list of in edges, null terminated
  DepEdge* _out_head; // Head of list of out edges, null terminated

 public:
  DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}

  Node*    node()                { return _node;     }
  DepEdge* in_head()             { return _in_head;  }
  DepEdge* out_head()            { return _out_head; }
  void set_in_head(DepEdge* hd)  { _in_head = hd;    }
  void set_out_head(DepEdge* hd) { _out_head = hd;   }

  int in_cnt();  // Incoming edge count
  int out_cnt(); // Outgoing edge count

  void print();
};

//------------------------------DepGraph---------------------------
class DepGraph {
 protected:
  Arena* _arena;
  GrowableArray<DepMem*> _map;
  DepMem* _root;
  DepMem* _tail;

 public:
  DepGraph(Arena* a) : _arena(a), _map(a, 8,  0, NULL) {
    _root = new (_arena) DepMem(NULL);
    _tail = new (_arena) DepMem(NULL);
  }

  DepMem* root() { return _root; }
  DepMem* tail() { return _tail; }

  // Return dependence node corresponding to an ideal node
  DepMem* dep(Node* node) { return _map.at(node->_idx); }

  // Make a new dependence graph node for an ideal node.
  DepMem* make_node(Node* node);

  // Make a new dependence graph edge dprec->dsucc
  DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);

  DepEdge* make_edge(Node* pred,   Node* succ)   { return make_edge(dep(pred), dep(succ)); }
  DepEdge* make_edge(DepMem* pred, Node* succ)   { return make_edge(pred,      dep(succ)); }
  DepEdge* make_edge(Node* pred,   DepMem* succ) { return make_edge(dep(pred), succ);      }

  void init() { _map.clear(); } // initialize

  void print(Node* n)   { dep(n)->print(); }
  void print(DepMem* d) { d->print(); }
};

//------------------------------DepPreds---------------------------
// Iterator over predecessors in the dependence graph and
// non-memory-graph inputs of ideal nodes.
class DepPreds : public StackObj {
private:
  Node*    _n;
  int      _next_idx, _end_idx;
  DepEdge* _dep_next;
  Node*    _current;
  bool     _done;

public:
  DepPreds(Node* n, DepGraph& dg);
  Node* current() { return _current; }
  bool  done()    { return _done; }
  void  next();
};

//------------------------------DepSuccs---------------------------
// Iterator over successors in the dependence graph and
// non-memory-graph outputs of ideal nodes.
class DepSuccs : public StackObj {
private:
  Node*    _n;
  int      _next_idx, _end_idx;
  DepEdge* _dep_next;
  Node*    _current;
  bool     _done;

public:
  DepSuccs(Node* n, DepGraph& dg);
  Node* current() { return _current; }
  bool  done()    { return _done; }
  void  next();
};


// ========================= SuperWord =====================

// -----------------------------SWNodeInfo---------------------------------
// Per node info needed by SuperWord
class SWNodeInfo {
 public:
  int         _alignment; // memory alignment for a node
  int         _depth;     // Max expression (DAG) depth from block start
  const Type* _velt_type; // vector element type
  Node_List*  _my_pack;   // pack containing this node

  SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
  static const SWNodeInfo initial;
};

class SuperWord;
class CMoveKit {
 friend class SuperWord;
 private:
  SuperWord* _sw;
  Dict* _dict;
  CMoveKit(Arena* a, SuperWord* sw) : _sw(sw)  {_dict = new Dict(cmpkey, hashkey, a);}
  void*     _2p(Node* key)        const  { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy
  Dict*     dict()                const  { return _dict; }
  void map(Node* key, Node_List* val)    { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); }
  void unmap(Node* key)                  { _dict->Delete(_2p(key)); }
  Node_List* pack(Node* key)      const  { return (Node_List*)_dict->operator[](_2p(key)); }
  Node* is_Bool_candidate(Node* nd) const// if it is the right candidate return corresponding CMove* ,
  Node* is_Cmp_candidate(Node* nd) const// otherwise return NULL
  // Determine if the current pack is a cmove candidate that can be vectorized.
  bool can_merge_cmove_pack(Node_List* cmove_pk);
  void make_cmove_pack(Node_List* cmove_pk);
  bool test_cmp_pack(Node_List* cmp_pk, Node_List* cmove_pk);
};//class CMoveKit

// JVMCI: OrderedPair is moved up to deal with compilation issues on Windows
//------------------------------OrderedPair---------------------------
// Ordered pair of Node*.
class OrderedPair {
 protected:
  Node* _p1;
  Node* _p2;
 public:
  OrderedPair() : _p1(NULL), _p2(NULL) {}
  OrderedPair(Node* p1, Node* p2) {
    if (p1->_idx < p2->_idx) {
      _p1 = p1; _p2 = p2;
    } else {
      _p1 = p2; _p2 = p1;
    }
  }

  bool operator==(const OrderedPair &rhs) {
    return _p1 == rhs._p1 && _p2 == rhs._p2;
  }
  void print() { tty->print(" (%d, %d)", _p1->_idx, _p2->_idx); }

  static const OrderedPair initial;
};

// -----------------------VectorElementSizeStats-----------------------
// Vector lane size statistics for loop vectorization with vector masks
class VectorElementSizeStats {
 private:
  static const int NO_SIZE = -1;
  static const int MIXED_SIZE = -2;
  int* _stats;

 public:
  VectorElementSizeStats(Arena* a) : _stats(NEW_ARENA_ARRAY(a, int, 4)) {
    memset(_stats, 0, sizeof(int) * 4);
  }

  void record_size(int size) {
    assert(1 <= size && size <= 8 && is_power_of_2(size), "Illegal size");
    _stats[exact_log2(size)]++;
  }

  int smallest_size() {
    for (int i = 0; i <= 3; i++) {
      if (_stats[i] > 0) return (1 << i);
    }
    return NO_SIZE;
  }

  int largest_size() {
    for (int i = 3; i >= 0; i--) {
      if (_stats[i] > 0) return (1 << i);
    }
    return NO_SIZE;
  }

  int unique_size() {
    int small = smallest_size();
    int large = largest_size();
    return (small == large) ? small : MIXED_SIZE;
  }
};

// -----------------------------SuperWord---------------------------------
// Transforms scalar operations into packed (superword) operations.
class SuperWord : public ResourceObj {
 friend class SWPointer;
 friend class CMoveKit;
 private:
  PhaseIdealLoop* _phase;
  Arena*          _arena;
  PhaseIterGVN   &_igvn;

  enum consts { top_align = -1, bottom_align = -666 };

  GrowableArray<Node_List*> _packset;    // Packs for the current block

  GrowableArray<int> _bb_idx;            // Map from Node _idx to index within block

  GrowableArray<Node*> _block;           // Nodes in current block
  GrowableArray<Node*> _post_block;      // Nodes in post loop block
  GrowableArray<Node*> _data_entry;      // Nodes with all inputs from outside
  GrowableArray<Node*> _mem_slice_head;  // Memory slice head nodes
  GrowableArray<Node*> _mem_slice_tail;  // Memory slice tail nodes
  GrowableArray<Node*> _iteration_first; // nodes in the generation that has deps from phi
  GrowableArray<Node*> _iteration_last;  // nodes in the generation that has deps to   phi
  GrowableArray<SWNodeInfo> _node_info;  // Info needed per node
  CloneMap&            _clone_map;       // map of nodes created in cloning
  CMoveKit             _cmovev_kit;      // support for vectorization of CMov
  MemNode* _align_to_ref;                // Memory reference that pre-loop will align to

  GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs

  DepGraph _dg; // Dependence graph

  // Scratch pads
  VectorSet    _visited;       // Visited set
  VectorSet    _post_visited;  // Post-visited set
  Node_Stack   _n_idx_list;    // List of (node,index) pairs
  GrowableArray<Node*> _nlist; // List of nodes
  GrowableArray<Node*> _stk;   // Stack of nodes

 public:
  SuperWord(PhaseIdealLoop* phase);

  bool transform_loop(IdealLoopTree* lpt, bool do_optimization);

  int max_vector_size(BasicType bt);

  void unrolling_analysis(int &local_loop_unroll_factor);

  // Accessors for SWPointer
  PhaseIdealLoop* phase() const    { return _phase; }
  IdealLoopTree* lpt() const       { return _lpt; }
  PhiNode* iv() const              { return _iv; }

  bool early_return() const        { return _early_return; }

#ifndef PRODUCT
  bool     is_debug()              { return _vector_loop_debug > 0; }
  bool     is_trace_alignment()    { return (_vector_loop_debug & 2) > 0; }
  bool     is_trace_mem_slice()    { return (_vector_loop_debug & 4) > 0; }
  bool     is_trace_loop()         { return (_vector_loop_debug & 8) > 0; }
  bool     is_trace_adjacent()     { return (_vector_loop_debug & 16) > 0; }
  bool     is_trace_cmov()         { return (_vector_loop_debug & 32) > 0; }
  bool     is_trace_loop_reverse() { return (_vector_loop_debug & 64) > 0; }
#endif
  bool     do_vector_loop()        { return _do_vector_loop; }
  bool     do_reserve_copy()       { return _do_reserve_copy; }
 private:
  IdealLoopTree* _lpt;             // Current loop tree node
  CountedLoopNode* _lp;            // Current CountedLoopNode
  CountedLoopEndNode* _pre_loop_end; // Current CountedLoopEndNode of pre loop
  Node*          _bb;              // Current basic block
  PhiNode*       _iv;              // Induction var
  bool           _race_possible;   // In cases where SDMU is true
  bool           _early_return;    // True if we do not initialize
  bool           _do_vector_loop;  // whether to do vectorization/simd style
  bool           _do_reserve_copy; // do reserve copy of the graph(loop) before final modification in output
  int            _num_work_vecs;   // Number of non memory vector operations
  int            _num_reductions;  // Number of reduction expressions applied
  int            _ii_first;        // generation with direct deps from mem phi
  int            _ii_last;         // generation with direct deps to   mem phi
  GrowableArray<int> _ii_order;
#ifndef PRODUCT
  uintx          _vector_loop_debug; // provide more printing in debug mode
#endif

  // Accessors
  Arena* arena()                   { return _arena; }

  Node* bb()                       { return _bb; }
  void set_bb(Node* bb)            { _bb = bb; }
  void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
  CountedLoopNode* lp() const      { return _lp; }
  void set_lp(CountedLoopNode* lp) {
    _lp = lp;
    _iv = lp->as_CountedLoop()->phi()->as_Phi();
  }
  int iv_stride() const            { return lp()->stride_con(); }

  CountedLoopNode* pre_loop_head() const {
    assert(_pre_loop_end != NULL && _pre_loop_end->loopnode() != NULL, "should find head from pre loop end");
    return _pre_loop_end->loopnode();
  }
  void set_pre_loop_end(CountedLoopEndNode* pre_loop_end) {
    assert(pre_loop_end, "must be valid");
    _pre_loop_end = pre_loop_end;
  }
  CountedLoopEndNode* pre_loop_end() const {
#ifdef ASSERT
    assert(_lp != NULL, "sanity");
    assert(_pre_loop_end != NULL, "should be set when fetched");
    Node* found_pre_end = find_pre_loop_end(_lp);
    assert(_pre_loop_end == found_pre_end && _pre_loop_end == pre_loop_head()->loopexit(),
           "should find the pre loop end and must be the same result");
#endif
    return _pre_loop_end;
  }

  int vector_width(Node* n) {
    BasicType bt = velt_basic_type(n);
    return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
  }
  int vector_width_in_bytes(Node* n) {
    BasicType bt = velt_basic_type(n);
    return vector_width(n)*type2aelembytes(bt);
  }
  int get_vw_bytes_special(MemNode* s);
  MemNode* align_to_ref()            { return _align_to_ref; }
  void  set_align_to_ref(MemNode* m) { _align_to_ref = m; }

  Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }

  // block accessors
  bool in_bb(Node* n)      { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
  int  bb_idx(Node* n)     { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
  void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }

  // visited set accessors
  void visited_clear()           { _visited.clear(); }
  void visited_set(Node* n)      { return _visited.set(bb_idx(n)); }
  int visited_test(Node* n)      { return _visited.test(bb_idx(n)); }
  int visited_test_set(Node* n)  { return _visited.test_set(bb_idx(n)); }
  void post_visited_clear()      { _post_visited.clear(); }
  void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
  int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }

  // Ensure node_info contains element "i"
  void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }

  // should we align vector memory references on this platform?
  bool vectors_should_be_aligned() { return !Matcher::misaligned_vectors_ok() || AlignVector; }

  // memory alignment for a node
  int alignment(Node* n)                     { return _node_info.adr_at(bb_idx(n))->_alignment; }
  void set_alignment(Node* n, int a)         { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }

  // Max expression (DAG) depth from beginning of the block for each node
  int depth(Node* n)                         { return _node_info.adr_at(bb_idx(n))->_depth; }
  void set_depth(Node* n, int d)             { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }

  // vector element type
  const Type* velt_type(Node* n)             { return _node_info.adr_at(bb_idx(n))->_velt_type; }
  BasicType velt_basic_type(Node* n)         { return velt_type(n)->array_element_basic_type(); }
  void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
  bool same_velt_type(Node* n1, Node* n2);

  // my_pack
  Node_List* my_pack(Node* n)                 { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
  void set_my_pack(Node* n, Node_List* p)     { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
  // is pack good for converting into one vector node replacing bunches of Cmp, Bool, CMov nodes.
  bool is_cmov_pack(Node_List* p);
  bool is_cmov_pack_internal_node(Node_List* p, Node* nd) { return is_cmov_pack(p) && !nd->is_CMove(); }
  static bool is_cmove_fp_opcode(int opc) { return (opc == Op_CMoveF || opc == Op_CMoveD); }
  static bool requires_long_to_int_conversion(int opc);
  // For pack p, are all idx operands the same?
  bool same_inputs(Node_List* p, int idx);
  // CloneMap utilities
  bool same_origin_idx(Node* a, Node* b) const;
  bool same_generation(Node* a, Node* b) const;

  // methods

  // Extract the superword level parallelism
  bool SLP_extract();
  // Find the adjacent memory references and create pack pairs for them.
  void find_adjacent_refs();
  // Tracing support
  #ifndef PRODUCT
  void find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment);
  void print_loop(bool whole);
  #endif
  // Find a memory reference to align the loop induction variable to.
  MemNode* find_align_to_ref(Node_List &memops, int &idx);
  // Calculate loop's iv adjustment for this memory ops.
  int get_iv_adjustment(MemNode* mem);
  // Can the preloop align the reference to position zero in the vector?
  bool ref_is_alignable(SWPointer& p);
  // rebuild the graph so all loads in different iterations of cloned loop become dependent on phi node (in _do_vector_loop only)
  bool hoist_loads_in_graph();
  // Test whether MemNode::Memory dependency to the same load but in the first iteration of this loop is coming from memory phi
  // Return false if failed
  Node* find_phi_for_mem_dep(LoadNode* ld);
  // Return same node but from the first generation. Return 0, if not found
  Node* first_node(Node* nd);
  // Return same node as this but from the last generation. Return 0, if not found
  Node* last_node(Node* n);
  // Mark nodes belonging to first and last generation
  // returns first generation index or -1 if vectorization/simd is impossible
  int mark_generations();
  // swapping inputs of commutative instruction (Add or Mul)
  bool fix_commutative_inputs(Node* gold, Node* fix);
  // make packs forcefully (in _do_vector_loop only)
  bool pack_parallel();
  // Construct dependency graph.
  void dependence_graph();
  // Return a memory slice (node list) in predecessor order starting at "start"
  void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
  // Can s1 and s2 be in a pack with s1 immediately preceding s2 and  s1 aligned at "align"
  bool stmts_can_pack(Node* s1, Node* s2, int align);
  // Does s exist in a pack at position pos?
  bool exists_at(Node* s, uint pos);
  // Is s1 immediately before s2 in memory?
  bool are_adjacent_refs(Node* s1, Node* s2);
  // Are s1 and s2 similar?
  bool isomorphic(Node* s1, Node* s2);
  // Is there no data path from s1 to s2 or s2 to s1?
  bool independent(Node* s1, Node* s2);
  // For a node pair (s1, s2) which is isomorphic and independent,
  // do s1 and s2 have similar input edges?
  bool have_similar_inputs(Node* s1, Node* s2);
  // Is there a data path between s1 and s2 and both are reductions?
  bool reduction(Node* s1, Node* s2);
  // Helper for independent
  bool independent_path(Node* shallow, Node* deep, uint dp=0);
  void set_alignment(Node* s1, Node* s2, int align);
  int data_size(Node* s);
  // Extend packset by following use->def and def->use links from pack members.
  void extend_packlist();
  int adjust_alignment_for_type_conversion(Node* s, Node* t, int align);
  // Extend the packset by visiting operand definitions of nodes in pack p
  bool follow_use_defs(Node_List* p);
  // Extend the packset by visiting uses of nodes in pack p
  bool follow_def_uses(Node_List* p);
  // For extended packsets, ordinally arrange uses packset by major component
  void order_def_uses(Node_List* p);
  // Estimate the savings from executing s1 and s2 as a pack
  int est_savings(Node* s1, Node* s2);
  int adjacent_profit(Node* s1, Node* s2);
  int pack_cost(int ct);
  int unpack_cost(int ct);
  // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
  void combine_packs();
  // Construct the map from nodes to packs.
  void construct_my_pack_map();
  // Remove packs that are not implemented or not profitable.
  void filter_packs();
  // Merge CMove into new vector-nodes
  void merge_packs_to_cmove();
  // Adjust the memory graph for the packed operations
  void schedule();
  // Remove "current" from its current position in the memory graph and insert
  // it after the appropriate insert points (lip or uip);
  void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
  // Within a store pack, schedule stores together by moving out the sandwiched memory ops according
  // to dependence info; and within a load pack, move loads down to the last executed load.
  void co_locate_pack(Node_List* p);
  Node* pick_mem_state(Node_List* pk);
  Node* find_first_mem_state(Node_List* pk);
  Node* find_last_mem_state(Node_List* pk, Node* first_mem, bool &is_dependent);

  // Convert packs into vector node operations
  bool output();
  // Create vector mask for post loop vectorization
  Node* create_post_loop_vmask();
  // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  Node* vector_opd(Node_List* p, int opd_idx);
  // Can code be generated for pack p?
  bool implemented(Node_List* p);
  // For pack p, are all operands and all uses (with in the block) vector?
  bool profitable(Node_List* p);
  // If a use of pack p is not a vector use, then replace the use with an extract operation.
  void insert_extracts(Node_List* p);
  // Is use->in(u_idx) a vector use?
  bool is_vector_use(Node* use, int u_idx);
  // Construct reverse postorder list of block members
  bool construct_bb();
  // Initialize per node info
  void initialize_bb();
  // Insert n into block after pos
  void bb_insert_after(Node* n, int pos);
  // Compute max depth for expressions from beginning of block
  void compute_max_depth();
  // Return the longer type for vectorizable type-conversion node or illegal type for other nodes.
  BasicType longer_type_for_conversion(Node* n);
  // Find the longest type in def-use chain for packed nodes, and then compute the max vector size.
  int max_vector_size_in_def_use_chain(Node* n);
  // Compute necessary vector element type for expressions
  void compute_vector_element_type();
  // Are s1 and s2 in a pack pair and ordered as s1,s2?
  bool in_packset(Node* s1, Node* s2);
  // Is s in pack p?
  Node_List* in_pack(Node* s, Node_List* p);
  // Remove the pack at position pos in the packset
  void remove_pack_at(int pos);
  // Return the node executed first in pack p.
  Node* executed_first(Node_List* p);
  // Return the node executed last in pack p.
  Node* executed_last(Node_List* p);
  static LoadNode::ControlDependency control_dependency(Node_List* p);
  // Alignment within a vector memory reference
  int memory_alignment(MemNode* s, int iv_adjust);
  // (Start, end] half-open range defining which operands are vector
  void vector_opd_range(Node* n, uint* start, uint* end);
  // Smallest type containing range of values
  const Type* container_type(Node* n);
  // Adjust pre-loop limit so that in main loop, a load/store reference
  // to align_to_ref will be a position zero in the vector.
  void align_initial_loop_index(MemNode* align_to_ref);
  // Find pre loop end from main loop.  Returns null if none.
  CountedLoopEndNode* find_pre_loop_end(CountedLoopNode *cl) const;
  // Is the use of d1 in u1 at the same operand position as d2 in u2?
  bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
  void init();
  // clean up some basic structures - used if the ideal graph was rebuilt
  void restart();

  // print methods
  void print_packset();
  void print_pack(Node_List* p);
  void print_bb();
  void print_stmt(Node* s);
  char* blank(uint depth);

  void packset_sort(int n);
};



//------------------------------SWPointer---------------------------
// Information about an address for dependence checking and vector alignment
class SWPointer : public ArenaObj {
 protected:
  MemNode*   _mem;           // My memory reference node
  SuperWord* _slp;           // SuperWord class

  Node* _base;               // NULL if unsafe nonheap reference
  Node* _adr;                // address pointer
  int   _scale;              // multiplier for iv (in bytes), 0 if no loop iv
  int   _offset;             // constant offset (in bytes)

  Node* _invar;              // invariant offset (in bytes), NULL if none
  bool  _negate_invar;       // if true then use: (0 - _invar)
  Node* _invar_scale;        // multiplier for invariant

  Node_Stack* _nstack;       // stack used to record a swpointer trace of variants
  bool        _analyze_only; // Used in loop unrolling only for swpointer trace
  uint        _stack_idx;    // Used in loop unrolling only for swpointer trace

  PhaseIdealLoop* phase() const { return _slp->phase(); }
  IdealLoopTree*  lpt() const   { return _slp->lpt(); }
  PhiNode*        iv() const    { return _slp->iv();  } // Induction var

  bool is_loop_member(Node* n) const;
  bool invariant(Node* n) const;

  // Match: k*iv + offset
  bool scaled_iv_plus_offset(Node* n);
  // Match: k*iv where k is a constant that's not zero
  bool scaled_iv(Node* n);
  // Match: offset is (k [+/- invariant])
  bool offset_plus_k(Node* n, bool negate = false);

 public:
  enum CMP {
    Less          = 1,
    Greater       = 2,
    Equal         = 4,
    NotEqual      = (Less | Greater),
    NotComparable = (Less | Greater | Equal)
  };

  SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only);
  // Following is used to create a temporary object during
  // the pattern match of an address expression.
  SWPointer(SWPointer* p);

  bool valid()  { return _adr != NULL; }
  bool has_iv() { return _scale != 0; }

  Node* base()             { return _base; }
  Node* adr()              { return _adr; }
  MemNode* mem()           { return _mem; }
  int   scale_in_bytes()   { return _scale; }
  Node* invar()            { return _invar; }
  bool  negate_invar()     { return _negate_invar; }
  Node* invar_scale()      { return _invar_scale; }
  int   offset_in_bytes()  { return _offset; }
  int   memory_size()      { return _mem->memory_size(); }
  Node_Stack* node_stack() { return _nstack; }

  // Comparable?
  bool invar_equals(SWPointer& q) {
      return (_invar        == q._invar   &&
              _invar_scale  == q._invar_scale &&
              _negate_invar == q._negate_invar);
  }

  int cmp(SWPointer& q) {
    if (valid() && q.valid() &&
        (_adr == q._adr || (_base == _adr && q._base == q._adr)) &&
        _scale == q._scale   && invar_equals(q)) {
      bool overlap = q._offset <   _offset +   memory_size() &&
                       _offset < q._offset + q.memory_size();
      return overlap ? Equal : (_offset < q._offset ? Less : Greater);
    } else {
      return NotComparable;
    }
  }

  bool not_equal(SWPointer& q)    { return not_equal(cmp(q)); }
  bool equal(SWPointer& q)        { return equal(cmp(q)); }
  bool comparable(SWPointer& q)   { return comparable(cmp(q)); }
  static bool not_equal(int cmp)  { return cmp <= NotEqual; }
  static bool equal(int cmp)      { return cmp == Equal; }
  static bool comparable(int cmp) { return cmp < NotComparable; }

  static bool has_potential_dependence(GrowableArray<SWPointer*> swptrs);

  void print();

#ifndef PRODUCT
  class Tracer {
    friend class SuperWord;
    friend class SWPointer;
    SuperWord*   _slp;
    static int   _depth;
    int _depth_save;
    void print_depth() const;
    int  depth() const    { return _depth; }
    void set_depth(int d) { _depth = d; }
    void inc_depth()      { _depth++;}
    void dec_depth()      { if (_depth > 0) _depth--;}
    void store_depth()    {_depth_save = _depth;}
    void restore_depth()  {_depth = _depth_save;}

    class Depth {
      friend class Tracer;
      friend class SWPointer;
      friend class SuperWord;
      Depth()  { ++_depth; }
      Depth(int x)  { _depth = 0; }
      ~Depth() { if (_depth > 0) --_depth;}
    };
    Tracer (SuperWord* slp) : _slp(slp) {}

    // tracing functions
    void ctor_1(Node* mem);
    void ctor_2(Node* adr);
    void ctor_3(Node* adr, int i);
    void ctor_4(Node* adr, int i);
    void ctor_5(Node* adr, Node* base,  int i);
    void ctor_6(Node* mem);

    void invariant_1(Node *n, Node *n_c) const;

    void scaled_iv_plus_offset_1(Node* n);
    void scaled_iv_plus_offset_2(Node* n);
    void scaled_iv_plus_offset_3(Node* n);
    void scaled_iv_plus_offset_4(Node* n);
    void scaled_iv_plus_offset_5(Node* n);
    void scaled_iv_plus_offset_6(Node* n);
    void scaled_iv_plus_offset_7(Node* n);
    void scaled_iv_plus_offset_8(Node* n);

    void scaled_iv_1(Node* n);
    void scaled_iv_2(Node* n, int scale);
    void scaled_iv_3(Node* n, int scale);
    void scaled_iv_4(Node* n, int scale);
    void scaled_iv_5(Node* n, int scale);
    void scaled_iv_6(Node* n, int scale);
    void scaled_iv_7(Node* n);
    void scaled_iv_8(Node* n, SWPointer* tmp);
    void scaled_iv_9(Node* n, int _scale, int _offset, Node* _invar, bool _negate_invar);
    void scaled_iv_10(Node* n);

    void offset_plus_k_1(Node* n);
    void offset_plus_k_2(Node* n, int _offset);
    void offset_plus_k_3(Node* n, int _offset);
    void offset_plus_k_4(Node* n);
    void offset_plus_k_5(Node* n, Node* _invar);
    void offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset);
    void offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset);
    void offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset);
    void offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset);
    void offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset);
    void offset_plus_k_11(Node* n);

  } _tracer;//TRacer;
#endif
};

#endif // SHARE_OPTO_SUPERWORD_HPP

¤ Dauer der Verarbeitung: 0.12 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff