products/sources/formale sprachen/Isabelle/HOL image not shown  

Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Power.thy   Sprache: Isabelle

Original von: Isabelle©

(*  Title:      HOL/Power.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1997  University of Cambridge
*)


section \<open>Exponentiation\<close>

theory Power
  imports Num
begin

subsection \<open>Powers for Arbitrary Monoids\<close>

class power = one + times
begin

primrec power :: "'a \ nat \ 'a" (infixr "^" 80)
  where
    power_0: "a ^ 0 = 1"
  | power_Suc: "a ^ Suc n = a * a ^ n"

notation (latex output)
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)

text \<open>Special syntax for squares.\<close>
abbreviation power2 :: "'a \ 'a" ("(_\<^sup>2)" [1000] 999)
  where "x\<^sup>2 \ x ^ 2"

end

context
  includes lifting_syntax
begin

lemma power_transfer [transfer_rule]:
  \<open>(R ===> (=) ===> R) (^) (^)\<close>
    if [transfer_rule]: \<open>R 1 1\<close>
      \<open>(R ===> R ===> R) (*) (*)\<close>
    for R :: \<open>'a::power \<Rightarrow> 'b::power \<Rightarrow> bool\<close>
  by (simp only: power_def [abs_def]) transfer_prover

end

context monoid_mult
begin

subclass power .

lemma power_one [simp]: "1 ^ n = 1"
  by (induct n) simp_all

lemma power_one_right [simp]: "a ^ 1 = a"
  by simp

lemma power_Suc0_right [simp]: "a ^ Suc 0 = a"
  by simp

lemma power_commutes: "a ^ n * a = a * a ^ n"
  by (induct n) (simp_all add: mult.assoc)

lemma power_Suc2: "a ^ Suc n = a ^ n * a"
  by (simp add: power_commutes)

lemma power_add: "a ^ (m + n) = a ^ m * a ^ n"
  by (induct m) (simp_all add: algebra_simps)

lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n"
  by (induct n) (simp_all add: power_add)

lemma power_even_eq: "a ^ (2 * n) = (a ^ n)\<^sup>2"
  by (subst mult.commute) (simp add: power_mult)

lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2"
  by (simp add: power_even_eq)

lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)"
  by (simp only: numeral_Bit0 power_add Let_def)

lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)"
  by (simp only: numeral_Bit1 One_nat_def add_Suc_right add_0_right
      power_Suc power_add Let_def mult.assoc)

lemma power2_eq_square: "a\<^sup>2 = a * a"
  by (simp add: numeral_2_eq_2)

lemma power3_eq_cube: "a ^ 3 = a * a * a"
  by (simp add: numeral_3_eq_3 mult.assoc)

lemma power4_eq_xxxx: "x^4 = x * x * x * x"
  by (simp add: mult.assoc power_numeral_even)

lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)"
proof (induct "f x" arbitrary: f)
  case 0
  then show ?case by (simp add: fun_eq_iff)
next
  case (Suc n)
  define g where "g x = f x - 1" for x
  with Suc have "n = g x" by simp
  with Suc have "times x ^^ g x = times (x ^ g x)" by simp
  moreover from Suc g_def have "f x = g x + 1" by simp
  ultimately show ?case
    by (simp add: power_add funpow_add fun_eq_iff mult.assoc)
qed

lemma power_commuting_commutes:
  assumes "x * y = y * x"
  shows "x ^ n * y = y * x ^n"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have "x ^ Suc n * y = x ^ n * y * x"
    by (subst power_Suc2) (simp add: assms ac_simps)
  also have "\ = y * x ^ Suc n"
    by (simp only: Suc power_Suc2) (simp add: ac_simps)
  finally show ?case .
qed

lemma power_minus_mult: "0 < n \ a ^ (n - 1) * a = a ^ n"
  by (simp add: power_commutes split: nat_diff_split)

lemma left_right_inverse_power:
  assumes "x * y = 1"
  shows   "x ^ n * y ^ n = 1"
proof (induct n)
  case (Suc n)
  moreover have "x ^ Suc n * y ^ Suc n = x^n * (x * y) * y^n"
    by (simp add: power_Suc2[symmetric] mult.assoc[symmetric])
  ultimately show ?case by (simp add: assms)
qed simp

end

context comm_monoid_mult
begin

lemma power_mult_distrib [algebra_simps, algebra_split_simps, field_simps, field_split_simps, divide_simps]:
  "(a * b) ^ n = (a ^ n) * (b ^ n)"
  by (induction n) (simp_all add: ac_simps)

end

text \<open>Extract constant factors from powers.\<close>
declare power_mult_distrib [where a = "numeral w" for w, simp]
declare power_mult_distrib [where b = "numeral w" for w, simp]

lemma power_add_numeral [simp]: "a^numeral m * a^numeral n = a^numeral (m + n)"
  for a :: "'a::monoid_mult"
  by (simp add: power_add [symmetric])

lemma power_add_numeral2 [simp]: "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b"
  for a :: "'a::monoid_mult"
  by (simp add: mult.assoc [symmetric])

lemma power_mult_numeral [simp]: "(a^numeral m)^numeral n = a^numeral (m * n)"
  for a :: "'a::monoid_mult"
  by (simp only: numeral_mult power_mult)

context semiring_numeral
begin

lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k"
  by (simp only: sqr_conv_mult numeral_mult)

lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l"
  by (induct l)
    (simp_all only: numeral_class.numeral.simps pow.simps
      numeral_sqr numeral_mult power_add power_one_right)

lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)"
  by (rule numeral_pow [symmetric])

end

context semiring_1
begin

lemma of_nat_power [simp]: "of_nat (m ^ n) = of_nat m ^ n"
  by (induct n) simp_all

lemma zero_power: "0 < n \ 0 ^ n = 0"
  by (cases n) simp_all

lemma power_zero_numeral [simp]: "0 ^ numeral k = 0"
  by (simp add: numeral_eq_Suc)

lemma zero_power2: "0\<^sup>2 = 0" (* delete? *)
  by (rule power_zero_numeral)

lemma one_power2: "1\<^sup>2 = 1" (* delete? *)
  by (rule power_one)

lemma power_0_Suc [simp]: "0 ^ Suc n = 0"
  by simp

text \<open>It looks plausible as a simprule, but its effect can be strange.\<close>
lemma power_0_left: "0 ^ n = (if n = 0 then 1 else 0)"
  by (cases n) simp_all

end

context semiring_char_0 begin

lemma numeral_power_eq_of_nat_cancel_iff [simp]:
  "numeral x ^ n = of_nat y \ numeral x ^ n = y"
  using of_nat_eq_iff by fastforce

lemma real_of_nat_eq_numeral_power_cancel_iff [simp]:
  "of_nat y = numeral x ^ n \ y = numeral x ^ n"
  using numeral_power_eq_of_nat_cancel_iff [of x n y] by (metis (mono_tags))

lemma of_nat_eq_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w = of_nat x \ b ^ w = x"
  by (metis of_nat_power of_nat_eq_iff)

lemma of_nat_power_eq_of_nat_cancel_iff[simp]: "of_nat x = (of_nat b) ^ w \ x = b ^ w"
  by (metis of_nat_eq_of_nat_power_cancel_iff)

end

context comm_semiring_1
begin

text \<open>The divides relation.\<close>

lemma le_imp_power_dvd:
  assumes "m \ n"
  shows "a ^ m dvd a ^ n"
proof
  from assms have "a ^ n = a ^ (m + (n - m))" by simp
  also have "\ = a ^ m * a ^ (n - m)" by (rule power_add)
  finally show "a ^ n = a ^ m * a ^ (n - m)" .
qed

lemma power_le_dvd: "a ^ n dvd b \ m \ n \ a ^ m dvd b"
  by (rule dvd_trans [OF le_imp_power_dvd])

lemma dvd_power_same: "x dvd y \ x ^ n dvd y ^ n"
  by (induct n) (auto simp add: mult_dvd_mono)

lemma dvd_power_le: "x dvd y \ m \ n \ x ^ n dvd y ^ m"
  by (rule power_le_dvd [OF dvd_power_same])

lemma dvd_power [simp]:
  fixes n :: nat
  assumes "n > 0 \ x = 1"
  shows "x dvd (x ^ n)"
  using assms
proof
  assume "0 < n"
  then have "x ^ n = x ^ Suc (n - 1)" by simp
  then show "x dvd (x ^ n)" by simp
next
  assume "x = 1"
  then show "x dvd (x ^ n)" by simp
qed

end

context semiring_1_no_zero_divisors
begin

subclass power .

lemma power_eq_0_iff [simp]: "a ^ n = 0 \ a = 0 \ n > 0"
  by (induct n) auto

lemma power_not_zero: "a \ 0 \ a ^ n \ 0"
  by (induct n) auto

lemma zero_eq_power2 [simp]: "a\<^sup>2 = 0 \ a = 0"
  unfolding power2_eq_square by simp

end

context ring_1
begin

lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n"
proof (induct n)
  case 0
  show ?case by simp
next
  case (Suc n)
  then show ?case
    by (simp del: power_Suc add: power_Suc2 mult.assoc)
qed

lemma power_minus': "NO_MATCH 1 x \ (-x) ^ n = (-1)^n * x ^ n"
  by (rule power_minus)

lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)"
  by (induct k, simp_all only: numeral_class.numeral.simps power_add
    power_one_right mult_minus_left mult_minus_right minus_minus)

lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))"
  by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left)

lemma power2_minus [simp]: "(- a)\<^sup>2 = a\<^sup>2"
  by (fact power_minus_Bit0)

lemma power_minus1_even [simp]: "(- 1) ^ (2*n) = 1"
proof (induct n)
  case 0
  show ?case by simp
next
  case (Suc n)
  then show ?case by (simp add: power_add power2_eq_square)
qed

lemma power_minus1_odd: "(- 1) ^ Suc (2*n) = -1"
  by simp

lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)"
  by (simp add: power_minus [of a])

end

context ring_1_no_zero_divisors
begin

lemma power2_eq_1_iff: "a\<^sup>2 = 1 \ a = 1 \ a = - 1"
  using square_eq_1_iff [of a] by (simp add: power2_eq_square)

end

context idom
begin

lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \ x = y \ x = - y"
  unfolding power2_eq_square by (rule square_eq_iff)

end

context semidom_divide
begin

lemma power_diff:
  "a ^ (m - n) = (a ^ m) div (a ^ n)" if "a \ 0" and "n \ m"
proof -
  define q where "q = m - n"
  with \<open>n \<le> m\<close> have "m = q + n" by simp
  with \<open>a \<noteq> 0\<close> q_def show ?thesis
    by (simp add: power_add)
qed

end

context algebraic_semidom
begin

lemma div_power: "b dvd a \ (a div b) ^ n = a ^ n div b ^ n"
  by (induct n) (simp_all add: div_mult_div_if_dvd dvd_power_same)

lemma is_unit_power_iff: "is_unit (a ^ n) \ is_unit a \ n = 0"
  by (induct n) (auto simp add: is_unit_mult_iff)

lemma dvd_power_iff:
  assumes "x \ 0"
  shows   "x ^ m dvd x ^ n \ is_unit x \ m \ n"
proof
  assume *: "x ^ m dvd x ^ n"
  {
    assume "m > n"
    note *
    also have "x ^ n = x ^ n * 1" by simp
    also from \<open>m > n\<close> have "m = n + (m - n)" by simp
    also have "x ^ \ = x ^ n * x ^ (m - n)" by (rule power_add)
    finally have "x ^ (m - n) dvd 1"
      by (subst (asm) dvd_times_left_cancel_iff) (insert assms, simp_all)
    with \<open>m > n\<close> have "is_unit x" by (simp add: is_unit_power_iff)
  }
  thus "is_unit x \ m \ n" by force
qed (auto intro: unit_imp_dvd simp: is_unit_power_iff le_imp_power_dvd)


end

context normalization_semidom_multiplicative
begin

lemma normalize_power: "normalize (a ^ n) = normalize a ^ n"
  by (induct n) (simp_all add: normalize_mult)

lemma unit_factor_power: "unit_factor (a ^ n) = unit_factor a ^ n"
  by (induct n) (simp_all add: unit_factor_mult)

end

context division_ring
begin

text \<open>Perhaps these should be simprules.\<close>
lemma power_inverse [field_simps, field_split_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)"
proof (cases "a = 0")
  case True
  then show ?thesis by (simp add: power_0_left)
next
  case False
  then have "inverse (a ^ n) = inverse a ^ n"
    by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes)
  then show ?thesis by simp
qed

lemma power_one_over [field_simps, field_split_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n"
  using power_inverse [of a] by (simp add: divide_inverse)

end

context field
begin

lemma power_divide [field_simps, field_split_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n"
  by (induct n) simp_all

end


subsection \<open>Exponentiation on ordered types\<close>

context linordered_semidom
begin

lemma zero_less_power [simp]: "0 < a \ 0 < a ^ n"
  by (induct n) simp_all

lemma zero_le_power [simp]: "0 \ a \ 0 \ a ^ n"
  by (induct n) simp_all

lemma power_mono: "a \ b \ 0 \ a \ a ^ n \ b ^ n"
  by (induct n) (auto intro: mult_mono order_trans [of 0 a b])

lemma one_le_power [simp]: "1 \ a \ 1 \ a ^ n"
  using power_mono [of 1 a n] by simp

lemma power_le_one: "0 \ a \ a \ 1 \ a ^ n \ 1"
  using power_mono [of a 1 n] by simp

lemma power_gt1_lemma:
  assumes gt1: "1 < a"
  shows "1 < a * a ^ n"
proof -
  from gt1 have "0 \ a"
    by (fact order_trans [OF zero_le_one less_imp_le])
  from gt1 have "1 * 1 < a * 1" by simp
  also from gt1 have "\ \ a * a ^ n"
    by (simp only: mult_mono \<open>0 \<le> a\<close> one_le_power order_less_imp_le zero_le_one order_refl)
  finally show ?thesis by simp
qed

lemma power_gt1: "1 < a \ 1 < a ^ Suc n"
  by (simp add: power_gt1_lemma)

lemma one_less_power [simp]: "1 < a \ 0 < n \ 1 < a ^ n"
  by (cases n) (simp_all add: power_gt1_lemma)

lemma power_le_imp_le_exp:
  assumes gt1: "1 < a"
  shows "a ^ m \ a ^ n \ m \ n"
proof (induct m arbitrary: n)
  case 0
  show ?case by simp
next
  case (Suc m)
  show ?case
  proof (cases n)
    case 0
    with Suc have "a * a ^ m \ 1" by simp
    with gt1 show ?thesis
      by (force simp only: power_gt1_lemma not_less [symmetric])
  next
    case (Suc n)
    with Suc.prems Suc.hyps show ?thesis
      by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1])
  qed
qed

lemma of_nat_zero_less_power_iff [simp]: "of_nat x ^ n > 0 \ x > 0 \ n = 0"
  by (induct n) auto

text \<open>Surely we can strengthen this? It holds for \<open>0<a<1\<close> too.\<close>
lemma power_inject_exp [simp]: "1 < a \ a ^ m = a ^ n \ m = n"
  by (force simp add: order_antisym power_le_imp_le_exp)

text \<open>
  Can relax the first premise to \<^term>\<open>0<a\<close> in the case of the
  natural numbers.
\<close>
lemma power_less_imp_less_exp: "1 < a \ a ^ m < a ^ n \ m < n"
  by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] power_le_imp_le_exp)

lemma power_strict_mono [rule_format]: "a < b \ 0 \ a \ 0 < n \ a ^ n < b ^ n"
  by (induct n) (auto simp: mult_strict_mono le_less_trans [of 0 a b])

lemma power_mono_iff [simp]:
  shows "\a \ 0; b \ 0; n>0\ \ a ^ n \ b ^ n \ a \ b"
  using power_mono [of a b] power_strict_mono [of b a] not_le by auto

text\<open>Lemma for \<open>power_strict_decreasing\<close>\<close>
lemma power_Suc_less: "0 < a \ a < 1 \ a * a ^ n < a ^ n"
  by (induct n) (auto simp: mult_strict_left_mono)

lemma power_strict_decreasing [rule_format]: "n < N \ 0 < a \ a < 1 \ a ^ N < a ^ n"
proof (induct N)
  case 0
  then show ?case by simp
next
  case (Suc N)
  then show ?case
    apply (auto simp add: power_Suc_less less_Suc_eq)
    apply (subgoal_tac "a * a^N < 1 * a^n")
     apply simp
    apply (rule mult_strict_mono)
       apply auto
    done
qed

text \<open>Proof resembles that of \<open>power_strict_decreasing\<close>.\<close>
lemma power_decreasing: "n \ N \ 0 \ a \ a \ 1 \ a ^ N \ a ^ n"
proof (induct N)
  case 0
  then show ?case by simp
next
  case (Suc N)
  then show ?case
    apply (auto simp add: le_Suc_eq)
    apply (subgoal_tac "a * a^N \ 1 * a^n")
     apply simp
    apply (rule mult_mono)
       apply auto
    done
qed

lemma power_decreasing_iff [simp]: "\0 < b; b < 1\ \ b ^ m \ b ^ n \ n \ m"
  using power_strict_decreasing [of m n b]
  by (auto intro: power_decreasing ccontr)

lemma power_strict_decreasing_iff [simp]: "\0 < b; b < 1\ \ b ^ m < b ^ n \ n < m"
  using power_decreasing_iff [of b m n] unfolding le_less
  by (auto dest: power_strict_decreasing le_neq_implies_less)

lemma power_Suc_less_one: "0 < a \ a < 1 \ a ^ Suc n < 1"
  using power_strict_decreasing [of 0 "Suc n" a] by simp

text \<open>Proof again resembles that of \<open>power_strict_decreasing\<close>.\<close>
lemma power_increasing: "n \ N \ 1 \ a \ a ^ n \ a ^ N"
proof (induct N)
  case 0
  then show ?case by simp
next
  case (Suc N)
  then show ?case
    apply (auto simp add: le_Suc_eq)
    apply (subgoal_tac "1 * a^n \ a * a^N")
     apply simp
    apply (rule mult_mono)
       apply (auto simp add: order_trans [OF zero_le_one])
    done
qed

text \<open>Lemma for \<open>power_strict_increasing\<close>.\<close>
lemma power_less_power_Suc: "1 < a \ a ^ n < a * a ^ n"
  by (induct n) (auto simp: mult_strict_left_mono less_trans [OF zero_less_one])

lemma power_strict_increasing: "n < N \ 1 < a \ a ^ n < a ^ N"
proof (induct N)
  case 0
  then show ?case by simp
next
  case (Suc N)
  then show ?case
    apply (auto simp add: power_less_power_Suc less_Suc_eq)
    apply (subgoal_tac "1 * a^n < a * a^N")
     apply simp
    apply (rule mult_strict_mono)
    apply (auto simp add: less_trans [OF zero_less_one] less_imp_le)
    done
qed

lemma power_increasing_iff [simp]: "1 < b \ b ^ x \ b ^ y \ x \ y"
  by (blast intro: power_le_imp_le_exp power_increasing less_imp_le)

lemma power_strict_increasing_iff [simp]: "1 < b \ b ^ x < b ^ y \ x < y"
  by (blast intro: power_less_imp_less_exp power_strict_increasing)

lemma power_le_imp_le_base:
  assumes le: "a ^ Suc n \ b ^ Suc n"
    and "0 \ b"
  shows "a \ b"
proof (rule ccontr)
  assume "\ ?thesis"
  then have "b < a" by (simp only: linorder_not_le)
  then have "b ^ Suc n < a ^ Suc n"
    by (simp only: assms(2) power_strict_mono)
  with le show False
    by (simp add: linorder_not_less [symmetric])
qed

lemma power_less_imp_less_base:
  assumes less: "a ^ n < b ^ n"
  assumes nonneg: "0 \ b"
  shows "a < b"
proof (rule contrapos_pp [OF less])
  assume "\ ?thesis"
  then have "b \ a" by (simp only: linorder_not_less)
  from this nonneg have "b ^ n \ a ^ n" by (rule power_mono)
  then show "\ a ^ n < b ^ n" by (simp only: linorder_not_less)
qed

lemma power_inject_base: "a ^ Suc n = b ^ Suc n \ 0 \ a \ 0 \ b \ a = b"
  by (blast intro: power_le_imp_le_base antisym eq_refl sym)

lemma power_eq_imp_eq_base: "a ^ n = b ^ n \ 0 \ a \ 0 \ b \ 0 < n \ a = b"
  by (cases n) (simp_all del: power_Suc, rule power_inject_base)

lemma power_eq_iff_eq_base: "0 < n \ 0 \ a \ 0 \ b \ a ^ n = b ^ n \ a = b"
  using power_eq_imp_eq_base [of a n b] by auto

lemma power2_le_imp_le: "x\<^sup>2 \ y\<^sup>2 \ 0 \ y \ x \ y"
  unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)

lemma power2_less_imp_less: "x\<^sup>2 < y\<^sup>2 \ 0 \ y \ x < y"
  by (rule power_less_imp_less_base)

lemma power2_eq_imp_eq: "x\<^sup>2 = y\<^sup>2 \ 0 \ x \ 0 \ y \ x = y"
  unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp

lemma power_Suc_le_self: "0 \ a \ a \ 1 \ a ^ Suc n \ a"
  using power_decreasing [of 1 "Suc n" a] by simp

lemma power2_eq_iff_nonneg [simp]:
  assumes "0 \ x" "0 \ y"
  shows "(x ^ 2 = y ^ 2) \ x = y"
using assms power2_eq_imp_eq by blast

lemma of_nat_less_numeral_power_cancel_iff[simp]:
  "of_nat x < numeral i ^ n \ x < numeral i ^ n"
  using of_nat_less_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] .

lemma of_nat_le_numeral_power_cancel_iff[simp]:
  "of_nat x \ numeral i ^ n \ x \ numeral i ^ n"
  using of_nat_le_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] .

lemma numeral_power_less_of_nat_cancel_iff[simp]:
  "numeral i ^ n < of_nat x \ numeral i ^ n < x"
  using of_nat_less_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] .

lemma numeral_power_le_of_nat_cancel_iff[simp]:
  "numeral i ^ n \ of_nat x \ numeral i ^ n \ x"
  using of_nat_le_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] .

lemma of_nat_le_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w \ of_nat x \ b ^ w \ x"
  by (metis of_nat_le_iff of_nat_power)

lemma of_nat_power_le_of_nat_cancel_iff[simp]: "of_nat x \ (of_nat b) ^ w \ x \ b ^ w"
  by (metis of_nat_le_iff of_nat_power)

lemma of_nat_less_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w < of_nat x \ b ^ w < x"
  by (metis of_nat_less_iff of_nat_power)

lemma of_nat_power_less_of_nat_cancel_iff[simp]: "of_nat x < (of_nat b) ^ w \ x < b ^ w"
  by (metis of_nat_less_iff of_nat_power)

end


text \<open>Some @{typ nat}-specific lemmas:\<close>

lemma mono_ge2_power_minus_self:
  assumes "k \ 2" shows "mono (\m. k ^ m - m)"
unfolding mono_iff_le_Suc
proof
  fix n
  have "k ^ n < k ^ Suc n" using power_strict_increasing_iff[of k "n" "Suc n"] assms by linarith
  thus "k ^ n - n \ k ^ Suc n - Suc n" by linarith
qed

lemma self_le_ge2_pow[simp]:
  assumes "k \ 2" shows "m \ k ^ m"
proof (induction m)
  case 0 show ?case by simp
next
  case (Suc m)
  hence "Suc m \ Suc (k ^ m)" by simp
  also have "... \ k^m + k^m" using one_le_power[of k m] assms by linarith
  also have "... \ k * k^m" by (metis mult_2 mult_le_mono1[OF assms])
  finally show ?case by simp
qed

lemma diff_le_diff_pow[simp]:
  assumes "k \ 2" shows "m - n \ k ^ m - k ^ n"
proof (cases "n \ m")
  case True
  thus ?thesis
    using monoD[OF mono_ge2_power_minus_self[OF assms] True] self_le_ge2_pow[OF assms, of m]
    by (simp add: le_diff_conv le_diff_conv2)
qed auto


context linordered_ring_strict
begin

lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 \ x = 0 \ y = 0"
  by (simp add: add_nonneg_eq_0_iff)

lemma sum_squares_le_zero_iff: "x * x + y * y \ 0 \ x = 0 \ y = 0"
  by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)

lemma sum_squares_gt_zero_iff: "0 < x * x + y * y \ x \ 0 \ y \ 0"
  by (simp add: not_le [symmetric] sum_squares_le_zero_iff)

end

context linordered_idom
begin

lemma zero_le_power2 [simp]: "0 \ a\<^sup>2"
  by (simp add: power2_eq_square)

lemma zero_less_power2 [simp]: "0 < a\<^sup>2 \ a \ 0"
  by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)

lemma power2_less_0 [simp]: "\ a\<^sup>2 < 0"
  by (force simp add: power2_eq_square mult_less_0_iff)

lemma power_abs: "\a ^ n\ = \a\ ^ n" \ \FIXME simp?\
  by (induct n) (simp_all add: abs_mult)

lemma power_sgn [simp]: "sgn (a ^ n) = sgn a ^ n"
  by (induct n) (simp_all add: sgn_mult)

lemma abs_power_minus [simp]: "\(- a) ^ n\ = \a ^ n\"
  by (simp add: power_abs)

lemma zero_less_power_abs_iff [simp]: "0 < \a\ ^ n \ a \ 0 \ n = 0"
proof (induct n)
  case 0
  show ?case by simp
next
  case Suc
  then show ?case by (auto simp: zero_less_mult_iff)
qed

lemma zero_le_power_abs [simp]: "0 \ \a\ ^ n"
  by (rule zero_le_power [OF abs_ge_zero])

lemma power2_less_eq_zero_iff [simp]: "a\<^sup>2 \ 0 \ a = 0"
  by (simp add: le_less)

lemma abs_power2 [simp]: "\a\<^sup>2\ = a\<^sup>2"
  by (simp add: power2_eq_square)

lemma power2_abs [simp]: "\a\\<^sup>2 = a\<^sup>2"
  by (simp add: power2_eq_square)

lemma odd_power_less_zero: "a < 0 \ a ^ Suc (2 * n) < 0"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
    by (simp add: ac_simps power_add power2_eq_square)
  then show ?case
    by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)
qed

lemma odd_0_le_power_imp_0_le: "0 \ a ^ Suc (2 * n) \ 0 \ a"
  using odd_power_less_zero [of a n]
  by (force simp add: linorder_not_less [symmetric])

lemma zero_le_even_power'[simp]: "0 \ a ^ (2 * n)"
proof (induct n)
  case 0
  show ?case by simp
next
  case (Suc n)
  have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"
    by (simp add: ac_simps power_add power2_eq_square)
  then show ?case
    by (simp add: Suc zero_le_mult_iff)
qed

lemma sum_power2_ge_zero: "0 \ x\<^sup>2 + y\<^sup>2"
  by (intro add_nonneg_nonneg zero_le_power2)

lemma not_sum_power2_lt_zero: "\ x\<^sup>2 + y\<^sup>2 < 0"
  unfolding not_less by (rule sum_power2_ge_zero)

lemma sum_power2_eq_zero_iff: "x\<^sup>2 + y\<^sup>2 = 0 \ x = 0 \ y = 0"
  unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff)

lemma sum_power2_le_zero_iff: "x\<^sup>2 + y\<^sup>2 \ 0 \ x = 0 \ y = 0"
  by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero)

lemma sum_power2_gt_zero_iff: "0 < x\<^sup>2 + y\<^sup>2 \ x \ 0 \ y \ 0"
  unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff)

lemma abs_le_square_iff: "\x\ \ \y\ \ x\<^sup>2 \ y\<^sup>2"
  (is "?lhs \ ?rhs")
proof
  assume ?lhs
  then have "\x\\<^sup>2 \ \y\\<^sup>2" by (rule power_mono) simp
  then show ?rhs by simp
next
  assume ?rhs
  then show ?lhs
    by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero])
qed

lemma abs_square_le_1:"x\<^sup>2 \ 1 \ \x\ \ 1"
  using abs_le_square_iff [of x 1] by simp

lemma abs_square_eq_1: "x\<^sup>2 = 1 \ \x\ = 1"
  by (auto simp add: abs_if power2_eq_1_iff)

lemma abs_square_less_1: "x\<^sup>2 < 1 \ \x\ < 1"
  using  abs_square_eq_1 [of x] abs_square_le_1 [of x] by (auto simp add: le_less)

lemma square_le_1:
  assumes "- 1 \ x" "x \ 1"
  shows "x\<^sup>2 \ 1"
    using assms
    by (metis add.inverse_inverse linear mult_le_one neg_equal_0_iff_equal neg_le_iff_le power2_eq_square power_minus_Bit0)

end


subsection \<open>Miscellaneous rules\<close>

lemma (in linordered_semidom) self_le_power: "1 \ a \ 0 < n \ a \ a ^ n"
  using power_increasing [of 1 n a] power_one_right [of a] by auto

lemma (in power) power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))"
  unfolding One_nat_def by (cases m) simp_all

lemma (in comm_semiring_1) power2_sum: "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y"
  by (simp add: algebra_simps power2_eq_square mult_2_right)

context comm_ring_1
begin

lemma power2_diff: "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y"
  by (simp add: algebra_simps power2_eq_square mult_2_right)

lemma power2_commute: "(x - y)\<^sup>2 = (y - x)\<^sup>2"
  by (simp add: algebra_simps power2_eq_square)

lemma minus_power_mult_self: "(- a) ^ n * (- a) ^ n = a ^ (2 * n)"
  by (simp add: power_mult_distrib [symmetric])
    (simp add: power2_eq_square [symmetric] power_mult [symmetric])

lemma minus_one_mult_self [simp]: "(- 1) ^ n * (- 1) ^ n = 1"
  using minus_power_mult_self [of 1 n] by simp

lemma left_minus_one_mult_self [simp]: "(- 1) ^ n * ((- 1) ^ n * a) = a"
  by (simp add: mult.assoc [symmetric])

end

text \<open>Simprules for comparisons where common factors can be cancelled.\<close>

lemmas zero_compare_simps =
  add_strict_increasing add_strict_increasing2 add_increasing
  zero_le_mult_iff zero_le_divide_iff
  zero_less_mult_iff zero_less_divide_iff
  mult_le_0_iff divide_le_0_iff
  mult_less_0_iff divide_less_0_iff
  zero_le_power2 power2_less_0


subsection \<open>Exponentiation for the Natural Numbers\<close>

lemma nat_one_le_power [simp]: "Suc 0 \ i \ Suc 0 \ i ^ n"
  by (rule one_le_power [of i n, unfolded One_nat_def])

lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 \ x > 0 \ n = 0"
  for x :: nat
  by (induct n) auto

lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 \ m = 0 \ x = Suc 0"
  by (induct m) auto

lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0"
  by simp

text \<open>
  Valid for the naturals, but what if \<open>0 < i < 1\<close>? Premises cannot be
  weakened: consider the case where \<open>i = 0\<close>, \<open>m = 1\<close> and \<open>n = 0\<close>.
\<close>

lemma nat_power_less_imp_less:
  fixes i :: nat
  assumes nonneg: "0 < i"
  assumes less: "i ^ m < i ^ n"
  shows "m < n"
proof (cases "i = 1")
  case True
  with less power_one [where 'a = nat] show ?thesis by simp
next
  case False
  with nonneg have "1 < i" by auto
  from power_strict_increasing_iff [OF this] less show ?thesis ..
qed

lemma power_gt_expt: "n > Suc 0 \ n^k > k"
  by (induction k) (auto simp: less_trans_Suc n_less_m_mult_n)

lemma less_exp:
  \<open>n < 2 ^ n\<close>
  by (simp add: power_gt_expt)

lemma power_dvd_imp_le:
  fixes i :: nat
  assumes "i ^ m dvd i ^ n" "1 < i"
  shows "m \ n"
  using assms by (auto intro: power_le_imp_le_exp [OF \<open>1 < i\<close> dvd_imp_le])

lemma dvd_power_iff_le:
  fixes k::nat
  shows "2 \ k \ ((k ^ m) dvd (k ^ n) \ m \ n)"
  using le_imp_power_dvd power_dvd_imp_le by force

lemma power2_nat_le_eq_le: "m\<^sup>2 \ n\<^sup>2 \ m \ n"
  for m n :: nat
  by (auto intro: power2_le_imp_le power_mono)

lemma power2_nat_le_imp_le:
  fixes m n :: nat
  assumes "m\<^sup>2 \ n"
  shows "m \ n"
proof (cases m)
  case 0
  then show ?thesis by simp
next
  case (Suc k)
  show ?thesis
  proof (rule ccontr)
    assume "\ ?thesis"
    then have "n < m" by simp
    with assms Suc show False
      by (simp add: power2_eq_square)
  qed
qed

lemma ex_power_ivl1: fixes b k :: nat assumes "b \ 2"
shows "k \ 1 \ \n. b^n \ k \ k < b^(n+1)" (is "_ \ \n. ?P k n")
proof(induction k)
  case 0 thus ?case by simp
next
  case (Suc k)
  show ?case
  proof cases
    assume "k=0"
    hence "?P (Suc k) 0" using assms by simp
    thus ?case ..
  next
    assume "k\0"
    with Suc obtain n where IH: "?P k n" by auto
    show ?case
    proof (cases "k = b^(n+1) - 1")
      case True
      hence "?P (Suc k) (n+1)" using assms
        by (simp add: power_less_power_Suc)
      thus ?thesis ..
    next
      case False
      hence "?P (Suc k) n" using IH by auto
      thus ?thesis ..
    qed
  qed
qed

lemma ex_power_ivl2: fixes b k :: nat assumes "b \ 2" "k \ 2"
  shows "\n. b^n < k \ k \ b^(n+1)"
proof -
  have "1 \ k - 1" using assms(2) by arith
  from ex_power_ivl1[OF assms(1) this]
  obtain n where "b ^ n \ k - 1 \ k - 1 < b ^ (n + 1)" ..
  hence "b^n < k \ k \ b^(n+1)" using assms by auto
  thus ?thesis ..
qed


subsubsection \<open>Cardinality of the Powerset\<close>

lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2"
  unfolding UNIV_bool by simp

lemma card_Pow: "finite A \ card (Pow A) = 2 ^ card A"
proof (induct rule: finite_induct)
  case empty
  show ?case by simp
next
  case (insert x A)
  from \<open>x \<notin> A\<close> have disjoint: "Pow A \<inter> insert x ` Pow A = {}" by blast
  from \<open>x \<notin> A\<close> have inj_on: "inj_on (insert x) (Pow A)"
    unfolding inj_on_def by auto

  have "card (Pow (insert x A)) = card (Pow A \ insert x ` Pow A)"
    by (simp only: Pow_insert)
  also have "\ = card (Pow A) + card (insert x ` Pow A)"
    by (rule card_Un_disjoint) (use \<open>finite A\<close> disjoint in simp_all)
  also from inj_on have "card (insert x ` Pow A) = card (Pow A)"
    by (rule card_image)
  also have "\ + \ = 2 * \" by (simp add: mult_2)
  also from insert(3) have "\ = 2 ^ Suc (card A)" by simp
  also from insert(1,2) have "Suc (card A) = card (insert x A)"
    by (rule card_insert_disjoint [symmetric])
  finally show ?case .
qed


subsection \<open>Code generator tweak\<close>

code_identifier
  code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith

end

¤ Dauer der Verarbeitung: 0.23 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff