(* Title: HOL/UNITY/Simple/Lift.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
The Lift-Control Example.
*)
theory Lift
imports "../UNITY_Main"
begin
record state =
floor :: "int" \<comment> \<open>current position of the lift\<close>
"open" :: "bool" \<comment> \<open>whether the door is opened at floor\<close>
stop :: "bool" \<comment> \<open>whether the lift is stopped at floor\<close>
req :: "int set" \<comment> \<open>for each floor, whether the lift is requested\<close>
up :: "bool" \<comment> \<open>current direction of movement\<close>
move :: "bool" \<comment> \<open>whether moving takes precedence over opening\<close>
axiomatization
Min :: "int" and \<comment> \<open>least and greatest floors\<close>
Max :: "int" \<comment> \<open>least and greatest floors\<close>
where
Min_le_Max [iff]: "Min \ Max"
\<comment> \<open>Abbreviations: the "always" part\<close>
definition
above :: "state set"
where "above = {s. \i. floor s < i & i \ Max & i \ req s}"
definition
below :: "state set"
where "below = {s. \i. Min \ i & i < floor s & i \ req s}"
definition
queueing :: "state set"
where "queueing = above \ below"
definition
goingup :: "state set"
where "goingup = above \ ({s. up s} \ -below)"
definition
goingdown :: "state set"
where "goingdown = below \ ({s. ~ up s} \ -above)"
definition
ready :: "state set"
where "ready = {s. stop s & ~ open s & move s}"
\<comment> \<open>Further abbreviations\<close>
definition
moving :: "state set"
where "moving = {s. ~ stop s & ~ open s}"
definition
stopped :: "state set"
where "stopped = {s. stop s & ~ open s & ~ move s}"
definition
opened :: "state set"
where "opened = {s. stop s & open s & move s}"
definition
closed :: "state set" \<comment> \<open>but this is the same as ready!!\<close>
where "closed = {s. stop s & ~ open s & move s}"
definition
atFloor :: "int => state set"
where "atFloor n = {s. floor s = n}"
definition
Req :: "int => state set"
where "Req n = {s. n \ req s}"
\<comment> \<open>The program\<close>
definition
request_act :: "(state*state) set"
where "request_act = {(s,s'). s' = s (|stop:=True, move:=False|)
& ~ stop s & floor s \<in> req s}"
definition
open_act :: "(state*state) set"
where "open_act =
{(s,s'). s' = s (|open :=True,
req := req s - {floor s},
move := True|)
& stop s & ~ open s & floor s \<in> req s
& ~(move s & s \<in> queueing)}"
definition
close_act :: "(state*state) set"
where "close_act = {(s,s'). s' = s (|open := False|) & open s}"
definition
req_up :: "(state*state) set"
where "req_up =
{(s,s'). s' = s (|stop :=False,
floor := floor s + 1,
up := True|)
& s \<in> (ready \<inter> goingup)}"
definition
req_down :: "(state*state) set"
where "req_down =
{(s,s'). s' = s (|stop :=False,
floor := floor s - 1,
up := False|)
& s \<in> (ready \<inter> goingdown)}"
definition
move_up :: "(state*state) set"
where "move_up =
{(s,s'). s' = s (|floor := floor s + 1|)
& ~ stop s & up s & floor s \<notin> req s}"
definition
move_down :: "(state*state) set"
where "move_down =
{(s,s'). s' = s (|floor := floor s - 1|)
& ~ stop s & ~ up s & floor s \<notin> req s}"
definition
button_press :: "(state*state) set"
\<comment> \<open>This action is omitted from prior treatments, which therefore are
unrealistic: nobody asks the lift to do anything! But adding this
action invalidates many of the existing progress arguments: various
"ensures" properties fail. Maybe it should be constrained to only
allow button presses in the current direction of travel, like in a
real lift.\<close>
where "button_press =
{(s,s'). \n. s' = s (|req := insert n (req s)|)
& Min \<le> n & n \<le> Max}"
definition
Lift :: "state program"
\<comment> \<open>for the moment, we OMIT \<open>button_press\<close>\<close>
where "Lift = mk_total_program
({s. floor s = Min & ~ up s & move s & stop s &
~ open s & req s = {}},
{request_act, open_act, close_act,
req_up, req_down, move_up, move_down},
UNIV)"
\<comment> \<open>Invariants\<close>
definition
bounded :: "state set"
where "bounded = {s. Min \ floor s & floor s \ Max}"
definition
open_stop :: "state set"
where "open_stop = {s. open s --> stop s}"
definition
open_move :: "state set"
where "open_move = {s. open s --> move s}"
definition
stop_floor :: "state set"
where "stop_floor = {s. stop s & ~ move s --> floor s \ req s}"
definition
moving_up :: "state set"
where "moving_up = {s. ~ stop s & up s -->
(\<exists>f. floor s \<le> f & f \<le> Max & f \<in> req s)}"
definition
moving_down :: "state set"
where "moving_down = {s. ~ stop s & ~ up s -->
(\<exists>f. Min \<le> f & f \<le> floor s & f \<in> req s)}"
definition
metric :: "[int,state] => int"
where "metric =
(%n s. if floor s < n then (if up s then n - floor s
else (floor s - Min) + (n-Min))
else
if n < floor s then (if up s then (Max - floor s) + (Max-n)
else floor s - n)
else 0)"
locale Floor =
fixes n
assumes Min_le_n [iff]: "Min \ n"
and n_le_Max [iff]: "n \ Max"
lemma not_mem_distinct: "[| x \ A; y \ A |] ==> x \ y"
by blast
declare Lift_def [THEN def_prg_Init, simp]
declare request_act_def [THEN def_act_simp, simp]
declare open_act_def [THEN def_act_simp, simp]
declare close_act_def [THEN def_act_simp, simp]
declare req_up_def [THEN def_act_simp, simp]
declare req_down_def [THEN def_act_simp, simp]
declare move_up_def [THEN def_act_simp, simp]
declare move_down_def [THEN def_act_simp, simp]
declare button_press_def [THEN def_act_simp, simp]
(*The ALWAYS properties*)
declare above_def [THEN def_set_simp, simp]
declare below_def [THEN def_set_simp, simp]
declare queueing_def [THEN def_set_simp, simp]
declare goingup_def [THEN def_set_simp, simp]
declare goingdown_def [THEN def_set_simp, simp]
declare ready_def [THEN def_set_simp, simp]
(*Basic definitions*)
declare bounded_def [simp]
open_stop_def [simp]
open_move_def [simp]
stop_floor_def [simp]
moving_up_def [simp]
moving_down_def [simp]
lemma open_stop: "Lift \ Always open_stop"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
done
lemma stop_floor: "Lift \ Always stop_floor"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
done
(*This one needs open_stop, which was proved above*)
lemma open_move: "Lift \ Always open_move"
apply (cut_tac open_stop)
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
done
lemma moving_up: "Lift \ Always moving_up"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
apply (auto dest: order_le_imp_less_or_eq simp add: add1_zle_eq)
done
lemma moving_down: "Lift \ Always moving_down"
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety)
apply (blast dest: order_le_imp_less_or_eq)
done
lemma bounded: "Lift \ Always bounded"
apply (cut_tac moving_up moving_down)
apply (rule AlwaysI, force)
apply (unfold Lift_def, safety, auto)
apply (drule not_mem_distinct, assumption, arith)+
done
subsection\<open>Progress\<close>
declare moving_def [THEN def_set_simp, simp]
declare stopped_def [THEN def_set_simp, simp]
declare opened_def [THEN def_set_simp, simp]
declare closed_def [THEN def_set_simp, simp]
declare atFloor_def [THEN def_set_simp, simp]
declare Req_def [THEN def_set_simp, simp]
text\<open>The HUG'93 paper mistakenly omits the Req n from these!\<close>
(** Lift_1 **)
lemma E_thm01: "Lift \ (stopped \ atFloor n) LeadsTo (opened \ atFloor n)"
apply (cut_tac stop_floor)
apply (unfold Lift_def, ensures_tac "open_act")
done (*lem_lift_1_5*)
lemma E_thm02: "Lift \ (Req n \ stopped - atFloor n) LeadsTo
(Req n \<inter> opened - atFloor n)"
apply (cut_tac stop_floor)
apply (unfold Lift_def, ensures_tac "open_act")
done (*lem_lift_1_1*)
lemma E_thm03: "Lift \ (Req n \ opened - atFloor n) LeadsTo
(Req n \<inter> closed - (atFloor n - queueing))"
apply (unfold Lift_def, ensures_tac "close_act")
done (*lem_lift_1_2*)
lemma E_thm04: "Lift \ (Req n \ closed \ (atFloor n - queueing))
LeadsTo (opened \<inter> atFloor n)"
apply (unfold Lift_def, ensures_tac "open_act")
done (*lem_lift_1_7*)
(** Lift 2. Statements of thm05a and thm05b were wrong! **)
lemmas linorder_leI = linorder_not_less [THEN iffD1]
context Floor
begin
lemmas le_MinD = Min_le_n [THEN order_antisym]
and Max_leD = n_le_Max [THEN [2] order_antisym]
declare le_MinD [dest!]
and linorder_leI [THEN le_MinD, dest!]
and Max_leD [dest!]
and linorder_leI [THEN Max_leD, dest!]
(*lem_lift_2_0
NOT an ensures_tac property, but a mere inclusion
don't know why script lift_2.uni says ENSURES*)
lemma E_thm05c:
"Lift \ (Req n \ closed - (atFloor n - queueing))
LeadsTo ((closed \<inter> goingup \<inter> Req n) \<union>
(closed \<inter> goingdown \<inter> Req n))"
by (auto intro!: subset_imp_LeadsTo simp add: linorder_neq_iff)
(*lift_2*)
lemma lift_2: "Lift \ (Req n \ closed - (atFloor n - queueing))
LeadsTo (moving \<inter> Req n)"
apply (rule LeadsTo_Trans [OF E_thm05c LeadsTo_Un])
apply (unfold Lift_def)
apply (ensures_tac [2] "req_down")
apply (ensures_tac "req_up", auto)
done
(** Towards lift_4 ***)
declare if_split_asm [split]
(*lem_lift_4_1 *)
lemma E_thm12a:
"0 < N ==>
Lift \<in> (moving \<inter> Req n \<inter> {s. metric n s = N} \<inter>
{s. floor s \<notin> req s} \<inter> {s. up s})
LeadsTo
(moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (cut_tac moving_up)
apply (unfold Lift_def, ensures_tac "move_up", safe)
(*this step consolidates two formulae to the goal metric n s' \<le> metric n s*)
apply (erule linorder_leI [THEN order_antisym, symmetric])
apply (auto simp add: metric_def)
done
(*lem_lift_4_3 *)
lemma E_thm12b: "0 < N ==>
Lift \<in> (moving \<inter> Req n \<inter> {s. metric n s = N} \<inter>
{s. floor s \<notin> req s} - {s. up s})
LeadsTo (moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (cut_tac moving_down)
apply (unfold Lift_def, ensures_tac "move_down", safe)
(*this step consolidates two formulae to the goal metric n s' \<le> metric n s*)
apply (erule linorder_leI [THEN order_antisym, symmetric])
apply (auto simp add: metric_def)
done
(*lift_4*)
lemma lift_4:
"0 Lift \ (moving \ Req n \ {s. metric n s = N} \
{s. floor s \<notin> req s}) LeadsTo
(moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
LeadsTo_Un [OF E_thm12a E_thm12b]], auto)
done
(** towards lift_5 **)
(*lem_lift_5_3*)
lemma E_thm16a: "0
==> Lift \<in> (closed \<inter> Req n \<inter> {s. metric n s = N} \<inter> goingup) LeadsTo
(moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "req_up")
apply (auto simp add: metric_def)
done
(*lem_lift_5_1 has ~goingup instead of goingdown*)
lemma E_thm16b: "0
Lift \<in> (closed \<inter> Req n \<inter> {s. metric n s = N} \<inter> goingdown) LeadsTo
(moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "req_down")
apply (auto simp add: metric_def)
done
(*lem_lift_5_0 proves an intersection involving ~goingup and goingup,
i.e. the trivial disjunction, leading to an asymmetrical proof.*)
lemma E_thm16c:
"0 Req n \ {s. metric n s = N} \ goingup \ goingdown"
by (force simp add: metric_def)
(*lift_5*)
lemma lift_5:
"0 Lift \ (closed \ Req n \ {s. metric n s = N}) LeadsTo
(moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
LeadsTo_Un [OF E_thm16a E_thm16b]])
apply (drule E_thm16c, auto)
done
(** towards lift_3 **)
(*lemma used to prove lem_lift_3_1*)
lemma metric_eq_0D [dest]:
"[| metric n s = 0; Min \ floor s; floor s \ Max |] ==> floor s = n"
by (force simp add: metric_def)
(*lem_lift_3_1*)
lemma E_thm11: "Lift \ (moving \ Req n \ {s. metric n s = 0}) LeadsTo
(stopped \<inter> atFloor n)"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "request_act", auto)
done
(*lem_lift_3_5*)
lemma E_thm13:
"Lift \ (moving \ Req n \ {s. metric n s = N} \ {s. floor s \ req s})
LeadsTo (stopped \<inter> Req n \<inter> {s. metric n s = N} \<inter> {s. floor s \<in> req s})"
apply (unfold Lift_def, ensures_tac "request_act")
apply (auto simp add: metric_def)
done
(*lem_lift_3_6*)
lemma E_thm14: "0 < N ==>
Lift \<in>
(stopped \<inter> Req n \<inter> {s. metric n s = N} \<inter> {s. floor s \<in> req s})
LeadsTo (opened \<inter> Req n \<inter> {s. metric n s = N})"
apply (unfold Lift_def, ensures_tac "open_act")
apply (auto simp add: metric_def)
done
(*lem_lift_3_7*)
lemma E_thm15: "Lift \ (opened \ Req n \ {s. metric n s = N})
LeadsTo (closed \<inter> Req n \<inter> {s. metric n s = N})"
apply (unfold Lift_def, ensures_tac "close_act")
apply (auto simp add: metric_def)
done
(** the final steps **)
lemma lift_3_Req: "0 < N ==>
Lift \<in>
(moving \<inter> Req n \<inter> {s. metric n s = N} \<inter> {s. floor s \<in> req s})
LeadsTo (moving \<inter> Req n \<inter> {s. metric n s < N})"
apply (blast intro!: E_thm13 E_thm14 E_thm15 lift_5 intro: LeadsTo_Trans)
done
(*Now we observe that our integer metric is really a natural number*)
lemma Always_nonneg: "Lift \ Always {s. 0 \ metric n s}"
apply (rule bounded [THEN Always_weaken])
apply (auto simp add: metric_def)
done
lemmas R_thm11 = Always_LeadsTo_weaken [OF Always_nonneg E_thm11]
lemma lift_3: "Lift \ (moving \ Req n) LeadsTo (stopped \ atFloor n)"
apply (rule Always_nonneg [THEN integ_0_le_induct])
apply (case_tac "0 < z")
(*If z \<le> 0 then actually z = 0*)
prefer 2 apply (force intro: R_thm11 order_antisym simp add: linorder_not_less)
apply (rule LeadsTo_weaken_R [OF asm_rl Un_upper1])
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
LeadsTo_Un [OF lift_4 lift_3_Req]], auto)
done
lemma lift_1: "Lift \ (Req n) LeadsTo (opened \ atFloor n)"
apply (rule LeadsTo_Trans)
prefer 2
apply (rule LeadsTo_Un [OF E_thm04 LeadsTo_Un_post])
apply (rule E_thm01 [THEN [2] LeadsTo_Trans_Un])
apply (rule lift_3 [THEN [2] LeadsTo_Trans_Un])
apply (rule lift_2 [THEN [2] LeadsTo_Trans_Un])
apply (rule LeadsTo_Trans_Un [OF E_thm02 E_thm03])
apply (rule open_move [THEN Always_LeadsToI])
apply (rule Always_LeadsToI [OF open_stop subset_imp_LeadsTo], clarify)
(*The case split is not essential but makes the proof much faster.*)
apply (case_tac "open x", auto)
done
end
end
¤ Dauer der Verarbeitung: 0.0 Sekunden
(vorverarbeitet)
¤
|
Laden
Fehler beim Verzeichnis:
in der Quellcodebibliothek suchen
Die farbliche Syntaxdarstellung ist noch experimentell.
|