/*
* Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2022 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "compiler/oopMap.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/markWord.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/monitorChunk.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/signature.hpp"
#include "runtime/stackWatermarkSet.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#include "runtime/vframeArray.hpp"
#endif
#ifdef ASSERT
void RegisterMap::check_location_valid() {
}
#endif // ASSERT
bool frame::safe_for_sender(JavaThread *thread) {
if (is_heap_frame()) {
return true;
}
address sp = (address)_sp;
address fp = (address)_fp;
address unextended_sp = (address)_unextended_sp;
// consider stack guards when trying to determine "safe" stack pointers
// sp must be within the usable part of the stack (not in guards)
if (!thread->is_in_usable_stack(sp)) {
return false;
}
// Unextended sp must be within the stack
if (!thread->is_in_full_stack_checked(unextended_sp)) {
return false;
}
// An fp must be within the stack and above (but not equal) sp.
bool fp_safe = thread->is_in_stack_range_excl(fp, sp);
// An interpreter fp must be fp_safe.
// Moreover, it must be at a distance at least the size of the ijava_state structure.
bool fp_interp_safe = fp_safe && ((fp - sp) >= ijava_state_size);
// We know sp/unextended_sp are safe, only fp is questionable here
// If the current frame is known to the code cache then we can attempt to
// construct the sender and do some validation of it. This goes a long way
// toward eliminating issues when we get in frame construction code
if (_cb != NULL) {
// First check if the frame is complete and the test is reliable.
// Unfortunately we can only check frame completeness for runtime stubs
// and nmethods. Other generic buffer blobs are more problematic
// so we just assume they are OK.
// Adapter blobs never have a complete frame and are never OK
if (!_cb->is_frame_complete_at(_pc)) {
if (_cb->is_compiled() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
return false;
}
}
// Could just be some random pointer within the codeBlob.
if (!_cb->code_contains(_pc)) {
return false;
}
// Entry frame checks
if (is_entry_frame()) {
// An entry frame must have a valid fp.
return fp_safe && is_entry_frame_valid(thread);
}
if (is_interpreted_frame() && !fp_interp_safe) {
return false;
}
// At this point, there still is a chance that fp_safe is false.
// In particular, (fp == NULL) might be true. So let's check and
// bail out before we actually dereference from fp.
if (!fp_safe) {
return false;
}
abi_minframe* sender_abi = (abi_minframe*) fp;
intptr_t* sender_sp = (intptr_t*) fp;
address sender_pc = (address) sender_abi->lr;;
if (Continuation::is_return_barrier_entry(sender_pc)) {
// If our sender_pc is the return barrier, then our "real" sender is the continuation entry
frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp);
sender_sp = s.sp();
sender_pc = s.pc();
}
// We must always be able to find a recognizable pc.
CodeBlob* sender_blob = CodeCache::find_blob(sender_pc);
if (sender_blob == NULL) {
return false;
}
// It should be safe to construct the sender though it might not be valid.
frame sender(sender_sp, sender_pc);
// Do we have a valid fp?
address sender_fp = (address) sender.fp();
// sender_fp must be within the stack and above (but not
// equal) current frame's fp.
if (!thread->is_in_stack_range_excl(sender_fp, fp)) {
return false;
}
// If the potential sender is the interpreter then we can do some more checking.
if (Interpreter::contains(sender_pc)) {
return sender.is_interpreted_frame_valid(thread);
}
// Could just be some random pointer within the codeBlob.
if (!sender.cb()->code_contains(sender_pc)) {
return false;
}
// We should never be able to see an adapter if the current frame is something from code cache.
if (sender_blob->is_adapter_blob()) {
return false;
}
if (sender.is_entry_frame()) {
return sender.is_entry_frame_valid(thread);
}
// Frame size is always greater than zero. If the sender frame size is zero or less,
// something is really weird and we better give up.
if (sender_blob->frame_size() <= 0) {
return false;
}
return true;
}
// Must be native-compiled frame. Since sender will try and use fp to find
// linkages it must be safe
if (!fp_safe) {
return false;
}
return true;
}
frame frame::sender_for_entry_frame(RegisterMap *map) const {
assert(map != NULL, "map must be set");
// Java frame called from C; skip all C frames and return top C
// frame of that chunk as the sender.
JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
assert(!entry_frame_is_first(), "next Java fp must be non zero");
assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
map->clear();
assert(map->include_argument_oops(), "should be set by clear");
if (jfa->last_Java_pc() != NULL) {
frame fr(jfa->last_Java_sp(), jfa->last_Java_pc());
return fr;
}
// Last_java_pc is not set, if we come here from compiled code. The
// constructor retrieves the PC from the stack.
frame fr(jfa->last_Java_sp());
return fr;
}
UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const {
ShouldNotCallThis();
return nullptr;
}
bool frame::upcall_stub_frame_is_first() const {
ShouldNotCallThis();
return false;
}
frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
// This is the sp before any possible extension (adapter/locals).
intptr_t* unextended_sp = interpreter_frame_sender_sp();
address sender_pc = this->sender_pc();
if (Continuation::is_return_barrier_entry(sender_pc)) {
if (map->walk_cont()) { // about to walk into an h-stack
return Continuation::top_frame(*this, map);
} else {
return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp());
}
}
return frame(sender_sp(), sender_pc, unextended_sp);
}
intptr_t* frame::interpreter_frame_sender_sp() const {
assert(is_interpreted_frame(), "interpreted frame expected");
return (intptr_t*)at(ijava_idx(sender_sp));
}
void frame::patch_pc(Thread* thread, address pc) {
assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
address* pc_addr = (address*)&(own_abi()->lr);
if (TracePcPatching) {
tty->print_cr("patch_pc at address " PTR_FORMAT " [" PTR_FORMAT " -> " PTR_FORMAT "]",
p2i(&((address*) _sp)[-1]), p2i(((address*) _sp)[-1]), p2i(pc));
}
assert(!Continuation::is_return_barrier_entry(*pc_addr), "return barrier");
assert(_pc == *pc_addr || pc == *pc_addr || 0 == *pc_addr,
"must be (pc: " INTPTR_FORMAT " _pc: " INTPTR_FORMAT " pc_addr: " INTPTR_FORMAT
" *pc_addr: " INTPTR_FORMAT " sp: " INTPTR_FORMAT ")",
p2i(pc), p2i(_pc), p2i(pc_addr), p2i(*pc_addr), p2i(sp()));
DEBUG_ONLY(address old_pc = _pc;)
own_abi()->lr = (uint64_t)pc;
_pc = pc; // must be set before call to get_deopt_original_pc
address original_pc = CompiledMethod::get_deopt_original_pc(this);
if (original_pc != NULL) {
assert(original_pc == old_pc, "expected original PC to be stored before patching");
_deopt_state = is_deoptimized;
_pc = original_pc;
} else {
_deopt_state = not_deoptimized;
}
assert(!is_compiled_frame() || !_cb->as_compiled_method()->is_deopt_entry(_pc), "must be");
#ifdef ASSERT
{
frame f(this->sp(), pc, this->unextended_sp());
assert(f.is_deoptimized_frame() == this->is_deoptimized_frame() && f.pc() == this->pc() && f.raw_pc() == this->raw_pc(),
"must be (f.is_deoptimized_frame(): %d this->is_deoptimized_frame(): %d "
"f.pc(): " INTPTR_FORMAT " this->pc(): " INTPTR_FORMAT " f.raw_pc(): " INTPTR_FORMAT " this->raw_pc(): " INTPTR_FORMAT ")",
f.is_deoptimized_frame(), this->is_deoptimized_frame(), p2i(f.pc()), p2i(this->pc()), p2i(f.raw_pc()), p2i(this->raw_pc()));
}
#endif
}
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
assert(is_interpreted_frame(), "Not an interpreted frame");
// These are reasonable sanity checks
if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
return false;
}
if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
return false;
}
int min_frame_slots = (abi_minframe_size + ijava_state_size) / sizeof(intptr_t);
if (fp() - min_frame_slots < sp()) {
return false;
}
// These are hacks to keep us out of trouble.
// The problem with these is that they mask other problems
if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
return false;
}
// do some validation of frame elements
// first the method
Method* m = *interpreter_frame_method_addr();
// validate the method we'd find in this potential sender
if (!Method::is_valid_method(m)) return false;
// stack frames shouldn't be much larger than max_stack elements
// this test requires the use of unextended_sp which is the sp as seen by
// the current frame, and not sp which is the "raw" pc which could point
// further because of local variables of the callee method inserted after
// method arguments
if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
return false;
}
// validate bci/bcx
address bcp = interpreter_frame_bcp();
if (m->validate_bci_from_bcp(bcp) < 0) {
return false;
}
// validate constantPoolCache*
ConstantPoolCache* cp = *interpreter_frame_cache_addr();
if (MetaspaceObj::is_valid(cp) == false) return false;
// validate locals
address locals = (address) *interpreter_frame_locals_addr();
return thread->is_in_stack_range_incl(locals, (address)fp());
}
BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
assert(is_interpreted_frame(), "interpreted frame expected");
Method* method = interpreter_frame_method();
BasicType type = method->result_type();
if (method->is_native()) {
// Prior to calling into the runtime to notify the method exit the possible
// result value is saved into the interpreter frame.
address lresult = (address)&(get_ijava_state()->lresult);
address fresult = (address)&(get_ijava_state()->fresult);
switch (method->result_type()) {
case T_OBJECT:
case T_ARRAY: {
*oop_result = JNIHandles::resolve(*(jobject*)lresult);
break;
}
// We use std/stfd to store the values.
case T_BOOLEAN : value_result->z = (jboolean) *(unsigned long*)lresult; break;
case T_INT : value_result->i = (jint) *(long*)lresult; break;
case T_CHAR : value_result->c = (jchar) *(unsigned long*)lresult; break;
case T_SHORT : value_result->s = (jshort) *(long*)lresult; break;
case T_BYTE : value_result->z = (jbyte) *(long*)lresult; break;
case T_LONG : value_result->j = (jlong) *(long*)lresult; break;
case T_FLOAT : value_result->f = (jfloat) *(double*)fresult; break;
case T_DOUBLE : value_result->d = (jdouble) *(double*)fresult; break;
case T_VOID : /* Nothing to do */ break;
default : ShouldNotReachHere();
}
} else {
intptr_t* tos_addr = interpreter_frame_tos_address();
switch (method->result_type()) {
case T_OBJECT:
case T_ARRAY: {
oop obj = *(oop*)tos_addr;
assert(Universe::is_in_heap_or_null(obj), "sanity check");
*oop_result = obj;
}
case T_BOOLEAN : value_result->z = (jboolean) *(jint*)tos_addr; break;
case T_BYTE : value_result->b = (jbyte) *(jint*)tos_addr; break;
case T_CHAR : value_result->c = (jchar) *(jint*)tos_addr; break;
case T_SHORT : value_result->s = (jshort) *(jint*)tos_addr; break;
case T_INT : value_result->i = *(jint*)tos_addr; break;
case T_LONG : value_result->j = *(jlong*)tos_addr; break;
case T_FLOAT : value_result->f = *(jfloat*)tos_addr; break;
case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
case T_VOID : /* Nothing to do */ break;
default : ShouldNotReachHere();
}
}
return type;
}
#ifndef PRODUCT
void frame::describe_pd(FrameValues& values, int frame_no) {
if (is_interpreted_frame()) {
#define DESCRIBE_ADDRESS(name) \
values.describe(frame_no, (intptr_t*)&(get_ijava_state()->name), #name);
DESCRIBE_ADDRESS(method);
DESCRIBE_ADDRESS(mirror);
DESCRIBE_ADDRESS(locals);
DESCRIBE_ADDRESS(monitors);
DESCRIBE_ADDRESS(cpoolCache);
DESCRIBE_ADDRESS(bcp);
DESCRIBE_ADDRESS(esp);
DESCRIBE_ADDRESS(mdx);
DESCRIBE_ADDRESS(top_frame_sp);
DESCRIBE_ADDRESS(sender_sp);
DESCRIBE_ADDRESS(oop_tmp);
DESCRIBE_ADDRESS(lresult);
DESCRIBE_ADDRESS(fresult);
}
if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) {
intptr_t* ret_pc_loc = (intptr_t*)&own_abi()->lr;
address ret_pc = *(address*)ret_pc_loc;
values.describe(frame_no, ret_pc_loc,
Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address");
}
}
#endif
intptr_t *frame::initial_deoptimization_info() {
// unused... but returns fp() to minimize changes introduced by 7087445
return fp();
}
#ifndef PRODUCT
// This is a generic constructor which is only used by pns() in debug.cpp.
// fp is dropped and gets determined by backlink.
frame::frame(void* sp, void* fp, void* pc) : frame((intptr_t*)sp, (address)pc) {}
#endif
// Pointer beyond the "oldest/deepest" BasicObjectLock on stack.
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
BasicObjectLock* result = (BasicObjectLock*) at(ijava_idx(monitors));
// make sure the pointer points inside the frame
assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer: result: " INTPTR_FORMAT " fp: " INTPTR_FORMAT, p2i(result), p2i(fp()));
return result;
}
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
return &interpreter_frame_tos_address()[offset];
}
¤ Dauer der Verarbeitung: 0.7 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|