Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: ssrelim.ml   Sprache: SML

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)

open Util
open Names
open Printer
open Term
open Constr
open Context
open Termops
open Tactypes
open Tacmach

open Ssrmatching_plugin
open Ssrmatching

open Ssrast
open Ssrprinters
open Ssrcommon

module RelDecl = Context.Rel.Declaration

(** The "case" and "elim" tactic *)

(* TASSI: given the type of an elimination principle, it finds the higher order
 * argument (index), it computes it's arity and the arity of the eliminator and
 * checks if the eliminator is recursive or not *)

let analyze_eliminator elimty env sigma =
  let rec loop ctx t = match EConstr.kind_of_type sigma t with
  | AtomicType (hd, args) when EConstr.isRel sigma hd -> 
    ctx, EConstr.destRel sigma hd, not (EConstr.Vars.noccurn sigma 1 t), Array.length args, t
  | CastType (t, _) -> loop ctx t
  | ProdType (x, ty, t) -> loop (RelDecl.LocalAssum (x, ty) :: ctx) t
  | LetInType (x,b,ty,t) -> loop (RelDecl.LocalDef (x, b, ty) :: ctx) (EConstr.Vars.subst1 b t)
  | _ ->
    let env' = EConstr.push_rel_context ctx env in
    let t' = Reductionops.whd_all env' sigma t in
    if not (EConstr.eq_constr sigma t t') then loop ctx t' else
      errorstrm Pp.(str"The eliminator has the wrong shape."++spc()++
      str"A (applied) bound variable was expected as the conclusion of "++
      str"the eliminator's"++Pp.cut()++str"type:"++spc()++pr_econstr_env env' sigma elimty) in
  let ctx, pred_id, elim_is_dep, n_pred_args,concl = loop [] elimty in
  let n_elim_args = Context.Rel.nhyps ctx in
  let is_rec_elim = 
     let count_occurn n term =
       let count = ref 0 in
       let rec occur_rec n c = match EConstr.kind sigma c with
         | Rel m -> if m = n then incr count
         | _ -> EConstr.iter_with_binders sigma succ occur_rec n c
       in
       occur_rec n term; !count in
     let occurr2 n t = count_occurn n t > 1 in
     not (List.for_all_i 
       (fun i (_,rd) -> pred_id <= i || not (occurr2 (pred_id - i) rd))
       1 (assums_of_rel_context ctx))
  in
  n_elim_args - pred_id, n_elim_args, is_rec_elim, elim_is_dep, n_pred_args,
  (ctx,concl)

let subgoals_tys sigma (relctx, concl) =
  let rec aux cur_depth acc = function
    | hd :: rest -> 
        let ty = Context.Rel.Declaration.get_type hd in
        if EConstr.Vars.noccurn sigma cur_depth concl &&
           List.for_all_i (fun i -> function
             | Context.Rel.Declaration.LocalAssum(_, t) ->
                EConstr.Vars.noccurn sigma i t
             | Context.Rel.Declaration.LocalDef (_, b, t) ->
                EConstr.Vars.noccurn sigma i t && EConstr.Vars.noccurn sigma i b) 1 rest
        then aux (cur_depth - 1) (ty :: acc) rest
        else aux (cur_depth - 1) acc rest
    | [] -> Array.of_list (List.rev acc)
  in
    aux (List.length relctx) [] (List.rev relctx)

(* A case without explicit dependent terms but with both a view and an    *)
(* occurrence switch and/or an equation is treated as dependent, with the *)
(* viewed term as the dependent term (the occurrence switch would be      *)
(* meaningless otherwise). When both a view and explicit dependents are   *)
(* present, it is forbidden to put a (meaningless) occurrence switch on   *)
(* the viewed term.                                                       *)

(* This is both elim and case (defaulting to the former). If ~elim is omitted
 * the standard eliminator is chosen. The code is made of 4 parts:
 * 1. find the eliminator if not given as ~elim and analyze it
 * 2. build the patterns to be matched against the conclusion, looking at
 *    (occ, c), deps and the pattern inferred from the type of the eliminator
 * 3. build the new predicate matching the patterns, and the tactic to 
 *    generalize the equality in case eqid is not None
 * 4. build the tactic handle instructions and clears as required in ipats and
 *    by eqid *)


let get_eq_type gl =
  let eq, gl = pf_fresh_global Coqlib.(lib_ref "core.eq.type") gl in
  gl, EConstr.of_constr eq

let ssrelim ?(is_case=false) deps what ?elim eqid elim_intro_tac =
  let open Proofview.Notations in
  Proofview.tclEVARMAP >>= begin fun sigma ->
  (* some sanity checks *)
  match what with
  | `EConstr(_,_,t) when EConstr.isEvar sigma t ->
       anomaly "elim called on a constr evar"
  | `EGen (_, g) when elim = None && is_wildcard g ->
       errorstrm Pp.(str"Indeterminate pattern and no eliminator")
  | `EGen ((Some clr,occ), g) when is_wildcard g ->
       Proofview.tclUNIT (None, clr, occ, None)
  | `EGen ((None, occ), g) when is_wildcard g ->
       Proofview.tclUNIT (None,[],occ,None)
  | `EGen ((_, occ), p as gen) ->
       pfLIFT (pf_interp_gen true gen) >>= fun (_,c,clr) ->
       Proofview.tclUNIT (Some c, clr, occ, Some p)
  | `EConstr (clr, occ, c) ->
       Proofview.tclUNIT (Some c, clr, occ, None)
  end >>=

  fun (oc, orig_clr, occ, c_gen) -> pfLIFT begin fun gl ->

  let orig_gl, concl, env = gl, pf_concl gl, pf_env gl in
  ppdebug(lazy(Pp.str(if is_case then "==CASE==" else "==ELIM==")));
  let fire_subst gl t = Reductionops.nf_evar (project gl) t in
  let is_undef_pat = function
  | sigma, T t -> EConstr.isEvar sigma (EConstr.of_constr t)
  | _ -> false in
  let match_pat env p occ h cl = 
    let sigma0 = project orig_gl in
    ppdebug(lazy Pp.(str"matching: " ++ pr_occ occ ++ pp_pattern env p));
    let (c,ucst), cl =
      fill_occ_pattern ~raise_NoMatch:true env sigma0 (EConstr.Unsafe.to_constr cl) p occ h in
    ppdebug(lazy Pp.(str" got: " ++ pr_constr_env env sigma0 c));
    c, EConstr.of_constr cl, ucst in
  let mkTpat gl t = (* takes a term, refreshes it and makes a T pattern *)
    let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in 
    let t, _, _, sigma = saturate ~beta:true env (project gl) t n in
    Evd.merge_universe_context sigma ucst, T (EConstr.Unsafe.to_constr t) in
  let unif_redex gl (sigma, r as p) t = (* t is a hint for the redex of p *)
    let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in 
    let t, _, _, sigma = saturate ~beta:true env sigma t n in
    let sigma = Evd.merge_universe_context sigma ucst in
    match r with
    | X_In_T (e, p) -> sigma, E_As_X_In_T (EConstr.Unsafe.to_constr t, e, p)
    | _ ->
       try unify_HO env sigma t (EConstr.of_constr (fst (redex_of_pattern env p))), r
       with e when CErrors.noncritical e -> p in
  (* finds the eliminator applies it to evars and c saturated as needed  *)
  (* obtaining "elim ??? (c ???)". pred is the higher order evar         *)
  (* cty is None when the user writes _ (hence we can't make a pattern *)
  (* `seed` represents the array of types from which we derive the name seeds
     for the block intro patterns *)

  let seed, cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl =
    match elim with
    | Some elim ->
      let gl, elimty = pf_e_type_of gl elim in
      let elimty =
        let rename_elimty r =
          EConstr.of_constr
            (Arguments_renaming.rename_type
              (EConstr.to_constr ~abort_on_undefined_evars:false (project gl)
                elimty) r) in
        match EConstr.kind (project gl) elim with
        | Constr.Var kn -> rename_elimty (GlobRef.VarRef kn)
        | Constr.Const (kn,_) -> rename_elimty (GlobRef.ConstRef kn)
        | _ -> elimty
      in
      let pred_id, n_elim_args, is_rec, elim_is_dep, n_pred_args,ctx_concl =
        analyze_eliminator elimty env (project gl) in
      let seed = subgoals_tys (project gl) ctx_concl in
      let elim, elimty, elim_args, gl =
        pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in
      let pred = List.assoc pred_id elim_args in
      let elimty = Reductionops.whd_all env (project gl) elimty in
      let cty, gl =
        if Option.is_empty oc then None, gl
        else
          let c = Option.get oc in let gl, c_ty = pfe_type_of gl c in
          let pc = match c_gen with
            | Some p -> interp_cpattern orig_gl p None
            | _ -> mkTpat gl c in
          Some(c, c_ty, pc), gl in
      seed, cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl
    | None ->
      let c = Option.get oc in let gl, c_ty = pfe_type_of gl c in
      let ((kn, i),_ as indu), unfolded_c_ty =
        pf_reduce_to_quantified_ind gl c_ty in
      let sort = Tacticals.elimination_sort_of_goal gl in
      let gl, elim =
        if not is_case then
          let t,gl= pf_fresh_global (Indrec.lookup_eliminator (kn,i) sort) gl in
          gl, t
        else
          Tacmach.pf_eapply (fun env sigma () ->
            let indu = (fst indu, EConstr.EInstance.kind sigma (snd indu)) in
            let (sigma, ind) = Indrec.build_case_analysis_scheme env sigma indu true sort in
            (sigma, ind)) gl () in
      let elim = EConstr.of_constr elim in
      let gl, elimty = pfe_type_of gl elim in
      let pred_id,n_elim_args,is_rec,elim_is_dep,n_pred_args,ctx_concl =
        analyze_eliminator elimty env (project gl) in
      let seed =
        if is_case then
          let mind,indb = Inductive.lookup_mind_specif env (kn,i) in
          let tys = indb.Declarations.mind_nf_lc in
          let renamed_tys =
            Array.mapi (fun j (ctx, cty) ->
              let t = Term.it_mkProd_or_LetIn cty ctx in
                    ppdebug(lazy Pp.(str "Search" ++ Printer.pr_constr_env env (project gl) t));
              let t = Arguments_renaming.rename_type t
                (GlobRef.ConstructRef((kn,i),j+1)) in
              ppdebug(lazy Pp.(str"Done Search " ++ Printer.pr_constr_env env (project gl) t));
                t)
            tys
          in
          let drop_params x =
            snd @@ EConstr.decompose_prod_n_assum (project gl)
              mind.Declarations.mind_nparams (EConstr.of_constr x) in
          Array.map drop_params renamed_tys
        else
          subgoals_tys (project gl) ctx_concl
      in
      let rctx = fst (EConstr.decompose_prod_assum (project gl) unfolded_c_ty) in
      let n_c_args = Context.Rel.length rctx in
      let c, c_ty, t_args, gl = pf_saturate gl c ~ty:c_ty n_c_args in
      let elim, elimty, elim_args, gl =
        pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in
      let pred = List.assoc pred_id elim_args in
      let pc = match n_c_args, c_gen with
        | 0, Some p -> interp_cpattern orig_gl p None
        | _ -> mkTpat gl c in
      let cty = Some (c, c_ty, pc) in
      let elimty = Reductionops.whd_all env (project gl) elimty in
      seed, cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl
  in
  let () =
    let sigma = project gl in
    ppdebug(lazy Pp.(str"elim= "++ pr_econstr_pat env sigma elim));
    ppdebug(lazy Pp.(str"elimty= "++ pr_econstr_pat env sigma elimty)) in
  let inf_deps_r = match EConstr.kind_of_type (project gl) elimty with
    | AtomicType (_, args) -> List.rev (Array.to_list args)
    | _ -> assert false in
  let saturate_until gl c c_ty f =
    let rec loop n = try
      let c, c_ty, _, gl = pf_saturate gl c ~ty:c_ty n in
      let gl' = f c c_ty gl in
      Some (c, c_ty, gl, gl')
    with
    | NotEnoughProducts -> None
    | e when CErrors.noncritical e -> loop (n+1) in loop 0 in
  (* Here we try to understand if the main pattern/term the user gave is
   * the first pattern to be matched (i.e. if elimty ends in P t1 .. tn,
   * weather tn is the t the user wrote in 'elim: t' *)

  let c_is_head_p, gl =
    match cty with
    | None -> true, gl  (* The user wrote elim: _ *)
    | Some (c, c_ty, _) ->
      let rec first = function
        | [] ->
          errorstrm Pp.(str"Unable to apply the eliminator to the term"++
            spc()++pr_econstr_env env (project gl) c++spc())
        | x :: rest ->
          match x () with
          | None -> first rest
          | Some (b,gl) -> b, gl
      in
      (* Unify two terms if their heads are not applied unif variables, eg
       * not (?P x). The idea is to rule out cases where the problem is too
       * vague to drive the current heuristics. *)

      let pf_unify_HO_rigid gl a b =
        let is_applied_evar x = match EConstr.kind (project gl) x with
          | App(x,_) -> EConstr.isEvar (project gl) x
          | _ -> false in
        if is_applied_evar a || is_applied_evar b then
          raise Evarconv.(UnableToUnify(project gl,
                   Pretype_errors.ProblemBeyondCapabilities))
        else pf_unify_HO gl a b in
      let try_c_last_arg () =
        (* we try to see if c unifies with the last arg of elim *)
        if elim_is_dep then None else
        let arg = List.assoc (n_elim_args - 1) elim_args in
        let gl, arg_ty = pfe_type_of gl arg in
        match saturate_until gl c c_ty (fun c c_ty gl ->
          pf_unify_HO (pf_unify_HO_rigid gl c_ty arg_ty) arg c) with
        | Some (c, _, _, gl) -> Some (false, gl)
        | None -> None in
      let try_c_last_pattern () =
        (* we try to see if c unifies with the last inferred pattern *)
        if inf_deps_r = [] then None else
        let inf_arg = List.hd inf_deps_r in
        let gl, inf_arg_ty = pfe_type_of gl inf_arg in
        match saturate_until gl c c_ty (fun _ c_ty gl ->
                pf_unify_HO_rigid gl c_ty inf_arg_ty) with
        | Some (c, _, _,gl) -> Some(true, gl)
        | None -> None in
      first [try_c_last_arg;try_c_last_pattern] in
  ppdebug(lazy Pp.(str"c_is_head_p= " ++ bool c_is_head_p));
  let gl, predty = pfe_type_of gl pred in
  (* Patterns for the inductive types indexes to be bound in pred are computed
   * looking at the ones provided by the user and the inferred ones looking at
   * the type of the elimination principle *)

  let pp_pat (_,p,_,occ) = Pp.(pr_occ occ ++ pp_pattern env p) in
  let pp_inf_pat gl (_,_,t,_) = pr_econstr_pat env (project gl) (fire_subst gl t) in
  let patterns, clr, gl =
    let rec loop patterns clr i = function
      | [],[] -> patterns, clr, gl
      | ((oclr, occ), t):: deps, inf_t :: inf_deps ->
          let p = interp_cpattern orig_gl t None in
          let clr_t =
            interp_clr (project gl) (oclr,(tag_of_cpattern t,EConstr.of_constr (fst (redex_of_pattern env p)))) in
          (* if we are the index for the equation we do not clear *)
          let clr_t = if deps = [] && eqid <> None then [] else clr_t in
          let p = if is_undef_pat p then mkTpat gl inf_t else p in
          loop (patterns @ [i, p, inf_t, occ]) 
            (clr_t @ clr) (i+1) (deps, inf_deps)
      | [], c :: inf_deps -> 
          ppdebug(lazy Pp.(str"adding inf pattern " ++ pr_econstr_pat env (project gl) c));
          loop (patterns @ [i, mkTpat gl c, c, allocc]) 
            clr (i+1) ([], inf_deps)
      | _::_, [] -> errorstrm Pp.(str "Too many dependent abstractions"in
    let deps, head_p, inf_deps_r = match what, c_is_head_p, cty with
    | `EConstr _, _, None -> anomaly "Simple elim with no term"
    | _, false, _ -> deps, [], inf_deps_r
    | `EGen gen, true, None -> deps @ [gen], [], inf_deps_r
    | _, true, Some (c, _, pc) ->
         let occ = if occ = None then allocc else occ in
         let inf_p, inf_deps_r = List.hd inf_deps_r, List.tl inf_deps_r in
         deps, [1, pc, inf_p, occ], inf_deps_r in
    let patterns, clr, gl = 
      loop [] orig_clr (List.length head_p+1) (List.rev deps, inf_deps_r) in
    head_p @ patterns, Util.List.uniquize clr, gl
  in
  ppdebug(lazy Pp.(pp_concat (str"patterns=") (List.map pp_pat patterns)));
  ppdebug(lazy Pp.(pp_concat (str"inf. patterns=") (List.map (pp_inf_pat gl) patterns)));
  (* Predicate generation, and (if necessary) tactic to generalize the
   * equation asked by the user *)

  let elim_pred, gen_eq_tac, clr, gl = 
    let error gl t inf_t = errorstrm Pp.(str"The given pattern matches the term"++
      spc()++pp_term gl t++spc()++str"while the inferred pattern"++
      spc()++pr_econstr_pat env (project gl) (fire_subst gl inf_t)++spc()++ str"doesn't"in
    let match_or_postpone (cl, gl, post) (h, p, inf_t, occ) =
      let p = unif_redex gl p inf_t in
      if is_undef_pat p then
        let () = ppdebug(lazy Pp.(str"postponing " ++ pp_pattern env p)) in
        cl, gl, post @ [h, p, inf_t, occ]
      else try
        let c, cl, ucst = match_pat env p occ h cl in
        let gl = pf_merge_uc ucst gl in
        let c = EConstr.of_constr c in
        let gl = try pf_unify_HO gl inf_t c
                 with exn when CErrors.noncritical exn -> error gl c inf_t in
        cl, gl, post
      with 
      | NoMatch | NoProgress ->
          let e, ucst = redex_of_pattern env p in
          let gl = pf_merge_uc ucst gl in
          let e = EConstr.of_constr e in
          let n, e, _, _ucst =  pf_abs_evars gl (fst p, e) in
          let e, _, _, gl = pf_saturate ~beta:true gl e n in 
          let gl = try pf_unify_HO gl inf_t e
                   with exn when CErrors.noncritical exn -> error gl e inf_t in
          cl, gl, post
    in        
    let rec match_all concl gl patterns =
      let concl, gl, postponed = 
        List.fold_left match_or_postpone (concl, gl, []) patterns in
      if postponed = [] then concl, gl
      else if List.length postponed = List.length patterns then
        errorstrm Pp.(str "Some patterns are undefined even after all"++spc()++
          str"the defined ones matched")
      else match_all concl gl postponed in
    let concl, gl = match_all concl gl patterns in
    let pred_rctx, _ = EConstr.decompose_prod_assum (project gl) (fire_subst gl predty) in
    let concl, gen_eq_tac, clr, gl = match eqid with 
    | Some (IPatId _) when not is_rec -> 
        let k = List.length deps in
        let c = fire_subst gl (List.assoc (n_elim_args - k - 1) elim_args) in
        let gl, t = pfe_type_of gl c in
        let gl, eq = get_eq_type gl in
        let gen_eq_tac, eq_ty, gl =
          let refl = EConstr.mkApp (eq, [|t; c; c|]) in
          let new_concl = EConstr.mkArrow refl Sorts.Relevant (EConstr.Vars.lift 1 (pf_concl orig_gl)) in
          let new_concl = fire_subst gl new_concl in
          let erefl, gl = mkRefl t c gl in
          let erefl = fire_subst gl erefl in
          let erefl_ty = Retyping.get_type_of (pf_env gl) (project gl) erefl in
          let eq_ty = Retyping.get_type_of (pf_env gl) (project gl) erefl_ty in
          let gen_eq_tac s =
            let open Evd in
            let sigma = merge_universe_context s.sigma (evar_universe_context (project gl)) in
            apply_type new_concl [erefl] { s with sigma }
          in
          gen_eq_tac, eq_ty, gl in
        let rel = k + if c_is_head_p then 1 else 0 in
        let src, gl = mkProt eq_ty EConstr.(mkApp (eq,[|t; c; mkRel rel|])) gl in
        let concl = EConstr.mkArrow src Sorts.Relevant (EConstr.Vars.lift 1 concl) in
        let clr = if deps <> [] then clr else [] in
        concl, gen_eq_tac, clr, gl
    | _ -> concl, Tacticals.tclIDTAC, clr, gl in
    let mk_lam t r = EConstr.mkLambda_or_LetIn r t in
    let concl = List.fold_left mk_lam concl pred_rctx in
    let gl, concl = 
      if eqid <> None && is_rec then
        let gl, concls = pfe_type_of gl concl in
        let concl, gl = mkProt concls concl gl in
        let gl, _ = pfe_type_of gl concl in
        gl, concl
      else gl, concl in
    concl, gen_eq_tac, clr, gl in
  let gl, pty = pf_e_type_of gl elim_pred in
  ppdebug(lazy Pp.(str"elim_pred=" ++ pp_term gl elim_pred));
  ppdebug(lazy Pp.(str"elim_pred_ty=" ++ pp_term gl pty));
  let gl = pf_unify_HO gl pred elim_pred in
  let elim = fire_subst gl elim in
  let gl = pf_resolve_typeclasses ~where:elim ~fail:false gl in
  let gl, _ = pf_e_type_of gl elim in
  (* check that the patterns do not contain non instantiated dependent metas *)
  let () = 
    let evars_of_term = Evarutil.undefined_evars_of_term (project gl) in
    let patterns = List.map (fun (_,_,t,_) -> fire_subst gl t) patterns in
    let patterns_ev = List.map evars_of_term patterns in 
    let ev = List.fold_left Evar.Set.union Evar.Set.empty patterns_ev in
    let ty_ev = Evar.Set.fold (fun i e ->
         let ex = i in
         let i_ty = Evd.evar_concl (Evd.find (project gl) ex) in
         Evar.Set.union e (evars_of_term i_ty))
      ev Evar.Set.empty in
    let inter = Evar.Set.inter ev ty_ev in
    if not (Evar.Set.is_empty inter) then begin
      let i = Evar.Set.choose inter in
      let pat = List.find (fun t -> Evar.Set.mem i (evars_of_term t)) patterns in
      errorstrm Pp.(str"Pattern"++spc()++pr_econstr_pat env (project gl) pat++spc()++
        str"was not completely instantiated and one of its variables"++spc()++
        str"occurs in the type of another non-instantiated pattern variable");
    end
  in
  (* the elim tactic, with the eliminator and the predicated we computed *)
  let elim = project gl, elim in 
  let seed =
    Array.map (fun ty ->
    let ctx,_ = EConstr.decompose_prod_assum (project gl) ty in
    CList.rev_map Context.Rel.Declaration.get_name ctx) seed in
  (elim,seed,clr,is_rec,gen_eq_tac), orig_gl

  end >>= fun (elim, seed,clr,is_rec,gen_eq_tac) ->

  let elim_tac =
    Tacticals.New.tclTHENLIST [
      Proofview.V82.tactic (refine_with ~with_evars:false elim);
      cleartac clr] in
  let gen_eq_tac = Proofview.V82.tactic gen_eq_tac in
  Tacticals.New.tclTHENLIST [gen_eq_tac; elim_intro_tac ?seed:(Some seed) what eqid elim_tac is_rec clr]
;;

let elimtac x =
  let k ?seed:_ _what _eqid elim_tac _is_rec _clr = elim_tac in
  ssrelim ~is_case:false [] (`EConstr ([],None,x)) None k

let casetac x k =
  let k ?seed _what _eqid elim_tac _is_rec _clr = k ?seed elim_tac in
  ssrelim ~is_case:true [] (`EConstr ([],None,x)) None k

let pf_nb_prod gl = nb_prod (project gl) (pf_concl gl)

let rev_id = mk_internal_id "rev concl"
let injecteq_id = mk_internal_id "injection equation"

let revtoptac n0 gl =
  let n = pf_nb_prod gl - n0 in
  let dc, cl = EConstr.decompose_prod_n_assum (project gl) n (pf_concl gl) in
  let dc' = dc @ [Context.Rel.Declaration.LocalAssum(make_annot (Name rev_id) Sorts.Relevant, EConstr.it_mkProd_or_LetIn cl (List.rev dc))] in
  let f = EConstr.it_mkLambda_or_LetIn (mkEtaApp (EConstr.mkRel (n + 1)) (-n) 1) dc' in
  Refiner.refiner ~check:true EConstr.Unsafe.(to_constr (EConstr.mkApp (f, [|Evarutil.mk_new_meta ()|]))) gl

let equality_inj l b id c gl =
  let msg = ref "" in
  try Proofview.V82.of_tactic (Equality.inj None l b None c) gl
  with
    | Gramlib.Ploc.Exc(_,CErrors.UserError (_,s))
    | CErrors.UserError (_,s)
  when msg := Pp.string_of_ppcmds s;
       !msg = "Not a projectable equality but a discriminable one." ||
       !msg = "Nothing to inject." ->
    Feedback.msg_warning (Pp.str !msg);
    discharge_hyp (id, (id, "")) gl

let injectidl2rtac id c gl =
  Tacticals.tclTHEN (equality_inj None true id c) (revtoptac (pf_nb_prod gl)) gl

let injectl2rtac sigma c = match EConstr.kind sigma c with
| Var id -> injectidl2rtac id (EConstr.mkVar id, NoBindings)
| _ ->
  let id = injecteq_id in
  let xhavetac id c = Proofview.V82.of_tactic (Tactics.pose_proof (Name id) c) in
  Tacticals.tclTHENLIST [xhavetac id c; injectidl2rtac id (EConstr.mkVar id, NoBindings); Proofview.V82.of_tactic (Tactics.clear [id])]

let is_injection_case c gl =
  let gl, cty = pfe_type_of gl c in
  let (mind,_), _ = pf_reduce_to_quantified_ind gl cty in
  Coqlib.check_ind_ref "core.eq.type" mind

let perform_injection c gl =
  let gl, cty = pfe_type_of gl c in
  let mind, t = pf_reduce_to_quantified_ind gl cty in
  let dc, eqt = EConstr.decompose_prod (project gl) t in
  if dc = [] then injectl2rtac (project gl) c gl else
  if not (EConstr.Vars.closed0 (project gl) eqt) then
    CErrors.user_err (Pp.str "can't decompose a quantified equality"else
  let cl = pf_concl gl in let n = List.length dc in
  let c_eq = mkEtaApp c n 2 in
  let cl1 = EConstr.mkLambda EConstr.(make_annot Anonymous Sorts.Relevant, mkArrow eqt Sorts.Relevant cl, mkApp (mkRel 1, [|c_eq|])) in
  let id = injecteq_id in
  let id_with_ebind = (EConstr.mkVar id, NoBindings) in
  let injtac = Tacticals.tclTHEN (introid id) (injectidl2rtac id id_with_ebind) in 
  Tacticals.tclTHENLAST (Proofview.V82.of_tactic (Tactics.apply (EConstr.compose_lam dc cl1))) injtac gl

let ssrscase_or_inj_tac c = Proofview.V82.tactic ~nf_evars:false (fun gl ->
  if is_injection_case c gl then perform_injection c gl
  else Proofview.V82.of_tactic (casetac c (fun ?seed:_ k -> k)) gl)

¤ Dauer der Verarbeitung: 0.6 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik