|
|
Quellcode-Bibliothek
© Kompilation durch diese Firma
[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]
Datei:
meng_scaff_defs.prf
Sprache: Lisp
Untersuchungsergebnis.mlg Download desLex {Lex[107] Isabelle[140] Coq[142]}zum Wurzelverzeichnis wechseln (************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
{
let _vmcast = Constr.VMcast
open Names
open Pp
open Pcoq
open Ltac_plugin
open Stdarg
open Tacarg
open Libnames
open Tactics
open Tacmach
open Util
open Locus
open Tacexpr
open Tacinterp
open Pltac
open Extraargs
open Ppconstr
open Namegen
open Tactypes
open Decl_kinds
open Constrexpr
open Constrexpr_ops
open Proofview
open Proofview.Notations
open Ssrprinters
open Ssrcommon
open Ssrtacticals
open Ssrbwd
open Ssrequality
open Ssripats
(** Ssreflect load check. *)
(* To allow ssrcoq to be fully compatible with the "plain" Coq, we only *)
(* turn on its incompatible features (the new rewrite syntax, and the *)
(* reserved identifiers) when the theory library (ssreflect.v) has *)
(* has actually been required, or is being defined. Because this check *)
(* needs to be done often (for each identifier lookup), we implement *)
(* some caching, repeating the test only when the environment changes. *)
(* We check for protect_term because it is the first constant loaded; *)
(* ssr_have would ultimately be a better choice. *)
let ssr_loaded = Summary.ref ~name:"SSR:loaded" false
let is_ssr_loaded () =
!ssr_loaded ||
(if CLexer.is_keyword "SsrSyntax_is_Imported" then ssr_loaded:=true;
!ssr_loaded)
}
DECLARE PLUGIN "ssreflect_plugin"
{
(* Defining grammar rules with "xx" in it automatically declares keywords too,
* we thus save the lexer to restore it at the end of the file *)
let frozen_lexer = CLexer.get_keyword_state () ;;
let tacltop = (5,Notation_gram.E)
let pr_ssrtacarg env sigma _ _ prt = prt env sigma tacltop
}
ARGUMENT EXTEND ssrtacarg TYPED AS tactic PRINTED BY { pr_ssrtacarg env sigma }
| [ "YouShouldNotTypeThis" ] -> { CErrors.anomaly (Pp.str "Grammar placeholder match") }
END
GRAMMAR EXTEND Gram
GLOBAL: ssrtacarg;
ssrtacarg: [[ tac = tactic_expr LEVEL "5" -> { tac } ]];
END
(* Copy of ssrtacarg with LEVEL "3", useful for: "under ... do ..." *)
ARGUMENT EXTEND ssrtac3arg TYPED AS tactic PRINTED BY { pr_ssrtacarg env sigma }
| [ "YouShouldNotTypeThis" ] -> { CErrors.anomaly (Pp.str "Grammar placeholder match") }
END
GRAMMAR EXTEND Gram
GLOBAL: ssrtac3arg;
ssrtac3arg: [[ tac = tactic_expr LEVEL "3" -> { tac } ]];
END
{
(* Lexically closed tactic for tacticals. *)
let pr_ssrtclarg env sigma _ _ prt tac = prt env sigma tacltop tac
}
ARGUMENT EXTEND ssrtclarg TYPED AS ssrtacarg
PRINTED BY { pr_ssrtclarg env sigma }
| [ ssrtacarg(tac) ] -> { tac }
END
{
open Genarg
(** Adding a new uninterpreted generic argument type *)
let add_genarg tag pr =
let wit = Genarg.make0 tag in
let tag = Geninterp.Val.create tag in
let glob ist x = (ist, x) in
let subst _ x = x in
let interp ist x = Ftactic.return (Geninterp.Val.Dyn (tag, x)) in
let gen_pr env sigma _ _ _ = pr env sigma in
let () = Genintern.register_intern0 wit glob in
let () = Genintern.register_subst0 wit subst in
let () = Geninterp.register_interp0 wit interp in
let () = Geninterp.register_val0 wit (Some (Geninterp.Val.Base tag)) in
Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr;
wit
(** Primitive parsing to avoid syntax conflicts with basic tactics. *)
let accept_before_syms syms strm =
match Util.stream_nth 1 strm with
| Tok.KEYWORD sym when List.mem sym syms -> ()
| _ -> raise Stream.Failure
let accept_before_syms_or_any_id syms strm =
match Util.stream_nth 1 strm with
| Tok.KEYWORD sym when List.mem sym syms -> ()
| Tok.IDENT _ -> ()
| _ -> raise Stream.Failure
let accept_before_syms_or_ids syms ids strm =
match Util.stream_nth 1 strm with
| Tok.KEYWORD sym when List.mem sym syms -> ()
| Tok.IDENT id when List.mem id ids -> ()
| _ -> raise Stream.Failure
open Ssrast
let pr_id = Ppconstr.pr_id
let pr_name = function Name id -> pr_id id | Anonymous -> str "_"
let pr_spc () = str " "
let pr_list = prlist_with_sep
(**************************** ssrhyp **************************************)
let pr_ssrhyp _ _ _ = pr_hyp
let wit_ssrhyprep = add_genarg "ssrhyprep" (fun env sigma -> pr_hyp)
let intern_hyp ist (SsrHyp (loc, id) as hyp) =
let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_var) CAst.(make ?loc id)) in
if not_section_id id then hyp else
hyp_err ?loc "Can't clear section hypothesis " id
open Pcoq.Prim
}
ARGUMENT EXTEND ssrhyp TYPED AS ssrhyprep PRINTED BY { pr_ssrhyp }
INTERPRETED BY { interp_hyp }
GLOBALIZED BY { intern_hyp }
| [ ident(id) ] -> { SsrHyp (Loc.tag ~loc id) }
END
{
let pr_hoi = hoik pr_hyp
let pr_ssrhoi _ _ _ = pr_hoi
let wit_ssrhoirep = add_genarg "ssrhoirep" (fun env sigma -> pr_hoi)
let intern_ssrhoi ist = function
| Hyp h -> Hyp (intern_hyp ist h)
| Id (SsrHyp (_, id)) as hyp ->
let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_ident) id) in
hyp
let interp_ssrhoi ist gl = function
| Hyp h -> let s, h' = interp_hyp ist gl h in s, Hyp h'
| Id (SsrHyp (loc, id)) ->
let s, id' = interp_wit wit_ident ist gl id in
s, Id (SsrHyp (loc, id'))
}
ARGUMENT EXTEND ssrhoi_hyp TYPED AS ssrhoirep PRINTED BY { pr_ssrhoi }
INTERPRETED BY { interp_ssrhoi }
GLOBALIZED BY { intern_ssrhoi }
| [ ident(id) ] -> { Hyp (SsrHyp(Loc.tag ~loc id)) }
END
ARGUMENT EXTEND ssrhoi_id TYPED AS ssrhoirep PRINTED BY { pr_ssrhoi }
INTERPRETED BY { interp_ssrhoi }
GLOBALIZED BY { intern_ssrhoi }
| [ ident(id) ] -> { Id (SsrHyp(Loc.tag ~loc id)) }
END
{
let pr_ssrhyps _ _ _ = pr_hyps
}
ARGUMENT EXTEND ssrhyps TYPED AS ssrhyp list PRINTED BY { pr_ssrhyps }
INTERPRETED BY { interp_hyps }
| [ ssrhyp_list(hyps) ] -> { check_hyps_uniq [] hyps; hyps }
END
(** Rewriting direction *)
{
let pr_rwdir = function L2R -> mt() | R2L -> str "-"
let wit_ssrdir = add_genarg "ssrdir" (fun env sigma -> pr_dir)
(** Simpl switch *)
let pr_ssrsimpl _ _ _ = pr_simpl
let wit_ssrsimplrep = add_genarg "ssrsimplrep" (fun env sigma -> pr_simpl)
let test_ssrslashnum b1 b2 strm =
match Util.stream_nth 0 strm with
| Tok.KEYWORD "/" ->
(match Util.stream_nth 1 strm with
| Tok.NUMERAL _ when b1 ->
(match Util.stream_nth 2 strm with
| Tok.KEYWORD "=" | Tok.KEYWORD "/=" when not b2 -> ()
| Tok.KEYWORD "/" ->
if not b2 then () else begin
match Util.stream_nth 3 strm with
| Tok.NUMERAL _ -> ()
| _ -> raise Stream.Failure
end
| _ -> raise Stream.Failure)
| Tok.KEYWORD "/" when not b1 ->
(match Util.stream_nth 2 strm with
| Tok.KEYWORD "=" when not b2 -> ()
| Tok.NUMERAL _ when b2 ->
(match Util.stream_nth 3 strm with
| Tok.KEYWORD "=" -> ()
| _ -> raise Stream.Failure)
| _ when not b2 -> ()
| _ -> raise Stream.Failure)
| Tok.KEYWORD "=" when not b1 && not b2 -> ()
| _ -> raise Stream.Failure)
| Tok.KEYWORD "//" when not b1 ->
(match Util.stream_nth 1 strm with
| Tok.KEYWORD "=" when not b2 -> ()
| Tok.NUMERAL _ when b2 ->
(match Util.stream_nth 2 strm with
| Tok.KEYWORD "=" -> ()
| _ -> raise Stream.Failure)
| _ when not b2 -> ()
| _ -> raise Stream.Failure)
| _ -> raise Stream.Failure
let test_ssrslashnum10 = test_ssrslashnum true false
let test_ssrslashnum11 = test_ssrslashnum true true
let test_ssrslashnum01 = test_ssrslashnum false true
let test_ssrslashnum00 = test_ssrslashnum false false
let negate_parser f x =
let rc = try Some (f x) with Stream.Failure -> None in
match rc with
| None -> ()
| Some _ -> raise Stream.Failure
let test_not_ssrslashnum =
Pcoq.Entry.of_parser
"test_not_ssrslashnum" (negate_parser test_ssrslashnum10)
let test_ssrslashnum00 =
Pcoq.Entry.of_parser "test_ssrslashnum01" test_ssrslashnum00
let test_ssrslashnum10 =
Pcoq.Entry.of_parser "test_ssrslashnum10" test_ssrslashnum10
let test_ssrslashnum11 =
Pcoq.Entry.of_parser "test_ssrslashnum11" test_ssrslashnum11
let test_ssrslashnum01 =
Pcoq.Entry.of_parser "test_ssrslashnum01" test_ssrslashnum01
}
ARGUMENT EXTEND ssrsimpl_ne TYPED AS ssrsimplrep PRINTED BY { pr_ssrsimpl }
| [ "//=" ] -> { SimplCut (~-1,~-1) }
| [ "/=" ] -> { Simpl ~-1 }
END
(* Pcoq.Prim. *)
GRAMMAR EXTEND Gram
GLOBAL: ssrsimpl_ne;
ssrsimpl_ne: [
[ test_ssrslashnum11; "/"; n = natural; "/"; m = natural; "=" -> { SimplCut(n,m) }
| test_ssrslashnum10; "/"; n = natural; "/" -> { Cut n }
| test_ssrslashnum10; "/"; n = natural; "=" -> { Simpl n }
| test_ssrslashnum10; "/"; n = natural; "/=" -> { SimplCut (n,~-1) }
| test_ssrslashnum10; "/"; n = natural; "/"; "=" -> { SimplCut (n,~-1) }
| test_ssrslashnum01; "//"; m = natural; "=" -> { SimplCut (~-1,m) }
| test_ssrslashnum00; "//" -> { Cut ~-1 }
]];
END
ARGUMENT EXTEND ssrsimpl TYPED AS ssrsimplrep PRINTED BY { pr_ssrsimpl }
| [ ssrsimpl_ne(sim) ] -> { sim }
| [ ] -> { Nop }
END
{
let pr_ssrclear _ _ _ = pr_clear mt
}
ARGUMENT EXTEND ssrclear_ne TYPED AS ssrhyps PRINTED BY { pr_ssrclear }
| [ "{" ne_ssrhyp_list(clr) "}" ] -> { check_hyps_uniq [] clr; clr }
END
ARGUMENT EXTEND ssrclear TYPED AS ssrclear_ne PRINTED BY { pr_ssrclear }
| [ ssrclear_ne(clr) ] -> { clr }
| [ ] -> { [] }
END
(** Indexes *)
(* Since SSR indexes are always positive numbers, we use the 0 value *)
(* to encode an omitted index. We reuse the in or_var type, but we *)
(* supply our own interpretation function, which checks for non *)
(* positive values, and allows the use of constr numerals, so that *)
(* e.g., "let n := eval compute in (1 + 3) in (do n!clear)" works. *)
{
let pr_index = function
| ArgVar {CAst.v=id} -> pr_id id
| ArgArg n when n > 0 -> int n
| _ -> mt ()
let pr_ssrindex _ _ _ = pr_index
let noindex = ArgArg 0
let check_index ?loc i =
if i > 0 then i else CErrors.user_err ?loc (str"Index not positive")
let mk_index ?loc = function
| ArgArg i -> ArgArg (check_index ?loc i)
| iv -> iv
let interp_index ist gl idx =
Tacmach.project gl,
match idx with
| ArgArg _ -> idx
| ArgVar id ->
let i =
try
let v = Id.Map.find id.CAst.v ist.Tacinterp.lfun in
begin match Tacinterp.Value.to_int v with
| Some i -> i
| None ->
begin match Tacinterp.Value.to_constr v with
| Some c ->
let rc = Detyping.detype Detyping.Now false Id.Set.empty (pf_env gl) (project gl) c in
begin match Notation.uninterp_prim_token rc with
| _, Constrexpr.Numeral (b,{NumTok.int = s; frac = ""; exp = ""}) ->
let n = int_of_string s in (match b with SPlus -> n | SMinus -> -n)
| _ -> raise Not_found
end
| None -> raise Not_found
end end
with _ -> CErrors.user_err ?loc:id.CAst.loc (str"Index not a number") in
ArgArg (check_index ?loc:id.CAst.loc i)
open Pltac
}
ARGUMENT EXTEND ssrindex PRINTED BY { pr_ssrindex }
INTERPRETED BY { interp_index }
| [ int_or_var(i) ] -> { mk_index ~loc i }
END
(** Occurrence switch *)
(* The standard syntax of complemented occurrence lists involves a single *)
(* initial "-", e.g., {-1 3 5}. An initial *)
(* "+" may be used to indicate positive occurrences (the default). The *)
(* "+" is optional, except if the list of occurrences starts with a *)
(* variable or is empty (to avoid confusion with a clear switch). The *)
(* empty positive switch "{+}" selects no occurrences, while the empty *)
(* negative switch "{-}" selects all occurrences explicitly; this is the *)
(* default, but "{-}" prevents the implicit clear, and can be used to *)
(* force dependent elimination -- see ndefectelimtac below. *)
{
let pr_ssrocc _ _ _ = pr_occ
open Pcoq.Prim
}
ARGUMENT EXTEND ssrocc TYPED AS (bool * int list) option PRINTED BY { pr_ssrocc }
| [ natural(n) natural_list(occ) ] -> {
Some (false, List.map (check_index ~loc) (n::occ)) }
| [ "-" natural_list(occ) ] -> { Some (true, occ) }
| [ "+" natural_list(occ) ] -> { Some (false, occ) }
END
(* modality *)
{
let pr_mmod = function May -> str "?" | Must -> str "!" | Once -> mt ()
let wit_ssrmmod = add_genarg "ssrmmod" (fun env sigma -> pr_mmod)
let ssrmmod = Pcoq.create_generic_entry Pcoq.utactic "ssrmmod" (Genarg.rawwit wit_ssrmmod);;
}
GRAMMAR EXTEND Gram
GLOBAL: ssrmmod;
ssrmmod: [[ "!" -> { Must } | LEFTQMARK -> { May } | "?" -> { May } ]];
END
(** Rewrite multiplier: !n ?n *)
{
let pr_mult (n, m) =
if n > 0 && m <> Once then int n ++ pr_mmod m else pr_mmod m
let pr_ssrmult _ _ _ = pr_mult
}
ARGUMENT EXTEND ssrmult_ne TYPED AS (int * ssrmmod) PRINTED BY { pr_ssrmult }
| [ natural(n) ssrmmod(m) ] -> { check_index ~loc n, m }
| [ ssrmmod(m) ] -> { notimes, m }
END
ARGUMENT EXTEND ssrmult TYPED AS ssrmult_ne PRINTED BY { pr_ssrmult }
| [ ssrmult_ne(m) ] -> { m }
| [ ] -> { nomult }
END
{
(** Discharge occ switch (combined occurrence / clear switch *)
let pr_docc = function
| None, occ -> pr_occ occ
| Some clr, _ -> pr_clear mt clr
let pr_ssrdocc _ _ _ = pr_docc
}
ARGUMENT EXTEND ssrdocc TYPED AS (ssrclear option * ssrocc) PRINTED BY { pr_ssrdocc }
| [ "{" ssrocc(occ) "}" ] -> { mkocc occ }
| [ "{" ssrhyp_list(clr) "}" ] -> { mkclr clr }
END
{
(* Old kinds of terms *)
let input_ssrtermkind strm = match Util.stream_nth 0 strm with
| Tok.KEYWORD "(" -> xInParens
| Tok.KEYWORD "@" -> xWithAt
| _ -> xNoFlag
let ssrtermkind = Pcoq.Entry.of_parser "ssrtermkind" input_ssrtermkind
(* New kinds of terms *)
let input_term_annotation strm =
match Stream.npeek 2 strm with
| Tok.KEYWORD "(" :: Tok.KEYWORD "(" :: _ -> `DoubleParens
| Tok.KEYWORD "(" :: _ -> `Parens
| Tok.KEYWORD "@" :: _ -> `At
| _ -> `None
let term_annotation =
Pcoq.Entry.of_parser "term_annotation" input_term_annotation
(* terms *)
(** Terms parsing. ********************************************************)
(* Because we allow wildcards in term references, we need to stage the *)
(* interpretation of terms so that it occurs at the right time during *)
(* the execution of the tactic (e.g., so that we don't report an error *)
(* for a term that isn't actually used in the execution). *)
(* The term representation tracks whether the concrete initial term *)
(* started with an opening paren, which might avoid a conflict between *)
(* the ssrreflect term syntax and Gallina notation. *)
(* Old terms *)
let pr_ssrterm _ _ _ = pr_term
let glob_ssrterm gs = function
| k, (_, Some c) -> k, Tacintern.intern_constr gs c
| ct -> ct
let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c
let interp_ssrterm _ gl t = Tacmach.project gl, t
open Pcoq.Constr
}
ARGUMENT EXTEND ssrterm
PRINTED BY { pr_ssrterm }
INTERPRETED BY { interp_ssrterm }
GLOBALIZED BY { glob_ssrterm } SUBSTITUTED BY { subst_ssrterm }
RAW_PRINTED BY { pr_ssrterm }
GLOB_PRINTED BY { pr_ssrterm }
| [ "YouShouldNotTypeThis" constr(c) ] -> { mk_lterm c }
END
GRAMMAR EXTEND Gram
GLOBAL: ssrterm;
ssrterm: [[ k = ssrtermkind; c = Pcoq.Constr.constr -> { mk_term k c } ]];
END
(* New terms *)
{
let pp_ast_closure_term _ _ _ = pr_ast_closure_term
}
ARGUMENT EXTEND ast_closure_term
PRINTED BY { pp_ast_closure_term }
INTERPRETED BY { interp_ast_closure_term }
GLOBALIZED BY { glob_ast_closure_term }
SUBSTITUTED BY { subst_ast_closure_term }
RAW_PRINTED BY { pp_ast_closure_term }
GLOB_PRINTED BY { pp_ast_closure_term }
| [ term_annotation(a) constr(c) ] -> { mk_ast_closure_term a c }
END
ARGUMENT EXTEND ast_closure_lterm
PRINTED BY { pp_ast_closure_term }
INTERPRETED BY { interp_ast_closure_term }
GLOBALIZED BY { glob_ast_closure_term }
SUBSTITUTED BY { subst_ast_closure_term }
RAW_PRINTED BY { pp_ast_closure_term }
GLOB_PRINTED BY { pp_ast_closure_term }
| [ term_annotation(a) lconstr(c) ] -> { mk_ast_closure_term a c }
END
(* Old Views *)
{
let pr_view = pr_list mt (fun c -> str "/" ++ pr_term c)
let pr_ssrbwdview _ _ _ = pr_view
}
ARGUMENT EXTEND ssrbwdview TYPED AS ssrterm list
PRINTED BY { pr_ssrbwdview }
| [ "YouShouldNotTypeThis" ] -> { [] }
END
(* Pcoq *)
GRAMMAR EXTEND Gram
GLOBAL: ssrbwdview;
ssrbwdview: [
[ test_not_ssrslashnum; "/"; c = Pcoq.Constr.constr -> { [mk_term xNoFlag c] }
| test_not_ssrslashnum; "/"; c = Pcoq.Constr.constr; w = ssrbwdview -> {
(mk_term xNoFlag c) :: w } ]];
END
(* New Views *)
{
type ssrfwdview = ast_closure_term list
let pr_ssrfwdview _ _ _ = pr_view2
}
ARGUMENT EXTEND ssrfwdview TYPED AS ast_closure_term list
PRINTED BY { pr_ssrfwdview }
| [ "YouShouldNotTypeThis" ] -> { [] }
END
(* Pcoq *)
GRAMMAR EXTEND Gram
GLOBAL: ssrfwdview;
ssrfwdview: [
[ test_not_ssrslashnum; "/"; c = ast_closure_term -> { [c] }
| test_not_ssrslashnum; "/"; c = ast_closure_term; w = ssrfwdview -> { c :: w } ]];
END
(* ipats *)
{
let remove_loc x = x.CAst.v
let ipat_of_intro_pattern p = Tactypes.(
let rec ipat_of_intro_pattern = function
| IntroNaming (IntroIdentifier id) -> IPatId id
| IntroAction IntroWildcard -> IPatAnon Drop
| IntroAction (IntroOrAndPattern (IntroOrPattern iorpat)) ->
IPatCase (Regular(
List.map (List.map ipat_of_intro_pattern)
(List.map (List.map remove_loc) iorpat)))
| IntroAction (IntroOrAndPattern (IntroAndPattern iandpat)) ->
IPatCase
(Regular [List.map ipat_of_intro_pattern (List.map remove_loc iandpat)])
| IntroNaming IntroAnonymous -> IPatAnon (One None)
| IntroAction (IntroRewrite b) -> IPatRewrite (allocc, if b then L2R else R2L)
| IntroNaming (IntroFresh id) -> IPatAnon (One None)
| IntroAction (IntroApplyOn _) -> (* to do *) CErrors.user_err (Pp.str "TO DO")
| IntroAction (IntroInjection ips) ->
IPatInj [List.map ipat_of_intro_pattern (List.map remove_loc ips)]
| IntroForthcoming _ ->
(* Unable to determine which kind of ipat interp_introid could
* return [HH] *)
assert false
in
ipat_of_intro_pattern p
)
let rec map_ipat map_id map_ssrhyp map_ast_closure_term = function
| (IPatSimpl _ | IPatAnon _ | IPatRewrite _ | IPatNoop | IPatFastNondep) as x -> x
| IPatId id -> IPatId (map_id id)
| IPatAbstractVars l -> IPatAbstractVars (List.map map_id l)
| IPatClear clr -> IPatClear (List.map map_ssrhyp clr)
| IPatCase (Regular iorpat) -> IPatCase (Regular (List.map (List.map (map_ipat map_id map_ssrhyp map_ast_closure_term)) iorpat))
| IPatCase (Block(hat)) -> IPatCase (Block(map_block map_id hat))
| IPatDispatch (Regular iorpat) -> IPatDispatch (Regular (List.map (List.map (map_ipat map_id map_ssrhyp map_ast_closure_term)) iorpat))
| IPatDispatch (Block (hat)) -> IPatDispatch (Block(map_block map_id hat))
| IPatInj iorpat -> IPatInj (List.map (List.map (map_ipat map_id map_ssrhyp map_ast_closure_term)) iorpat)
| IPatView v -> IPatView (List.map map_ast_closure_term v)
and map_block map_id = function
| Prefix id -> Prefix (map_id id)
| SuffixId id -> SuffixId (map_id id)
| SuffixNum _ as x -> x
type ssripatrep = ssripat
let wit_ssripatrep = add_genarg "ssripatrep" (fun env sigma -> pr_ipat)
let pr_ssripat _ _ _ = pr_ipat
let pr_ssripats _ _ _ = pr_ipats
let pr_ssriorpat _ _ _ = pr_iorpat
let intern_ipat ist =
map_ipat
(fun id -> id)
(intern_hyp ist)
(glob_ast_closure_term ist)
let intern_ipats ist = List.map (intern_ipat ist)
let interp_intro_pattern = interp_wit wit_intro_pattern
let interp_introid ist gl id =
try IntroNaming (IntroIdentifier (hyp_id (snd (interp_hyp ist gl (SsrHyp (Loc.tag id))))))
with _ -> (snd (interp_intro_pattern ist gl (CAst.make @@ IntroNaming (IntroIdentifier id)))).CAst.v
let get_intro_id = function
| IntroNaming (IntroIdentifier id) -> id
| _ -> assert false
let rec add_intro_pattern_hyps ipat hyps =
let {CAst.loc=loc;v=ipat} = ipat in
match ipat with
| IntroNaming (IntroIdentifier id) ->
if not_section_id id then SsrHyp (loc, id) :: hyps else
hyp_err ?loc "Can't delete section hypothesis " id
| IntroAction IntroWildcard -> hyps
| IntroAction (IntroOrAndPattern (IntroOrPattern iorpat)) ->
List.fold_right (List.fold_right add_intro_pattern_hyps) iorpat hyps
| IntroAction (IntroOrAndPattern (IntroAndPattern iandpat)) ->
List.fold_right add_intro_pattern_hyps iandpat hyps
| IntroNaming IntroAnonymous -> []
| IntroNaming (IntroFresh _) -> []
| IntroAction (IntroRewrite _) -> hyps
| IntroAction (IntroInjection ips) -> List.fold_right add_intro_pattern_hyps ips hyps
| IntroAction (IntroApplyOn (c,pat)) -> add_intro_pattern_hyps pat hyps
| IntroForthcoming _ ->
(* As in ipat_of_intro_pattern, was unable to determine which kind
of ipat interp_introid could return [HH] *) assert false
(* We interp the ipat using the standard ltac machinery for ids, since
* we have no clue what a name could be bound to (maybe another ipat) *)
let interp_ipat ist gl =
let ltacvar id = Id.Map.mem id ist.Tacinterp.lfun in
let interp_block = function
| Prefix id when ltacvar id ->
begin match interp_introid ist gl id with
| IntroNaming (IntroIdentifier id) -> Prefix id
| _ -> Ssrcommon.errorstrm Pp.(str"Variable " ++ Id.print id ++ str" in block intro pattern should be bound to an identifier.")
end
| SuffixId id when ltacvar id ->
begin match interp_introid ist gl id with
| IntroNaming (IntroIdentifier id) -> SuffixId id
| _ -> Ssrcommon.errorstrm Pp.(str"Variable " ++ Id.print id ++ str" in block intro pattern should be bound to an identifier.")
end
| x -> x in
let rec interp = function
| IPatId id when ltacvar id ->
ipat_of_intro_pattern (interp_introid ist gl id)
| IPatId _ as x -> x
| IPatClear clr ->
let add_hyps (SsrHyp (loc, id) as hyp) hyps =
if not (ltacvar id) then hyp :: hyps else
add_intro_pattern_hyps CAst.(make ?loc (interp_introid ist gl id)) hyps in
let clr' = List.fold_right add_hyps clr [] in
check_hyps_uniq [] clr';
IPatClear clr'
| IPatCase(Regular iorpat) ->
IPatCase(Regular(List.map (List.map interp) iorpat))
| IPatCase(Block(hat)) -> IPatCase(Block(interp_block hat))
| IPatDispatch(Regular iorpat) ->
IPatDispatch(Regular (List.map (List.map interp) iorpat))
| IPatDispatch(Block(hat)) -> IPatDispatch(Block(interp_block hat))
| IPatInj iorpat -> IPatInj (List.map (List.map interp) iorpat)
| IPatAbstractVars l ->
IPatAbstractVars (List.map get_intro_id (List.map (interp_introid ist gl) l))
| IPatView l -> IPatView (List.map (fun x -> snd(interp_ast_closure_term ist
gl x)) l)
| (IPatSimpl _ | IPatAnon _ | IPatRewrite _ | IPatNoop | IPatFastNondep) as x -> x
in
interp
let interp_ipats ist gl l = project gl, List.map (interp_ipat ist gl) l
let pushIPatRewrite = function
| pats :: orpat -> (IPatRewrite (allocc, L2R) :: pats) :: orpat
| [] -> []
let pushIPatNoop = function
| pats :: orpat -> (IPatNoop :: pats) :: orpat
| [] -> []
let test_ident_no_do strm =
match Util.stream_nth 0 strm with
| Tok.IDENT s when s <> "do" -> ()
| _ -> raise Stream.Failure
let test_ident_no_do =
Pcoq.Entry.of_parser "test_ident_no_do" test_ident_no_do
}
ARGUMENT EXTEND ident_no_do PRINTED BY { fun _ _ _ -> Names.Id.print }
| [ "YouShouldNotTypeThis" ident(id) ] -> { id }
END
GRAMMAR EXTEND Gram
GLOBAL: ident_no_do;
ident_no_do: [ [ test_ident_no_do; id = IDENT -> { Id.of_string id } ] ];
END
ARGUMENT EXTEND ssripat TYPED AS ssripatrep list PRINTED BY { pr_ssripats }
INTERPRETED BY { interp_ipats }
GLOBALIZED BY { intern_ipats }
| [ "_" ] -> { [IPatAnon Drop] }
| [ "*" ] -> { [IPatAnon All] }
| [ ">" ] -> { [IPatFastNondep] }
| [ ident_no_do(id) ] -> { [IPatId id] }
| [ "?" ] -> { [IPatAnon (One None)] }
| [ "+" ] -> { [IPatAnon Temporary] }
| [ "++" ] -> { [IPatAnon Temporary; IPatAnon Temporary] }
| [ ssrsimpl_ne(sim) ] -> { [IPatSimpl sim] }
| [ ssrdocc(occ) "->" ] -> { match occ with
| Some [], _ -> CErrors.user_err ~loc (str"occ_switch expected")
| None, occ -> [IPatRewrite (occ, L2R)]
| Some clr, _ -> [IPatClear clr; IPatRewrite (allocc, L2R)] }
| [ ssrdocc(occ) "<-" ] -> { match occ with
| Some [], _ -> CErrors.user_err ~loc (str"occ_switch expected")
| None, occ -> [IPatRewrite (occ, R2L)]
| Some clr, _ -> [IPatClear clr; IPatRewrite (allocc, R2L)] }
| [ ssrdocc(occ) ] -> { match occ with
| Some cl, _ -> check_hyps_uniq [] cl; [IPatClear cl]
| _ -> CErrors.user_err ~loc (str"Only identifiers are allowed here") }
| [ "->" ] -> { [IPatRewrite (allocc, L2R)] }
| [ "<-" ] -> { [IPatRewrite (allocc, R2L)] }
| [ "-" ] -> { [IPatNoop] }
| [ "-/" "=" ] -> { [IPatNoop;IPatSimpl(Simpl ~-1)] }
| [ "-/=" ] -> { [IPatNoop;IPatSimpl(Simpl ~-1)] }
| [ "-/" "/" ] -> { [IPatNoop;IPatSimpl(Cut ~-1)] }
| [ "-//" ] -> { [IPatNoop;IPatSimpl(Cut ~-1)] }
| [ "-/" integer(n) "/" ] -> { [IPatNoop;IPatSimpl(Cut n)] }
| [ "-/" "/=" ] -> { [IPatNoop;IPatSimpl(SimplCut (~-1,~-1))] }
| [ "-//" "=" ] -> { [IPatNoop;IPatSimpl(SimplCut (~-1,~-1))] }
| [ "-//=" ] -> { [IPatNoop;IPatSimpl(SimplCut (~-1,~-1))] }
| [ "-/" integer(n) "/=" ] -> { [IPatNoop;IPatSimpl(SimplCut (n,~-1))] }
| [ "-/" integer(n) "/" integer (m) "=" ] ->
{ [IPatNoop;IPatSimpl(SimplCut(n,m))] }
| [ ssrfwdview(v) ] -> { [IPatView v] }
| [ "[" ":" ident_list(idl) "]" ] -> { [IPatAbstractVars idl] }
| [ "[:" ident_list(idl) "]" ] -> { [IPatAbstractVars idl] }
END
ARGUMENT EXTEND ssripats TYPED AS ssripat PRINTED BY { pr_ssripats }
| [ ssripat(i) ssripats(tl) ] -> { i @ tl }
| [ ] -> { [] }
END
ARGUMENT EXTEND ssriorpat TYPED AS ssripat list PRINTED BY { pr_ssriorpat }
| [ ssripats(pats) "|" ssriorpat(orpat) ] -> { pats :: orpat }
| [ ssripats(pats) "|-" ">" ssriorpat(orpat) ] -> { pats :: pushIPatRewrite orpat }
| [ ssripats(pats) "|-" ssriorpat(orpat) ] -> { pats :: pushIPatNoop orpat }
| [ ssripats(pats) "|->" ssriorpat(orpat) ] -> { pats :: pushIPatRewrite orpat }
| [ ssripats(pats) "||" ssriorpat(orpat) ] -> { pats :: [] :: orpat }
| [ ssripats(pats) "|||" ssriorpat(orpat) ] -> { pats :: [] :: [] :: orpat }
| [ ssripats(pats) "||||" ssriorpat(orpat) ] -> { [pats; []; []; []] @ orpat }
| [ ssripats(pats) ] -> { [pats] }
END
{
let reject_ssrhid strm =
match Util.stream_nth 0 strm with
| Tok.KEYWORD "[" ->
(match Util.stream_nth 1 strm with
| Tok.KEYWORD ":" -> raise Stream.Failure
| _ -> ())
| _ -> ()
let test_nohidden = Pcoq.Entry.of_parser "test_ssrhid" reject_ssrhid
let rec reject_binder crossed_paren k s =
match
try Some (Util.stream_nth k s)
with Stream.Failure -> None
with
| Some (Tok.KEYWORD "(") when not crossed_paren -> reject_binder true (k+1) s
| Some (Tok.IDENT _) when crossed_paren -> reject_binder true (k+1) s
| Some (Tok.KEYWORD ":" | Tok.KEYWORD ":=") when crossed_paren ->
raise Stream.Failure
| Some (Tok.KEYWORD ")") when crossed_paren -> raise Stream.Failure
| _ -> if crossed_paren then () else raise Stream.Failure
let _test_nobinder = Pcoq.Entry.of_parser "test_nobinder" (reject_binder false 0)
}
ARGUMENT EXTEND ssrcpat TYPED AS ssripatrep PRINTED BY { pr_ssripat }
| [ "YouShouldNotTypeThis" ssriorpat(x) ] -> { IPatCase(Regular x) }
END
(* Pcoq *)
GRAMMAR EXTEND Gram
GLOBAL: ssrcpat;
hat: [
[ "^"; id = ident -> { Prefix id }
| "^"; "~"; id = ident -> { SuffixId id }
| "^"; "~"; n = natural -> { SuffixNum n }
| "^~"; id = ident -> { SuffixId id }
| "^~"; n = natural -> { SuffixNum n }
]];
ssrcpat: [
[ test_nohidden; "["; hat_id = hat; "]" -> {
IPatCase (Block(hat_id)) }
| test_nohidden; "["; iorpat = ssriorpat; "]" -> {
IPatCase (Regular iorpat) }
| test_nohidden; "[="; iorpat = ssriorpat; "]" -> {
IPatInj iorpat } ]];
END
GRAMMAR EXTEND Gram
GLOBAL: ssripat;
ssripat: [[ pat = ssrcpat -> { [pat] } ]];
END
ARGUMENT EXTEND ssripats_ne TYPED AS ssripat PRINTED BY { pr_ssripats }
| [ ssripat(i) ssripats(tl) ] -> { i @ tl }
END
(* subsets of patterns *)
{
(* TODO: review what this function does, it looks suspicious *)
let check_ssrhpats loc w_binders ipats =
let err_loc s = CErrors.user_err ~loc ~hdr:"ssreflect" s in
let clr, ipats =
let opt_app = function None -> fun l -> Some l
| Some l1 -> fun l2 -> Some (l1 @ l2) in
let rec aux clr = function
| IPatClear cl :: tl -> aux (opt_app clr cl) tl
| tl -> clr, tl
in aux None ipats in
let simpl, ipats =
match List.rev ipats with
| IPatSimpl _ as s :: tl -> [s], List.rev tl
| _ -> [], ipats in
if simpl <> [] && not w_binders then
err_loc (str "No s-item allowed here: " ++ pr_ipats simpl);
let ipat, binders =
let rec loop ipat = function
| [] -> ipat, []
| ( IPatId _| IPatAnon _| IPatCase _ | IPatDispatch _ | IPatRewrite _ as i) :: tl ->
if w_binders then
if simpl <> [] && tl <> [] then
err_loc(str"binders XOR s-item allowed here: "++pr_ipats(tl@simpl))
else if not (List.for_all (function IPatId _ -> true | _ -> false) tl)
then err_loc (str "Only binders allowed here: " ++ pr_ipats tl)
else ipat @ [i], tl
else
if tl = [] then ipat @ [i], []
else err_loc (str "No binder or s-item allowed here: " ++ pr_ipats tl)
| hd :: tl -> loop (ipat @ [hd]) tl
in loop [] ipats in
((clr, ipat), binders), simpl
let pr_clear_opt sep = function None -> mt () | Some x -> pr_clear sep x
let pr_hpats (((clr, ipat), binders), simpl) =
pr_clear_opt mt clr ++ pr_ipats ipat ++ pr_ipats binders ++ pr_ipats simpl
let pr_ssrhpats _ _ _ = pr_hpats
let pr_ssrhpats_wtransp _ _ _ (_, x) = pr_hpats x
}
ARGUMENT EXTEND ssrhpats TYPED AS (((ssrclear option * ssripat) * ssripat) * ssripat)
PRINTED BY { pr_ssrhpats }
| [ ssripats(i) ] -> { check_ssrhpats loc true i }
END
ARGUMENT EXTEND ssrhpats_wtransp
TYPED AS (bool * (((ssrclear option * ssripats) * ssripats) * ssripats))
PRINTED BY { pr_ssrhpats_wtransp }
| [ ssripats(i) ] -> { false,check_ssrhpats loc true i }
| [ ssripats(i) "@" ssripats(j) ] -> { true,check_ssrhpats loc true (i @ j) }
END
ARGUMENT EXTEND ssrhpats_nobs
TYPED AS (((ssrclear option * ssripats) * ssripats) * ssripats) PRINTED BY { pr_ssrhpats }
| [ ssripats(i) ] -> { check_ssrhpats loc false i }
END
ARGUMENT EXTEND ssrrpat TYPED AS ssripatrep PRINTED BY { pr_ssripat }
| [ "->" ] -> { IPatRewrite (allocc, L2R) }
| [ "<-" ] -> { IPatRewrite (allocc, R2L) }
END
{
let pr_intros sep intrs =
if intrs = [] then mt() else sep () ++ str "=>" ++ pr_ipats intrs
let pr_ssrintros _ _ _ = pr_intros mt
}
ARGUMENT EXTEND ssrintros_ne TYPED AS ssripat
PRINTED BY { pr_ssrintros }
| [ "=>" ssripats_ne(pats) ] -> { pats }
(* TODO | [ "=>" ">" ssripats_ne(pats) ] -> { IPatFastMode :: pats }
| [ "=>>" ssripats_ne(pats) ] -> [ IPatFastMode :: pats ] *)
END
ARGUMENT EXTEND ssrintros TYPED AS ssrintros_ne PRINTED BY { pr_ssrintros }
| [ ssrintros_ne(intrs) ] -> { intrs }
| [ ] -> { [] }
END
{
let pr_ssrintrosarg env sigma _ _ prt (tac, ipats) =
prt env sigma tacltop tac ++ pr_intros spc ipats
}
ARGUMENT EXTEND ssrintrosarg TYPED AS (tactic * ssrintros)
PRINTED BY { pr_ssrintrosarg env sigma }
| [ "YouShouldNotTypeThis" ssrtacarg(arg) ssrintros_ne(ipats) ] -> { arg, ipats }
END
TACTIC EXTEND ssrtclintros
| [ "YouShouldNotTypeThis" ssrintrosarg(arg) ] ->
{ let tac, intros = arg in
ssrevaltac ist tac <*> tclIPATssr intros }
END
{
(** Defined identifier *)
let pr_ssrfwdid id = pr_spc () ++ pr_id id
let pr_ssrfwdidx _ _ _ = pr_ssrfwdid
}
(* We use a primitive parser for the head identifier of forward *)
(* tactis to avoid syntactic conflicts with basic Coq tactics. *)
ARGUMENT EXTEND ssrfwdid TYPED AS ident PRINTED BY { pr_ssrfwdidx }
| [ "YouShouldNotTypeThis" ] -> { anomaly "Grammar placeholder match" }
END
{
let accept_ssrfwdid strm =
match stream_nth 0 strm with
| Tok.IDENT id -> accept_before_syms_or_any_id [":"; ":="; "("] strm
| _ -> raise Stream.Failure
let test_ssrfwdid = Pcoq.Entry.of_parser "test_ssrfwdid" accept_ssrfwdid
}
GRAMMAR EXTEND Gram
GLOBAL: ssrfwdid;
ssrfwdid: [[ test_ssrfwdid; id = Prim.ident -> { id } ]];
END
(* by *)
(** Tactical arguments. *)
(* We have four kinds: simple tactics, [|]-bracketed lists, hints, and swaps *)
(* The latter two are used in forward-chaining tactics (have, suffice, wlog) *)
(* and subgoal reordering tacticals (; first & ; last), respectively. *)
{
let pr_ortacs env sigma prt =
let rec pr_rec = function
| [None] -> spc() ++ str "|" ++ spc()
| None :: tacs -> spc() ++ str "|" ++ pr_rec tacs
| Some tac :: tacs -> spc() ++ str "| " ++ prt env sigma tacltop tac ++ pr_rec tacs
| [] -> mt() in
function
| [None] -> spc()
| None :: tacs -> pr_rec tacs
| Some tac :: tacs -> prt env sigma tacltop tac ++ pr_rec tacs
| [] -> mt()
let pr_ssrortacs env sigma _ _ = pr_ortacs env sigma
}
ARGUMENT EXTEND ssrortacs TYPED AS tactic option list PRINTED BY { pr_ssrortacs env sigma }
| [ ssrtacarg(tac) "|" ssrortacs(tacs) ] -> { Some tac :: tacs }
| [ ssrtacarg(tac) "|" ] -> { [Some tac; None] }
| [ ssrtacarg(tac) ] -> { [Some tac] }
| [ "|" ssrortacs(tacs) ] -> { None :: tacs }
| [ "|" ] -> { [None; None] }
END
{
let pr_hintarg env sigma prt = function
| true, tacs -> hv 0 (str "[ " ++ pr_ortacs env sigma prt tacs ++ str " ]")
| false, [Some tac] -> prt env sigma tacltop tac
| _, _ -> mt()
let pr_ssrhintarg env sigma _ _ = pr_hintarg env sigma
}
ARGUMENT EXTEND ssrhintarg TYPED AS (bool * ssrortacs) PRINTED BY { pr_ssrhintarg env sigma }
| [ "[" "]" ] -> { nullhint }
| [ "[" ssrortacs(tacs) "]" ] -> { mk_orhint tacs }
| [ ssrtacarg(arg) ] -> { mk_hint arg }
END
(* Copy of ssrhintarg with LEVEL "3", useful for: "under ... do ..." *)
ARGUMENT EXTEND ssrhint3arg TYPED AS (bool * ssrortacs) PRINTED BY { pr_ssrhintarg env sigma }
| [ "[" "]" ] -> { nullhint }
| [ "[" ssrortacs(tacs) "]" ] -> { mk_orhint tacs }
| [ ssrtac3arg(arg) ] -> { mk_hint arg }
END
ARGUMENT EXTEND ssrortacarg TYPED AS ssrhintarg PRINTED BY { pr_ssrhintarg env sigma }
| [ "[" ssrortacs(tacs) "]" ] -> { mk_orhint tacs }
END
{
let pr_hint env sigma prt arg =
if arg = nohint then mt() else str "by " ++ pr_hintarg env sigma prt arg
let pr_ssrhint env sigma _ _ = pr_hint env sigma
}
ARGUMENT EXTEND ssrhint TYPED AS ssrhintarg PRINTED BY { pr_ssrhint env sigma }
| [ ] -> { nohint }
END
(** The "in" pseudo-tactical *)
(* We can't make "in" into a general tactical because this would create a *)
(* crippling conflict with the ltac let .. in construct. Hence, we add *)
(* explicitly an "in" suffix to all the extended tactics for which it is *)
(* relevant (including move, case, elim) and to the extended do tactical *)
(* below, which yields a general-purpose "in" of the form do [...] in ... *)
(* This tactical needs to come before the intro tactics because the latter *)
(* must take precautions in order not to interfere with the discharged *)
(* assumptions. This is especially difficult for discharged "let"s, which *)
(* the default simpl and unfold tactics would erase blindly. *)
{
open Ssrmatching_plugin.Ssrmatching
open Ssrmatching_plugin.G_ssrmatching
let pr_wgen = function
| (clr, Some((id,k),None)) -> spc() ++ pr_clear mt clr ++ str k ++ pr_hoi id
| (clr, Some((id,k),Some p)) ->
spc() ++ pr_clear mt clr ++ str"(" ++ str k ++ pr_hoi id ++ str ":=" ++
pr_cpattern p ++ str ")"
| (clr, None) -> spc () ++ pr_clear mt clr
let pr_ssrwgen _ _ _ = pr_wgen
}
(* no globwith for char *)
ARGUMENT EXTEND ssrwgen
TYPED AS (ssrclear * ((ssrhoi_hyp * string) * cpattern option) option)
PRINTED BY { pr_ssrwgen }
| [ ssrclear_ne(clr) ] -> { clr, None }
| [ ssrhoi_hyp(hyp) ] -> { [], Some((hyp, " "), None) }
| [ "@" ssrhoi_hyp(hyp) ] -> { [], Some((hyp, "@"), None) }
| [ "(" ssrhoi_id(id) ":=" lcpattern(p) ")" ] ->
{ [], Some ((id," "),Some p) }
| [ "(" ssrhoi_id(id) ")" ] -> { [], Some ((id,"("), None) }
| [ "(@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] ->
{ [], Some ((id,"@"),Some p) }
| [ "(" "@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] ->
{ [], Some ((id,"@"),Some p) }
END
{
let pr_clseq = function
| InGoal | InHyps -> mt ()
| InSeqGoal -> str "|- *"
| InHypsSeqGoal -> str " |- *"
| InHypsGoal -> str " *"
| InAll -> str "*"
| InHypsSeq -> str " |-"
| InAllHyps -> str "* |-"
let wit_ssrclseq = add_genarg "ssrclseq" (fun env sigma -> pr_clseq)
let pr_clausehyps = pr_list pr_spc pr_wgen
let pr_ssrclausehyps _ _ _ = pr_clausehyps
}
ARGUMENT EXTEND ssrclausehyps
TYPED AS ssrwgen list PRINTED BY { pr_ssrclausehyps }
| [ ssrwgen(hyp) "," ssrclausehyps(hyps) ] -> { hyp :: hyps }
| [ ssrwgen(hyp) ssrclausehyps(hyps) ] -> { hyp :: hyps }
| [ ssrwgen(hyp) ] -> { [hyp] }
END
{
(* type ssrclauses = ssrahyps * ssrclseq *)
let pr_clauses (hyps, clseq) =
if clseq = InGoal then mt ()
else str "in " ++ pr_clausehyps hyps ++ pr_clseq clseq
let pr_ssrclauses _ _ _ = pr_clauses
}
ARGUMENT EXTEND ssrclauses TYPED AS (ssrwgen list * ssrclseq)
PRINTED BY { pr_ssrclauses }
| [ "in" ssrclausehyps(hyps) "|-" "*" ] -> { hyps, InHypsSeqGoal }
| [ "in" ssrclausehyps(hyps) "|-" ] -> { hyps, InHypsSeq }
| [ "in" ssrclausehyps(hyps) "*" ] -> { hyps, InHypsGoal }
| [ "in" ssrclausehyps(hyps) ] -> { hyps, InHyps }
| [ "in" "|-" "*" ] -> { [], InSeqGoal }
| [ "in" "*" ] -> { [], InAll }
| [ "in" "*" "|-" ] -> { [], InAllHyps }
| [ ] -> { [], InGoal }
END
{
(** Definition value formatting *)
(* We use an intermediate structure to correctly render the binder list *)
(* abbreviations. We use a list of hints to extract the binders and *)
(* base term from a term, for the two first levels of representation of *)
(* of constr terms. *)
let pr_binder prl = function
| Bvar x ->
pr_name x
| Bdecl (xs, t) ->
str "(" ++ pr_list pr_spc pr_name xs ++ str " : " ++ prl t ++ str ")"
| Bdef (x, None, v) ->
str "(" ++ pr_name x ++ str " := " ++ prl v ++ str ")"
| Bdef (x, Some t, v) ->
str "(" ++ pr_name x ++ str " : " ++ prl t ++
str " := " ++ prl v ++ str ")"
| Bstruct x ->
str "{struct " ++ pr_name x ++ str "}"
| Bcast t ->
str ": " ++ prl t
let rec format_local_binders h0 bl0 = match h0, bl0 with
| BFvar :: h, CLocalAssum ([{CAst.v=x}], _, _) :: bl ->
Bvar x :: format_local_binders h bl
| BFdecl _ :: h, CLocalAssum (lxs, _, t) :: bl ->
Bdecl (List.map (fun x -> x.CAst.v) lxs, t) :: format_local_binders h bl
| BFdef :: h, CLocalDef ({CAst.v=x}, v, oty) :: bl ->
Bdef (x, oty, v) :: format_local_binders h bl
| _ -> []
let rec format_constr_expr h0 c0 = let open CAst in match h0, c0 with
| BFvar :: h, { v = CLambdaN ([CLocalAssum([{CAst.v=x}], _, _)], c) } ->
let bs, c' = format_constr_expr h c in
Bvar x :: bs, c'
| BFdecl _:: h, { v = CLambdaN ([CLocalAssum(lxs, _, t)], c) } ->
let bs, c' = format_constr_expr h c in
Bdecl (List.map (fun x -> x.CAst.v) lxs, t) :: bs, c'
| BFdef :: h, { v = CLetIn({CAst.v=x}, v, oty, c) } ->
let bs, c' = format_constr_expr h c in
Bdef (x, oty, v) :: bs, c'
| [BFcast], { v = CCast (c, Glob_term.CastConv t) } ->
[Bcast t], c
| BFrec (has_str, has_cast) :: h,
{ v = CFix ( _, [_, Some {CAst.v = CStructRec locn}, bl, t, c]) } ->
let bs = format_local_binders h bl in
let bstr = if has_str then [Bstruct (Name locn.CAst.v)] else [] in
bs @ bstr @ (if has_cast then [Bcast t] else []), c
| BFrec (_, has_cast) :: h, { v = CCoFix ( _, [_, bl, t, c]) } ->
format_local_binders h bl @ (if has_cast then [Bcast t] else []), c
| _, c ->
[], c
(** Forward chaining argument *)
(* There are three kinds of forward definitions: *)
(* - Hint: type only, cast to Type, may have proof hint. *)
(* - Have: type option + value, no space before type *)
(* - Pose: binders + value, space before binders. *)
let pr_fwdkind = function
| FwdHint (s,_) -> str (s ^ " ") | _ -> str " :=" ++ spc ()
let pr_fwdfmt (fk, _ : ssrfwdfmt) = pr_fwdkind fk
let wit_ssrfwdfmt = add_genarg "ssrfwdfmt" (fun env sigma -> pr_fwdfmt)
(* type ssrfwd = ssrfwdfmt * ssrterm *)
let mkFwdVal fk c = ((fk, []), c)
let mkssrFwdVal fk c = ((fk, []), (c,None))
let dC t = Glob_term.CastConv t
let same_ist { interp_env = x } { interp_env = y } =
match x,y with
| None, None -> true
| Some a, Some b -> a == b
| _ -> false
let mkFwdCast fk ?loc ?c t =
let c = match c with
| None -> mkCHole loc
| Some c -> assert (same_ist t c); c.body in
((fk, [BFcast]),
{ t with annotation = `None;
body = (CAst.make ?loc @@ CCast (c, dC t.body)) })
let mkssrFwdCast fk loc t c = ((fk, [BFcast]), (c, Some t))
let mkFwdHint s t =
let loc = Constrexpr_ops.constr_loc t.body in
mkFwdCast (FwdHint (s,false)) ?loc t
let mkFwdHintNoTC s t =
let loc = Constrexpr_ops.constr_loc t.body in
mkFwdCast (FwdHint (s,true)) ?loc t
let pr_gen_fwd prval prc prlc fk (bs, c) =
let prc s = str s ++ spc () ++ prval prc prlc c in
match fk, bs with
| FwdHint (s,_), [Bcast t] -> str s ++ spc () ++ prlc t
| FwdHint (s,_), _ -> prc (s ^ "(* typeof *)")
| FwdHave, [Bcast t] -> str ":" ++ spc () ++ prlc t ++ prc " :="
| _, [] -> prc " :="
| _, _ -> spc () ++ pr_list spc (pr_binder prlc) bs ++ prc " :="
let pr_fwd_guarded prval prval' = function
| (fk, h), c ->
pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c.body)
let pr_unguarded prc prlc = prlc
let pr_fwd = pr_fwd_guarded pr_unguarded pr_unguarded
let pr_ssrfwd _ _ _ = pr_fwd
}
ARGUMENT EXTEND ssrfwd TYPED AS (ssrfwdfmt * ast_closure_lterm) PRINTED BY { pr_ssrfwd }
| [ ":=" ast_closure_lterm(c) ] -> { mkFwdVal FwdPose c }
| [ ":" ast_closure_lterm (t) ":=" ast_closure_lterm(c) ] -> { mkFwdCast FwdPose ~loc t ~c }
END
(** Independent parsing for binders *)
(* The pose, pose fix, and pose cofix tactics use these internally to *)
(* parse argument fragments. *)
{
let pr_ssrbvar env sigma prc _ _ v = prc env sigma v
}
ARGUMENT EXTEND ssrbvar TYPED AS constr PRINTED BY { pr_ssrbvar env sigma }
| [ ident(id) ] -> { mkCVar ~loc id }
| [ "_" ] -> { mkCHole (Some loc) }
END
{
let bvar_lname = let open CAst in function
| { v = CRef (qid, _) } when qualid_is_ident qid ->
CAst.make ?loc:qid.CAst.loc @@ Name (qualid_basename qid)
| { loc = loc } -> CAst.make ?loc Anonymous
let pr_ssrbinder env sigma prc _ _ (_, c) = prc env sigma c
}
ARGUMENT EXTEND ssrbinder TYPED AS (ssrfwdfmt * constr) PRINTED BY { pr_ssrbinder env sigma }
| [ ssrbvar(bv) ] ->
{ let { CAst.loc=xloc } as x = bvar_lname bv in
(FwdPose, [BFvar]),
CAst.make ~loc @@ CLambdaN ([CLocalAssum([x],Default Explicit,mkCHole xloc)],mkCHole (Some loc)) }
| [ "(" ssrbvar(bv) ")" ] ->
{ let { CAst.loc=xloc } as x = bvar_lname bv in
(FwdPose, [BFvar]),
CAst.make ~loc @@ CLambdaN ([CLocalAssum([x],Default Explicit,mkCHole xloc)],mkCHole (Some loc)) }
| [ "(" ssrbvar(bv) ":" lconstr(t) ")" ] ->
{ let x = bvar_lname bv in
(FwdPose, [BFdecl 1]),
CAst.make ~loc @@ CLambdaN ([CLocalAssum([x], Default Explicit, t)], mkCHole (Some loc)) }
| [ "(" ssrbvar(bv) ne_ssrbvar_list(bvs) ":" lconstr(t) ")" ] ->
{ let xs = List.map bvar_lname (bv :: bvs) in
let n = List.length xs in
(FwdPose, [BFdecl n]),
CAst.make ~loc @@ CLambdaN ([CLocalAssum (xs, Default Explicit, t)], mkCHole (Some loc)) }
| [ "(" ssrbvar(id) ":" lconstr(t) ":=" lconstr(v) ")" ] ->
{ (FwdPose,[BFdef]), CAst.make ~loc @@ CLetIn (bvar_lname id, v, Some t, mkCHole (Some loc)) }
| [ "(" ssrbvar(id) ":=" lconstr(v) ")" ] ->
{ (FwdPose,[BFdef]), CAst.make ~loc @@ CLetIn (bvar_lname id, v, None, mkCHole (Some loc)) }
END
GRAMMAR EXTEND Gram
GLOBAL: ssrbinder;
ssrbinder: [
[ ["of" -> { () } | "&" -> { () } ]; c = operconstr LEVEL "99" -> {
(FwdPose, [BFvar]),
CAst.make ~loc @@ CLambdaN ([CLocalAssum ([CAst.make ~loc Anonymous],Default Explicit,c)],mkCHole (Some loc)) } ]
];
END
{
let rec binders_fmts = function
| ((_, h), _) :: bs -> h @ binders_fmts bs
| _ -> []
let push_binders c2 bs =
let loc2 = constr_loc c2 in let mkloc loc1 = Loc.merge_opt loc1 loc2 in
let open CAst in
let rec loop ty c = function
| (_, { loc = loc1; v = CLambdaN (b, _) } ) :: bs when ty ->
CAst.make ?loc:(mkloc loc1) @@ CProdN (b, loop ty c bs)
| (_, { loc = loc1; v = CLambdaN (b, _) } ) :: bs ->
CAst.make ?loc:(mkloc loc1) @@ CLambdaN (b, loop ty c bs)
| (_, { loc = loc1; v = CLetIn (x, v, oty, _) } ) :: bs ->
CAst.make ?loc:(mkloc loc1) @@ CLetIn (x, v, oty, loop ty c bs)
| [] -> c
| _ -> anomaly "binder not a lambda nor a let in" in
match c2 with
| { loc; v = CCast (ct, Glob_term.CastConv cty) } ->
CAst.make ?loc @@ (CCast (loop false ct bs, Glob_term.CastConv (loop true cty bs)))
| ct -> loop false ct bs
let rec fix_binders = let open CAst in function
| (_, { v = CLambdaN ([CLocalAssum(xs, _, t)], _) } ) :: bs ->
CLocalAssum (xs, Default Explicit, t) :: fix_binders bs
| (_, { v = CLetIn (x, v, oty, _) } ) :: bs ->
CLocalDef (x, v, oty) :: fix_binders bs
| _ -> []
let pr_ssrstruct _ _ _ = function
| Some id -> str "{struct " ++ pr_id id ++ str "}"
| None -> mt ()
}
ARGUMENT EXTEND ssrstruct TYPED AS ident option PRINTED BY { pr_ssrstruct }
| [ "{" "struct" ident(id) "}" ] -> { Some id }
| [ ] -> { None }
END
(** The "pose" tactic *)
(* The plain pose form. *)
{
let bind_fwd bs ((fk, h), c) =
(fk,binders_fmts bs @ h), { c with body = push_binders c.body bs }
}
ARGUMENT EXTEND ssrposefwd TYPED AS ssrfwd PRINTED BY { pr_ssrfwd }
| [ ssrbinder_list(bs) ssrfwd(fwd) ] -> { bind_fwd bs fwd }
END
(* The pose fix form. *)
{
let pr_ssrfixfwd _ _ _ (id, fwd) = str " fix " ++ pr_id id ++ pr_fwd fwd
let bvar_locid = function
| { CAst.v = CRef (qid, _) } when qualid_is_ident qid ->
CAst.make ?loc:qid.CAst.loc (qualid_basename qid)
| _ -> CErrors.user_err (Pp.str "Missing identifier after \"(co)fix\"")
}
ARGUMENT EXTEND ssrfixfwd TYPED AS (ident * ssrfwd) PRINTED BY { pr_ssrfixfwd }
| [ "fix" ssrbvar(bv) ssrbinder_list(bs) ssrstruct(sid) ssrfwd(fwd) ] ->
{ let { CAst.v=id } as lid = bvar_locid bv in
let (fk, h), ac = fwd in
let c = ac.body in
let has_cast, t', c' = match format_constr_expr h c with
| [Bcast t'], c' -> true, t', c'
| _ -> false, mkCHole (constr_loc c), c in
let lb = fix_binders bs in
let has_struct, i =
let rec loop = function
| {CAst.loc=l'; v=Name id'} :: _ when Option.equal Id.equal sid (Some id') ->
true, CAst.make ?loc:l' id'
| [{CAst.loc=l';v=Name id'}] when sid = None ->
false, CAst.make ?loc:l' id'
| _ :: bn -> loop bn
| [] -> CErrors.user_err (Pp.str "Bad structural argument") in
loop (names_of_local_assums lb) in
let h' = BFrec (has_struct, has_cast) :: binders_fmts bs in
let fix = CAst.make ~loc @@ CFix (lid, [lid, (Some (CAst.make (CStructRec i))), lb, t', c']) in
id, ((fk, h'), { ac with body = fix }) }
END
(* The pose cofix form. *)
{
let pr_ssrcofixfwd _ _ _ (id, fwd) = str " cofix " ++ pr_id id ++ pr_fwd fwd
}
ARGUMENT EXTEND ssrcofixfwd TYPED AS ssrfixfwd PRINTED BY { pr_ssrcofixfwd }
| [ "cofix" ssrbvar(bv) ssrbinder_list(bs) ssrfwd(fwd) ] ->
{ let { CAst.v=id } as lid = bvar_locid bv in
let (fk, h), ac = fwd in
let c = ac.body in
let has_cast, t', c' = match format_constr_expr h c with
| [Bcast t'], c' -> true, t', c'
| _ -> false, mkCHole (constr_loc c), c in
let h' = BFrec (false, has_cast) :: binders_fmts bs in
let cofix = CAst.make ~loc @@ CCoFix (lid, [lid, fix_binders bs, t', c']) in
id, ((fk, h'), { ac with body = cofix })
}
END
{
(* This does not print the type, it should be fixed... *)
let pr_ssrsetfwd _ _ _ (((fk,_),(t,_)), docc) =
pr_gen_fwd (fun _ _ -> pr_cpattern)
(fun _ -> mt()) (fun _ -> mt()) fk ([Bcast ()],t)
}
ARGUMENT EXTEND ssrsetfwd
TYPED AS ((ssrfwdfmt * (lcpattern * ast_closure_lterm option)) * ssrdocc)
PRINTED BY { pr_ssrsetfwd }
| [ ":" ast_closure_lterm(t) ":=" "{" ssrocc(occ) "}" cpattern(c) ] ->
{ mkssrFwdCast FwdPose loc t c, mkocc occ }
| [ ":" ast_closure_lterm(t) ":=" lcpattern(c) ] ->
{ mkssrFwdCast FwdPose loc t c, nodocc }
| [ ":=" "{" ssrocc(occ) "}" cpattern(c) ] ->
{ mkssrFwdVal FwdPose c, mkocc occ }
| [ ":=" lcpattern(c) ] -> { mkssrFwdVal FwdPose c, nodocc }
END
{
let pr_ssrhavefwd env sigma _ _ prt (fwd, hint) = pr_fwd fwd ++ pr_hint env sigma prt hint
}
ARGUMENT EXTEND ssrhavefwd TYPED AS (ssrfwd * ssrhint) PRINTED BY { pr_ssrhavefwd env sigma }
| [ ":" ast_closure_lterm(t) ssrhint(hint) ] -> { mkFwdHint ":" t, hint }
| [ ":" ast_closure_lterm(t) ":=" ast_closure_lterm(c) ] -> { mkFwdCast FwdHave ~loc t ~c, nohint }
| [ ":" ast_closure_lterm(t) ":=" ] -> { mkFwdHintNoTC ":" t, nohint }
| [ ":=" ast_closure_lterm(c) ] -> { mkFwdVal FwdHave c, nohint }
END
{
let intro_id_to_binder = List.map (function
| IPatId id ->
let { CAst.loc=xloc } as x = bvar_lname (mkCVar id) in
(FwdPose, [BFvar]),
CAst.make @@ CLambdaN ([CLocalAssum([x], Default Explicit, mkCHole xloc)],
mkCHole None)
| _ -> anomaly "non-id accepted as binder")
let binder_to_intro_id = CAst.(List.map (function
| (FwdPose, [BFvar]), { v = CLambdaN ([CLocalAssum(ids,_,_)],_) }
| (FwdPose, [BFdecl _]), { v = CLambdaN ([CLocalAssum(ids,_,_)],_) } ->
List.map (function {v=Name id} -> IPatId id | _ -> IPatAnon (One None)) ids
| (FwdPose, [BFdef]), { v = CLetIn ({v=Name id},_,_,_) } -> [IPatId id]
| (FwdPose, [BFdef]), { v = CLetIn ({v=Anonymous},_,_,_) } -> [IPatAnon (One None)]
| _ -> anomaly "ssrbinder is not a binder"))
let pr_ssrhavefwdwbinders env sigma _ _ prt (tr,((hpats, (fwd, hint)))) =
pr_hpats hpats ++ pr_fwd fwd ++ pr_hint env sigma prt hint
}
ARGUMENT EXTEND ssrhavefwdwbinders
TYPED AS (bool * (ssrhpats * (ssrfwd * ssrhint)))
PRINTED BY { pr_ssrhavefwdwbinders env sigma }
| [ ssrhpats_wtransp(trpats) ssrbinder_list(bs) ssrhavefwd(fwd) ] ->
{ let tr, pats = trpats in
let ((clr, pats), binders), simpl = pats in
let allbs = intro_id_to_binder binders @ bs in
let allbinders = binders @ List.flatten (binder_to_intro_id bs) in
let hint = bind_fwd allbs (fst fwd), snd fwd in
tr, ((((clr, pats), allbinders), simpl), hint) }
END
{
let pr_ssrdoarg env sigma prc _ prt (((n, m), tac), clauses) =
pr_index n ++ pr_mmod m ++ pr_hintarg env sigma prt tac ++ pr_clauses clauses
}
ARGUMENT EXTEND ssrdoarg
TYPED AS (((ssrindex * ssrmmod) * ssrhintarg) * ssrclauses)
PRINTED BY { pr_ssrdoarg env sigma }
| [ "YouShouldNotTypeThis" ] -> { anomaly "Grammar placeholder match" }
END
{
(* type ssrseqarg = ssrindex * (ssrtacarg * ssrtac option) *)
let pr_seqtacarg env sigma prt = function
| (is_first, []), _ -> str (if is_first then "first" else "last")
| tac, Some dtac ->
hv 0 (pr_hintarg env sigma prt tac ++ spc() ++ str "|| " ++ prt env sigma tacltop dtac)
| tac, _ -> pr_hintarg env sigma prt tac
let pr_ssrseqarg env sigma _ _ prt = function
| ArgArg 0, tac -> pr_seqtacarg env sigma prt tac
| i, tac -> pr_index i ++ str " " ++ pr_seqtacarg env sigma prt tac
}
(* We must parse the index separately to resolve the conflict with *)
(* an unindexed tactic. *)
ARGUMENT EXTEND ssrseqarg TYPED AS (ssrindex * (ssrhintarg * tactic option))
PRINTED BY { pr_ssrseqarg env sigma }
| [ "YouShouldNotTypeThis" ] -> { anomaly "Grammar placeholder match" }
END
{
let sq_brace_tacnames =
["first"; "solve"; "do"; "rewrite"; "have"; "suffices"; "wlog"]
(* "by" is a keyword *)
let accept_ssrseqvar strm =
match stream_nth 0 strm with
| Tok.IDENT id when not (List.mem id sq_brace_tacnames) ->
accept_before_syms_or_ids ["["] ["first";"last"] strm
| _ -> raise Stream.Failure
let test_ssrseqvar = Pcoq.Entry.of_parser "test_ssrseqvar" accept_ssrseqvar
let swaptacarg (loc, b) = (b, []), Some (TacId [])
let check_seqtacarg dir arg = match snd arg, dir with
| ((true, []), Some (TacAtom { CAst.loc })), L2R ->
CErrors.user_err ?loc (str "expected \"last\"")
| ((false, []), Some (TacAtom { CAst.loc })), R2L ->
CErrors.user_err ?loc (str "expected \"first\"")
| _, _ -> arg
let ssrorelse = Entry.create "ssrorelse"
}
GRAMMAR EXTEND Gram
GLOBAL: ssrorelse ssrseqarg;
ssrseqidx: [
[ test_ssrseqvar; id = Prim.ident -> { ArgVar (CAst.make ~loc id) }
| n = Prim.natural -> { ArgArg (check_index ~loc n) }
] ];
ssrswap: [[ IDENT "first" -> { loc, true } | IDENT "last" -> { loc, false } ]];
ssrorelse: [[ "||"; tac = tactic_expr LEVEL "2" -> { tac } ]];
ssrseqarg: [
[ arg = ssrswap -> { noindex, swaptacarg arg }
| i = ssrseqidx; tac = ssrortacarg; def = OPT ssrorelse -> { i, (tac, def) }
| i = ssrseqidx; arg = ssrswap -> { i, swaptacarg arg }
| tac = tactic_expr LEVEL "3" -> { noindex, (mk_hint tac, None) }
] ];
END
{
let tactic_expr = Pltac.tactic_expr
}
(** 1. Utilities *)
(** Tactic-level diagnosis *)
(* debug *)
{
(* Let's play with the new proof engine API *)
let old_tac = V82.tactic
}
(** Name generation *)
(* Since Coq now does repeated internal checks of its external lexical *)
(* rules, we now need to carve ssreflect reserved identifiers out of *)
(* out of the user namespace. We use identifiers of the form _id_ for *)
(* this purpose, e.g., we "anonymize" an identifier id as _id_, adding *)
(* an extra leading _ if this might clash with an internal identifier. *)
(* We check for ssreflect identifiers in the ident grammar rule; *)
(* when the ssreflect Module is present this is normally an error, *)
(* but we provide a compatibility flag to reduce this to a warning. *)
{
let ssr_reserved_ids = Summary.ref ~name:"SSR:idents" true
let () =
Goptions.(declare_bool_option
{ optname = "ssreflect identifiers";
optkey = ["SsrIdents"];
optdepr = false;
optread = (fun _ -> !ssr_reserved_ids);
optwrite = (fun b -> ssr_reserved_ids := b)
})
let is_ssr_reserved s =
let n = String.length s in n > 2 && s.[0] = '_' && s.[n - 1] = '_'
let ssr_id_of_string loc s =
if is_ssr_reserved s && is_ssr_loaded () then begin
if !ssr_reserved_ids then
CErrors.user_err ~loc (str ("The identifier " ^ s ^ " is reserved."))
else if is_internal_name s then
Feedback.msg_warning (str ("Conflict between " ^ s ^ " and ssreflect internal names."))
else Feedback.msg_warning (str (
"The name " ^ s ^ " fits the _xxx_ format used for anonymous variables.\n"
^ "Scripts with explicit references to anonymous variables are fragile."))
end; Id.of_string s
let ssr_null_entry = Pcoq.Entry.of_parser "ssr_null" (fun _ -> ())
}
GRAMMAR EXTEND Gram
GLOBAL: Prim.ident;
Prim.ident: [[ s = IDENT; ssr_null_entry -> { ssr_id_of_string loc s } ]];
END
{
let perm_tag = "_perm_Hyp_"
let _ = add_internal_name (is_tagged perm_tag)
}
(* We must not anonymize context names discharged by the "in" tactical. *)
(** Tactical extensions. *)
(* The TACTIC EXTEND facility can't be used for defining new user *)
(* tacticals, because: *)
(* - the concrete syntax must start with a fixed string *)
(* We use the following workaround: *)
(* - We use the (unparsable) "YouShouldNotTypeThis" token for tacticals that *)
(* don't start with a token, then redefine the grammar and *)
(* printer using GEXTEND and set_pr_ssrtac, respectively. *)
{
type ssrargfmt = ArgSsr of string | ArgSep of string
let ssrtac_name name = {
mltac_plugin = "ssreflect_plugin";
mltac_tactic = "ssr" ^ name;
}
let ssrtac_entry name n = {
mltac_name = ssrtac_name name;
mltac_index = n;
}
let set_pr_ssrtac name prec afmt = (* FIXME *) () (*
let fmt = List.map (function
| ArgSep s -> Egramml.GramTerminal s
| ArgSsr s -> Egramml.GramTerminal s
| ArgCoq at -> Egramml.GramTerminal "COQ_ARG") afmt in
let tacname = ssrtac_name name in () *)
let ssrtac_atom ?loc name args = TacML (CAst.make ?loc (ssrtac_entry name 0, args))
let ssrtac_expr ?loc name args = ssrtac_atom ?loc name args
let tclintros_expr ?loc tac ipats =
let args = [Tacexpr.TacGeneric (in_gen (rawwit wit_ssrintrosarg) (tac, ipats))] in
ssrtac_expr ?loc "tclintros" args
}
GRAMMAR EXTEND Gram
GLOBAL: tactic_expr;
tactic_expr: LEVEL "1" [ RIGHTA
[ tac = tactic_expr; intros = ssrintros_ne -> { tclintros_expr ~loc tac intros }
] ];
END
(** Bracketing tactical *)
(* The tactic pretty-printer doesn't know that some extended tactics *)
(* are actually tacticals. To prevent it from improperly removing *)
(* parentheses we override the parsing rule for bracketed tactic *)
(* expressions so that the pretty-print always reflects the input. *)
(* (Removing user-specified parentheses is dubious anyway). *)
GRAMMAR EXTEND Gram
GLOBAL: tactic_expr;
ssrparentacarg: [[ "("; tac = tactic_expr; ")" -> { CAst.make ~loc (Tacexp tac) } ]];
tactic_expr: LEVEL "0" [[ arg = ssrparentacarg -> { TacArg arg } ]];
END
(** The internal "done" and "ssrautoprop" tactics. *)
(* For additional flexibility, "done" and "ssrautoprop" are *)
(* defined in Ltac. *)
(* Although we provide a default definition in ssreflect, *)
(* we look up the definition dynamically at each call point, *)
(* to allow for user extensions. "ssrautoprop" defaults to *)
(* trivial. *)
{
let ssrautoprop gl =
try
let tacname =
try Tacenv.locate_tactic (qualid_of_ident (Id.of_string "ssrautoprop"))
with Not_found -> Tacenv.locate_tactic (ssrqid "ssrautoprop") in
let tacexpr = CAst.make @@ Tacexpr.Reference (ArgArg (Loc.tag @@ tacname)) in
V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl
with Not_found -> V82.of_tactic (Auto.full_trivial []) gl
let () = ssrautoprop_tac := ssrautoprop
let tclBY tac = Tacticals.tclTHEN tac (donetac ~-1)
(** Tactical arguments. *)
(* We have four kinds: simple tactics, [|]-bracketed lists, hints, and swaps *)
(* The latter two are used in forward-chaining tactics (have, suffice, wlog) *)
(* and subgoal reordering tacticals (; first & ; last), respectively. *)
(* Force use of the tactic_expr parsing entry, to rule out tick marks. *)
(** The "by" tactical. *)
open Ssrfwd
}
TACTIC EXTEND ssrtclby
| [ "by" ssrhintarg(tac) ] -> { V82.tactic (hinttac ist true tac) }
END
(* We can't parse "by" in ARGUMENT EXTEND because it will only be made *)
(* into a keyword in ssreflect.v; so we anticipate this in GEXTEND. *)
GRAMMAR EXTEND Gram
GLOBAL: ssrhint simple_tactic;
ssrhint: [[ "by"; arg = ssrhintarg -> { arg } ]];
END
(** The "do" tactical. ********************************************************)
(*
type ssrdoarg = ((ssrindex * ssrmmod) * ssrhint) * ssrclauses
*)
TACTIC EXTEND ssrtcldo
| [ "YouShouldNotTypeThis" "do" ssrdoarg(arg) ] -> { V82.tactic (ssrdotac ist arg) }
END
{
let _ = set_pr_ssrtac "tcldo" 3 [ArgSep "do "; ArgSsr "doarg"]
let ssrdotac_expr ?loc n m tac clauses =
let arg = ((n, m), tac), clauses in
ssrtac_expr ?loc "tcldo" [Tacexpr.TacGeneric (in_gen (rawwit wit_ssrdoarg) arg)]
}
GRAMMAR EXTEND Gram
GLOBAL: tactic_expr;
ssrdotac: [
[ tac = tactic_expr LEVEL "3" -> { mk_hint tac }
| tacs = ssrortacarg -> { tacs }
] ];
tactic_expr: LEVEL "3" [ RIGHTA
[ IDENT "do"; m = ssrmmod; tac = ssrdotac; clauses = ssrclauses ->
{ ssrdotac_expr ~loc noindex m tac clauses }
| IDENT "do"; tac = ssrortacarg; clauses = ssrclauses ->
{ ssrdotac_expr ~loc noindex Once tac clauses }
| IDENT "do"; n = int_or_var; m = ssrmmod;
tac = ssrdotac; clauses = ssrclauses ->
{ ssrdotac_expr ~loc (mk_index ~loc n) m tac clauses }
] ];
END
{
(* We can't actually parse the direction separately because this *)
(* would introduce conflicts with the basic ltac syntax. *)
let pr_ssrseqdir _ _ _ = function
| L2R -> str ";" ++ spc () ++ str "first "
| R2L -> str ";" ++ spc () ++ str "last "
}
ARGUMENT EXTEND ssrseqdir TYPED AS ssrdir PRINTED BY { pr_ssrseqdir }
| [ "YouShouldNotTypeThis" ] -> { anomaly "Grammar placeholder match" }
END
TACTIC EXTEND ssrtclseq
| [ "YouShouldNotTypeThis" ssrtclarg(tac) ssrseqdir(dir) ssrseqarg(arg) ] ->
{ V82.tactic (tclSEQAT ist tac dir arg) }
END
{
let _ = set_pr_ssrtac "tclseq" 5 [ArgSsr "tclarg"; ArgSsr "seqdir"; ArgSsr "seqarg"]
let tclseq_expr ?loc tac dir arg =
let arg1 = in_gen (rawwit wit_ssrtclarg) tac in
let arg2 = in_gen (rawwit wit_ssrseqdir) dir in
let arg3 = in_gen (rawwit wit_ssrseqarg) (check_seqtacarg dir arg) in
ssrtac_expr ?loc "tclseq" (List.map (fun x -> Tacexpr.TacGeneric x) [arg1; arg2; arg3])
}
GRAMMAR EXTEND Gram
GLOBAL: tactic_expr;
ssr_first: [
[ tac = ssr_first; ipats = ssrintros_ne -> { tclintros_expr ~loc tac ipats }
| "["; tacl = LIST0 tactic_expr SEP "|"; "]" -> { TacFirst tacl }
] ];
ssr_first_else: [
[ tac1 = ssr_first; tac2 = ssrorelse -> { TacOrelse (tac1, tac2) }
| tac = ssr_first -> { tac } ]];
tactic_expr: LEVEL "4" [ LEFTA
[ tac1 = tactic_expr; ";"; IDENT "first"; tac2 = ssr_first_else ->
{ TacThen (tac1, tac2) }
| tac = tactic_expr; ";"; IDENT "first"; arg = ssrseqarg ->
{ tclseq_expr ~loc tac L2R arg }
| tac = tactic_expr; ";"; IDENT "last"; arg = ssrseqarg ->
{ tclseq_expr ~loc tac R2L arg }
] ];
END
(** 5. Bookkeeping tactics (clear, move, case, elim) *)
(** Generalization (discharge) item *)
(* An item is a switch + term pair. *)
(* type ssrgen = ssrdocc * ssrterm *)
{
let pr_gen (docc, dt) = pr_docc docc ++ pr_cpattern dt
let pr_ssrgen _ _ _ = pr_gen
}
ARGUMENT EXTEND ssrgen TYPED AS (ssrdocc * cpattern) PRINTED BY { pr_ssrgen }
| [ ssrdocc(docc) cpattern(dt) ] -> {
match docc with
| Some [], _ -> CErrors.user_err ~loc (str"Clear flag {} not allowed here")
| _ -> docc, dt }
| [ cpattern(dt) ] -> { nodocc, dt }
END
{
let has_occ ((_, occ), _) = occ <> None
(** Generalization (discharge) sequence *)
(* A discharge sequence is represented as a list of up to two *)
(* lists of d-items, plus an ident list set (the possibly empty *)
(* final clear switch). The main list is empty iff the command *)
(* is defective, and has length two if there is a sequence of *)
(* dependent terms (and in that case it is the first of the two *)
(* lists). Thus, the first of the two lists is never empty. *)
(* type ssrgens = ssrgen list *)
(* type ssrdgens = ssrgens list * ssrclear *)
let gens_sep = function [], [] -> mt | _ -> spc
let pr_dgens pr_gen (gensl, clr) =
let prgens s gens = str s ++ pr_list spc pr_gen gens in
let prdeps deps = prgens ": " deps ++ spc () ++ str "/" in
match gensl with
| [deps; []] -> prdeps deps ++ pr_clear pr_spc clr
| [deps; gens] -> prdeps deps ++ prgens " " gens ++ pr_clear spc clr
| [gens] -> prgens ": " gens ++ pr_clear spc clr
| _ -> pr_clear pr_spc clr
let pr_ssrdgens _ _ _ = pr_dgens pr_gen
let cons_gen gen = function
| gens :: gensl, clr -> (gen :: gens) :: gensl, clr
| _ -> anomaly "missing gen list"
let cons_dep (gensl, clr) =
if List.length gensl = 1 then ([] :: gensl, clr) else
CErrors.user_err (Pp.str "multiple dependents switches '/'")
}
ARGUMENT EXTEND ssrdgens_tl TYPED AS (ssrgen list list * ssrclear)
PRINTED BY { pr_ssrdgens }
--> --------------------
--> maximum size reached
--> --------------------
[ zur Elbe Produktseite wechseln0.204Quellennavigators
]
|
|
|
|
|