(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
(** This library has been deprecated since Coq version 8.10. *)
Require Import NaryFunctions.
Require Import Wf_nat.
Require Export ZArith.
Require Export DoubleType.
Local Unset Elimination Schemes.
(** * 31-bit integers *)
(** This file contains basic definitions of a 31-bit integer
arithmetic. In fact it is more general than that. The only reason
for this use of 31 is the underlying mechanism for hardware-efficient
computations by A. Spiwack. Apart from this, a switch to, say,
63-bit integers is now just a matter of replacing every occurrences
of 31 by 63. This is actually made possible by the use of
dependently-typed n-ary constructions for the inductive type
[int31], its constructor [I31] and any pattern matching on it.
If you modify this file, please preserve this genericity. *)
Definition size := 31%nat.
(** Digits *)
Inductive digits : Type := D0 | D1.
(** The type of 31-bit integers *)
(** The type [int31] has a unique constructor [I31] that expects
31 arguments of type [digits]. *)
Definition digits31 t := Eval compute in nfun digits size t.
Inductive int31 : Type := I31 : digits31 int31.
Scheme int31_ind := Induction for int31 Sort Prop.
Scheme int31_rec := Induction for int31 Sort Set.
Scheme int31_rect := Induction for int31 Sort Type.
Declare Scope int31_scope.
Delimit Scope int31_scope with int31.
Bind Scope int31_scope with int31.
Local Open Scope int31_scope.
(** * Constants *)
(** Zero is [I31 D0 ... D0] *)
Definition On : int31 := Eval compute in napply_cst _ _ D0 size I31.
(** One is [I31 D0 ... D0 D1] *)
Definition In : int31 := Eval compute in (napply_cst _ _ D0 (size-1) I31) D1.
(** The biggest integer is [I31 D1 ... D1], corresponding to [(2^size)-1] *)
Definition Tn : int31 := Eval compute in napply_cst _ _ D1 size I31.
(** Two is [I31 D0 ... D0 D1 D0] *)
Definition Twon : int31 := Eval compute in (napply_cst _ _ D0 (size-2) I31) D1 D0.
(** * Bits manipulation *)
(** [sneakr b x] shifts [x] to the right by one bit.
Rightmost digit is lost while leftmost digit becomes [b].
Pseudo-code is
[ match x with (I31 d0 ... dN) => I31 b d0 ... d(N-1) end ]
*)
Definition sneakr : digits -> int31 -> int31 := Eval compute in
fun b => int31_rect _ (napply_except_last _ _ (size-1) (I31 b)).
(** [sneakl b x] shifts [x] to the left by one bit.
Leftmost digit is lost while rightmost digit becomes [b].
Pseudo-code is
[ match x with (I31 d0 ... dN) => I31 d1 ... dN b end ]
*)
Definition sneakl : digits -> int31 -> int31 := Eval compute in
fun b => int31_rect _ (fun _ => napply_then_last _ _ b (size-1) I31).
(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct
consequences of [sneakl] and [sneakr]. *)
Definition shiftl := sneakl D0.
Definition shiftr := sneakr D0.
Definition twice := sneakl D0.
Definition twice_plus_one := sneakl D1.
(** [firstl x] returns the leftmost digit of number [x].
Pseudo-code is [ match x with (I31 d0 ... dN) => d0 end ] *)
Definition firstl : int31 -> digits := Eval compute in
int31_rect _ (fun d => napply_discard _ _ d (size-1)).
(** [firstr x] returns the rightmost digit of number [x].
Pseudo-code is [ match x with (I31 d0 ... dN) => dN end ] *)
Definition firstr : int31 -> digits := Eval compute in
int31_rect _ (napply_discard _ _ (fun d=>d) (size-1)).
(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is
[ match x with (I31 D0 ... D0) => true | _ => false end ] *)
Definition iszero : int31 -> bool := Eval compute in
let f d b := match d with D0 => b | D1 => false end
in int31_rect _ (nfold_bis _ _ f true size).
(* NB: DO NOT transform the above match in a nicer (if then else).
It seems to work, but later "unfold iszero" takes forever. *)
(** [base] is [2^31], obtained via iterations of [Z.double].
It can also be seen as the smallest b > 0 s.t. phi_inv b = 0
(see below) *)
Definition base := Eval compute in
iter_nat size Z Z.double 1%Z.
(** * Recursors *)
Fixpoint recl_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
| S next =>
if iszero i then
case0
else
let si := shiftl i in
caserec (firstl i) si (recl_aux next A case0 caserec si)
end.
Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
| S next =>
if iszero i then
case0
else
let si := shiftr i in
caserec (firstr i) si (recr_aux next A case0 caserec si)
end.
Definition recl := recl_aux size.
Definition recr := recr_aux size.
(** * Conversions *)
(** From int31 to Z, we simply iterates [Z.double] or [Z.succ_double]. *)
Definition phi : int31 -> Z :=
recr Z (0%Z)
(fun b _ => match b with D0 => Z.double | D1 => Z.succ_double end).
(** From positive to int31. An abstract definition could be :
[ phi_inv (2n) = 2*(phi_inv n) /\
phi_inv 2n+1 = 2*(phi_inv n) + 1 ] *)
Fixpoint phi_inv_positive p :=
match p with
| xI q => twice_plus_one (phi_inv_positive q)
| xO q => twice (phi_inv_positive q)
| xH => In
end.
(** The negative part : 2-complement *)
Fixpoint complement_negative p :=
match p with
| xI q => twice (complement_negative q)
| xO q => twice_plus_one (complement_negative q)
| xH => twice Tn
end.
(** A simple incrementation function *)
Definition incr : int31 -> int31 :=
recr int31 In
(fun b si rec => match b with
| D0 => sneakl D1 si
| D1 => sneakl D0 rec end).
(** We can now define the conversion from Z to int31. *)
Definition phi_inv : Z -> int31 := fun n =>
match n with
| Z0 => On
| Zpos p => phi_inv_positive p
| Zneg p => incr (complement_negative p)
end.
(** [phi_inv_nonneg] returns [None] if the [Z] is negative; this matches the old behavior of parsing int31 numerals *)
Definition phi_inv_nonneg : Z -> option int31 := fun n =>
match n with
| Zneg _ => None
| _ => Some (phi_inv n)
end.
(** [phi_inv2] is similar to [phi_inv] but returns a double word
[zn2z int31] *)
Definition phi_inv2 n :=
match n with
| Z0 => W0
| _ => WW (phi_inv (n/base)%Z) (phi_inv n)
end.
(** [phi2] is similar to [phi] but takes a double word (two args) *)
Definition phi2 nh nl :=
((phi nh)*base+(phi nl))%Z.
(** * Addition *)
(** Addition modulo [2^31] *)
Definition add31 (n m : int31) := phi_inv ((phi n)+(phi m)).
Notation "n + m" := (add31 n m) : int31_scope.
(** Addition with carry (the result is thus exact) *)
(* spiwack : when executed in non-compiled*)
(* mode, (phi n)+(phi m) is computed twice*)
(* it may be considered to optimize it *)
Definition add31c (n m : int31) :=
let npm := n+m in
match (phi npm ?= (phi n)+(phi m))%Z with
| Eq => C0 npm
| _ => C1 npm
end.
Notation "n '+c' m" := (add31c n m) (at level 50, no associativity) : int31_scope.
(** Addition plus one with carry (the result is thus exact) *)
Definition add31carryc (n m : int31) :=
let npmpone_exact := ((phi n)+(phi m)+1)%Z in
let npmpone := phi_inv npmpone_exact in
match (phi npmpone ?= npmpone_exact)%Z with
| Eq => C0 npmpone
| _ => C1 npmpone
end.
(** * Subtraction *)
(** Subtraction modulo [2^31] *)
Definition sub31 (n m : int31) := phi_inv ((phi n)-(phi m)).
Notation "n - m" := (sub31 n m) : int31_scope.
(** Subtraction with carry (thus exact) *)
Definition sub31c (n m : int31) :=
let nmm := n-m in
match (phi nmm ?= (phi n)-(phi m))%Z with
| Eq => C0 nmm
| _ => C1 nmm
end.
Notation "n '-c' m" := (sub31c n m) (at level 50, no associativity) : int31_scope.
(** subtraction minus one with carry (thus exact) *)
Definition sub31carryc (n m : int31) :=
let nmmmone_exact := ((phi n)-(phi m)-1)%Z in
let nmmmone := phi_inv nmmmone_exact in
match (phi nmmmone ?= nmmmone_exact)%Z with
| Eq => C0 nmmmone
| _ => C1 nmmmone
end.
(** Opposite *)
Definition opp31 x := On - x.
Notation "- x" := (opp31 x) : int31_scope.
(** Multiplication *)
(** multiplication modulo [2^31] *)
Definition mul31 (n m : int31) := phi_inv ((phi n)*(phi m)).
Notation "n * m" := (mul31 n m) : int31_scope.
(** multiplication with double word result (thus exact) *)
Definition mul31c (n m : int31) := phi_inv2 ((phi n)*(phi m)).
Notation "n '*c' m" := (mul31c n m) (at level 40, no associativity) : int31_scope.
(** * Division *)
(** Division of a double size word modulo [2^31] *)
Definition div3121 (nh nl m : int31) :=
let (q,r) := Z.div_eucl (phi2 nh nl) (phi m) in
(phi_inv q, phi_inv r).
(** Division modulo [2^31] *)
Definition div31 (n m : int31) :=
let (q,r) := Z.div_eucl (phi n) (phi m) in
(phi_inv q, phi_inv r).
Notation "n / m" := (div31 n m) : int31_scope.
(** * Unsigned comparison *)
Definition compare31 (n m : int31) := ((phi n)?=(phi m))%Z.
Notation "n ?= m" := (compare31 n m) (at level 70, no associativity) : int31_scope.
Definition eqb31 (n m : int31) :=
match n ?= m with Eq => true | _ => false end.
(** Computing the [i]-th iterate of a function:
[iter_int31 i A f = f^i] *)
Definition iter_int31 i A f :=
recr (A->A) (fun x => x)
(fun b si rec => match b with
| D0 => fun x => rec (rec x)
| D1 => fun x => f (rec (rec x))
end)
i.
(** Combining the [(31-p)] low bits of [i] above the [p] high bits of [j]:
[addmuldiv31 p i j = i*2^p+j/2^(31-p)] (modulo [2^31]) *)
Definition addmuldiv31 p i j :=
let (res, _ ) :=
iter_int31 p (int31*int31)
(fun ij => let (i,j) := ij in (sneakl (firstl j) i, shiftl j))
(i,j)
in
res.
(** Bitwise operations *)
Definition lor31 n m := phi_inv (Z.lor (phi n) (phi m)).
Definition land31 n m := phi_inv (Z.land (phi n) (phi m)).
Definition lxor31 n m := phi_inv (Z.lxor (phi n) (phi m)).
Definition lnot31 n := lxor31 Tn n.
Definition ldiff31 n m := land31 n (lnot31 m).
Fixpoint euler (guard:nat) (i j:int31) {struct guard} :=
match guard with
| O => In
| S p => match j ?= On with
| Eq => i
| _ => euler p j (let (_, r ) := i/j in r)
end
end.
Definition gcd31 (i j:int31) := euler (2*size)%nat i j.
(** Square root functions using newton iteration
we use a very naive upper-bound on the iteration
2^31 instead of the usual 31.
**)
Definition sqrt31_step (rec: int31 -> int31 -> int31) (i j: int31) :=
Eval lazy delta [Twon] in
let (quo,_) := i/j in
match quo ?= j with
Lt => rec i (fst ((j + quo)/Twon))
| _ => j
end.
Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31)
(i j: int31) {struct n} : int31 :=
sqrt31_step
(match n with
O => rec
| S n => (iter31_sqrt n (iter31_sqrt n rec))
end) i j.
Definition sqrt31 i :=
Eval lazy delta [On In Twon] in
match compare31 In i with
Gt => On
| Eq => In
| Lt => iter31_sqrt 31 (fun i j => j) i (fst (i/Twon))
end.
Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z.of_nat size - 1)) In On).
Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31)
(ih il j: int31) :=
Eval lazy delta [Twon v30] in
match ih ?= j with Eq => j | Gt => j | _ =>
let (quo,_) := div3121 ih il j in
match quo ?= j with
Lt => let m := match j +c quo with
C0 m1 => fst (m1/Twon)
| C1 m1 => fst (m1/Twon) + v30
end in rec ih il m
| _ => j
end end.
Fixpoint iter312_sqrt (n: nat)
(rec: int31 -> int31 -> int31 -> int31)
(ih il j: int31) {struct n} : int31 :=
sqrt312_step
(match n with
O => rec
| S n => (iter312_sqrt n (iter312_sqrt n rec))
end) ih il j.
Definition sqrt312 ih il :=
Eval lazy delta [On In] in
let s := iter312_sqrt 31 (fun ih il j => j) ih il Tn in
match s *c s with
W0 => (On, C0 On) (* impossible *)
| WW ih1 il1 =>
match il -c il1 with
C0 il2 =>
match ih ?= ih1 with
Gt => (s, C1 il2)
| _ => (s, C0 il2)
end
| C1 il2 =>
match (ih - In) ?= ih1 with (* we could parametrize ih - 1 *)
Gt => (s, C1 il2)
| _ => (s, C0 il2)
end
end
end.
Fixpoint p2i n p : (N*int31)%type :=
match n with
| O => (Npos p, On)
| S n => match p with
| xO p => let (r,i) := p2i n p in (r, Twon*i)
| xI p => let (r,i) := p2i n p in (r, Twon*i+In)
| xH => (N0, In)
end
end.
Definition positive_to_int31 (p:positive) := p2i size p.
(** Constant 31 converted into type int31.
It is used as default answer for numbers of zeros
in [head0] and [tail0] *)
Definition T31 : int31 := Eval compute in phi_inv (Z.of_nat size).
Definition head031 (i:int31) :=
recl _ (fun _ => T31)
(fun b si rec n => match b with
| D0 => rec (add31 n In)
| D1 => n
end)
i On.
Definition tail031 (i:int31) :=
recr _ (fun _ => T31)
(fun b si rec n => match b with
| D0 => rec (add31 n In)
| D1 => n
end)
i On.
Numeral Notation int31 phi_inv_nonneg phi : int31_scope.
¤ Dauer der Verarbeitung: 0.0 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|