(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import Rbase.
Require Import Rfunctions.
Require Import Rsqrt_def.
Local Open Scope R_scope.
(** * Continuous extension of Rsqrt on R *)
Definition sqrt (x:R) : R :=
match Rcase_abs x with
| left _ => 0
| right a => Rsqrt (mknonnegreal x (Rge_le _ _ a))
end.
Lemma sqrt_pos : forall x : R, 0 <= sqrt x.
Proof.
intros x.
unfold sqrt.
destruct (Rcase_abs x) as [H|H].
apply Rle_refl.
apply Rsqrt_positivity.
Qed.
Lemma sqrt_positivity : forall x:R, 0 <= x -> 0 <= sqrt x.
Proof.
intros x _.
apply sqrt_pos.
Qed.
Lemma sqrt_sqrt : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
intros.
unfold sqrt.
case (Rcase_abs x) as [Hlt|Hge].
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ Hlt H)).
rewrite Rsqrt_Rsqrt; reflexivity.
Qed.
Lemma sqrt_0 : sqrt 0 = 0.
Proof.
apply Rsqr_eq_0; unfold Rsqr; apply sqrt_sqrt; right; reflexivity.
Qed.
Lemma sqrt_1 : sqrt 1 = 1.
Proof.
apply (Rsqr_inj (sqrt 1) 1);
[ apply sqrt_positivity; left
| left
| unfold Rsqr; rewrite sqrt_sqrt; [ ring | left ] ];
apply Rlt_0_1.
Qed.
Lemma sqrt_eq_0 : forall x:R, 0 <= x -> sqrt x = 0 -> x = 0.
Proof.
intros; cut (Rsqr (sqrt x) = 0).
intro; unfold Rsqr in H1; rewrite sqrt_sqrt in H1; assumption.
rewrite H0; apply Rsqr_0.
Qed.
Lemma sqrt_lem_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = y -> y * y = x.
Proof.
intros; rewrite <- H1; apply (sqrt_sqrt x H).
Qed.
Lemma sqrt_lem_1 : forall x y:R, 0 <= x -> 0 <= y -> y * y = x -> sqrt x = y.
Proof.
intros; apply Rsqr_inj;
[ apply (sqrt_positivity x H)
| assumption
| unfold Rsqr; rewrite H1; apply (sqrt_sqrt x H) ].
Qed.
Lemma sqrt_def : forall x:R, 0 <= x -> sqrt x * sqrt x = x.
Proof.
intros; apply (sqrt_sqrt x H).
Qed.
Lemma sqrt_square : forall x:R, 0 <= x -> sqrt (x * x) = x.
Proof.
intros;
apply
(Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (Rle_0_sqr x)) H);
unfold Rsqr; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)).
Qed.
Lemma sqrt_Rsqr : forall x:R, 0 <= x -> sqrt (Rsqr x) = x.
Proof.
intros; unfold Rsqr; apply sqrt_square; assumption.
Qed.
Lemma sqrt_pow2 : forall x, 0 <= x -> sqrt (x ^ 2) = x.
intros; simpl; rewrite Rmult_1_r, sqrt_square; auto.
Qed.
Lemma sqrt_Rsqr_abs : forall x:R, sqrt (Rsqr x) = Rabs x.
Proof.
intro x; rewrite Rsqr_abs; apply sqrt_Rsqr; apply Rabs_pos.
Qed.
Lemma Rsqr_sqrt : forall x:R, 0 <= x -> Rsqr (sqrt x) = x.
Proof.
intros x H1; unfold Rsqr; apply (sqrt_sqrt x H1).
Qed.
Lemma sqrt_mult_alt :
forall x y : R, 0 <= x -> sqrt (x * y) = sqrt x * sqrt y.
Proof.
intros x y Hx.
unfold sqrt at 3.
destruct (Rcase_abs y) as [Hy|Hy].
rewrite Rmult_0_r.
destruct Hx as [Hx'|Hx'].
unfold sqrt.
destruct (Rcase_abs (x * y)) as [Hxy|Hxy].
apply eq_refl.
elim Rge_not_lt with (1 := Hxy).
rewrite <- (Rmult_0_r x).
now apply Rmult_lt_compat_l.
rewrite <- Hx', Rmult_0_l.
exact sqrt_0.
apply Rsqr_inj.
apply sqrt_pos.
apply Rmult_le_pos.
apply sqrt_pos.
apply Rsqrt_positivity.
rewrite Rsqr_mult, 2!Rsqr_sqrt.
unfold Rsqr.
now rewrite Rsqrt_Rsqrt.
exact Hx.
apply Rmult_le_pos.
exact Hx.
now apply Rge_le.
Qed.
Lemma sqrt_mult :
forall x y:R, 0 <= x -> 0 <= y -> sqrt (x * y) = sqrt x * sqrt y.
Proof.
intros x y Hx _.
now apply sqrt_mult_alt.
Qed.
Lemma sqrt_lt_R0 : forall x:R, 0 < x -> 0 < sqrt x.
Proof.
intros x H1; apply Rsqr_incrst_0;
[ rewrite Rsqr_0; rewrite Rsqr_sqrt; [ assumption | left; assumption ]
| right; reflexivity
| apply (sqrt_positivity x (Rlt_le 0 x H1)) ].
Qed.
Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
intros x y H H0; try assumption.
replace 0 with (x * 0).
apply Rmult_lt_compat_l; auto with real.
ring.
Qed.
Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
intros x y H H0; try assumption.
case H; intros.
red; left.
apply Rlt_mult_inv_pos; auto with real.
rewrite <- H1.
red; right; ring.
Qed.
Lemma sqrt_div_alt :
forall x y : R, 0 < y -> sqrt (x / y) = sqrt x / sqrt y.
Proof.
intros x y Hy.
unfold sqrt at 2.
destruct (Rcase_abs x) as [Hx|Hx].
unfold Rdiv.
rewrite Rmult_0_l.
unfold sqrt.
destruct (Rcase_abs (x * / y)) as [Hxy|Hxy].
apply eq_refl.
elim Rge_not_lt with (1 := Hxy).
apply Rmult_lt_reg_r with y.
exact Hy.
rewrite Rmult_assoc, Rinv_l, Rmult_1_r, Rmult_0_l.
exact Hx.
now apply Rgt_not_eq.
set (Hx' := Rge_le x 0 Hx).
clearbody Hx'. clear Hx.
apply Rsqr_inj.
apply sqrt_pos.
apply Rle_mult_inv_pos.
apply Rsqrt_positivity.
now apply sqrt_lt_R0.
rewrite Rsqr_div, 2!Rsqr_sqrt.
unfold Rsqr.
now rewrite Rsqrt_Rsqrt.
now apply Rlt_le.
now apply Rle_mult_inv_pos.
apply Rgt_not_eq.
now apply sqrt_lt_R0.
Qed.
Lemma sqrt_div :
forall x y:R, 0 <= x -> 0 < y -> sqrt (x / y) = sqrt x / sqrt y.
Proof.
intros x y _ H.
now apply sqrt_div_alt.
Qed.
Lemma sqrt_lt_0_alt :
forall x y : R, sqrt x < sqrt y -> x < y.
Proof.
intros x y.
unfold sqrt at 2.
destruct (Rcase_abs y) as [Hy|Hy].
intros Hx.
elim Rlt_not_le with (1 := Hx).
apply sqrt_pos.
set (Hy' := Rge_le y 0 Hy).
clearbody Hy'. clear Hy.
unfold sqrt.
destruct (Rcase_abs x) as [Hx|Hx].
intros _.
now apply Rlt_le_trans with R0.
intros Hxy.
apply Rsqr_incrst_1 in Hxy ; try apply Rsqrt_positivity.
unfold Rsqr in Hxy.
now rewrite 2!Rsqrt_Rsqrt in Hxy.
Qed.
Lemma sqrt_lt_0 : forall x y:R, 0 <= x -> 0 <= y -> sqrt x < sqrt y -> x < y.
Proof.
intros x y _ _.
apply sqrt_lt_0_alt.
Qed.
Lemma sqrt_lt_1_alt :
forall x y : R, 0 <= x < y -> sqrt x < sqrt y.
Proof.
intros x y (Hx, Hxy).
apply Rsqr_incrst_0 ; try apply sqrt_pos.
rewrite 2!Rsqr_sqrt.
exact Hxy.
apply Rlt_le.
now apply Rle_lt_trans with x.
exact Hx.
Qed.
Lemma sqrt_lt_1 : forall x y:R, 0 <= x -> 0 <= y -> x < y -> sqrt x < sqrt y.
Proof.
intros x y Hx _ Hxy.
apply sqrt_lt_1_alt.
now split.
Qed.
Lemma sqrt_le_0 :
forall x y:R, 0 <= x -> 0 <= y -> sqrt x <= sqrt y -> x <= y.
Proof.
intros x y H1 H2 H3;
generalize
(Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1)
(sqrt_positivity y H2)); intro H4; rewrite (Rsqr_sqrt x H1) in H4;
rewrite (Rsqr_sqrt y H2) in H4; assumption.
Qed.
Lemma sqrt_le_1_alt :
forall x y : R, x <= y -> sqrt x <= sqrt y.
Proof.
intros x y [Hxy|Hxy].
destruct (Rle_or_lt 0 x) as [Hx|Hx].
apply Rlt_le.
apply sqrt_lt_1_alt.
now split.
unfold sqrt at 1.
destruct (Rcase_abs x) as [Hx'|Hx'].
apply sqrt_pos.
now elim Rge_not_lt with (1 := Hx').
rewrite Hxy.
apply Rle_refl.
Qed.
Lemma sqrt_le_1 :
forall x y:R, 0 <= x -> 0 <= y -> x <= y -> sqrt x <= sqrt y.
Proof.
intros x y _ _ Hxy.
now apply sqrt_le_1_alt.
Qed.
Lemma sqrt_inj : forall x y:R, 0 <= x -> 0 <= y -> sqrt x = sqrt y -> x = y.
Proof.
intros; cut (Rsqr (sqrt x) = Rsqr (sqrt y)).
intro; rewrite (Rsqr_sqrt x H) in H2; rewrite (Rsqr_sqrt y H0) in H2;
assumption.
rewrite H1; reflexivity.
Qed.
Lemma sqrt_less_alt :
forall x : R, 1 < x -> sqrt x < x.
Proof.
intros x Hx.
assert (Hx1 := Rle_lt_trans _ _ _ Rle_0_1 Hx).
assert (Hx2 := Rlt_le _ _ Hx1).
apply Rsqr_incrst_0 ; trivial.
rewrite Rsqr_sqrt ; trivial.
rewrite <- (Rmult_1_l x) at 1.
now apply Rmult_lt_compat_r.
apply sqrt_pos.
Qed.
Lemma sqrt_less : forall x:R, 0 <= x -> 1 < x -> sqrt x < x.
Proof.
intros x _.
apply sqrt_less_alt.
Qed.
Lemma sqrt_more : forall x:R, 0 < x -> x < 1 -> x < sqrt x.
Proof.
intros x H1 H2;
generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2);
intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x));
intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1;
rewrite <- (sqrt_def x (Rlt_le 0 x H1));
apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3).
Qed.
Lemma sqrt_cauchy :
forall a b c d:R,
a * c + b * d <= sqrt (Rsqr a + Rsqr b) * sqrt (Rsqr c + Rsqr d).
Proof.
intros a b c d; apply Rsqr_incr_0_var;
[ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr;
[ replace ((a * c + b * d) * (a * c + b * d)) with
(a * a * c * c + b * b * d * d + 2 * a * b * c * d);
[ replace ((a * a + b * b) * (c * c + d * d)) with
(a * a * c * c + b * b * d * d + (a * a * d * d + b * b * c * c));
[ apply Rplus_le_compat_l;
replace (a * a * d * d + b * b * c * c) with
(2 * a * b * c * d +
(a * a * d * d + b * b * c * c - 2 * a * b * c * d));
[ pattern (2 * a * b * c * d) at 1; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l;
replace (a * a * d * d + b * b * c * c - 2 * a * b * c * d)
with (Rsqr (a * d - b * c));
[ apply Rle_0_sqr | unfold Rsqr; ring ]
| ring ]
| ring ]
| ring ]
| apply
(Rplus_le_le_0_compat (Rsqr c) (Rsqr d) (Rle_0_sqr c) (Rle_0_sqr d))
| apply
(Rplus_le_le_0_compat (Rsqr a) (Rsqr b) (Rle_0_sqr a) (Rle_0_sqr b)) ]
| apply Rmult_le_pos; apply sqrt_positivity; apply Rplus_le_le_0_compat;
apply Rle_0_sqr ].
Qed.
(************************************************************)
(** * Resolution of [a*X^2+b*X+c=0] *)
(************************************************************)
Definition Delta (a:nonzeroreal) (b c:R) : R := Rsqr b - 4 * a * c.
Definition Delta_is_pos (a:nonzeroreal) (b c:R) : Prop := 0 <= Delta a b c.
Definition sol_x1 (a:nonzeroreal) (b c:R) : R :=
(- b + sqrt (Delta a b c)) / (2 * a).
Definition sol_x2 (a:nonzeroreal) (b c:R) : R :=
(- b - sqrt (Delta a b c)) / (2 * a).
Lemma Rsqr_sol_eq_0_1 :
forall (a:nonzeroreal) (b c x:R),
Delta_is_pos a b c ->
x = sol_x1 a b c \/ x = sol_x2 a b c -> a * Rsqr x + b * x + c = 0.
Proof.
intros; elim H0; intro.
rewrite H1.
unfold sol_x1, Delta, Rsqr.
field_simplify.
rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt.
field.
apply a.
apply H.
apply a.
rewrite H1.
unfold sol_x2, Delta, Rsqr.
field_simplify.
rewrite <- (Rsqr_pow2 (sqrt _)), Rsqr_sqrt.
field.
apply a.
apply H.
apply a.
Qed.
Lemma Rsqr_sol_eq_0_0 :
forall (a:nonzeroreal) (b c x:R),
Delta_is_pos a b c ->
a * Rsqr x + b * x + c = 0 -> x = sol_x1 a b c \/ x = sol_x2 a b c.
Proof.
intros; rewrite (canonical_Rsqr a b c x) in H0; rewrite Rplus_comm in H0;
generalize
(Rplus_opp_r_uniq ((4 * a * c - Rsqr b) / (4 * a))
(a * Rsqr (x + b / (2 * a))) H0); cut (Rsqr b - 4 * a * c = Delta a b c).
intro;
replace (- ((4 * a * c - Rsqr b) / (4 * a))) with
((Rsqr b - 4 * a * c) / (4 * a)).
rewrite H1; intro;
generalize
(Rmult_eq_compat_l (/ a) (a * Rsqr (x + b / (2 * a)))
(Delta a b c / (4 * a)) H2);
replace (/ a * (a * Rsqr (x + b / (2 * a)))) with (Rsqr (x + b / (2 * a))).
replace (/ a * (Delta a b c / (4 * a))) with
(Rsqr (sqrt (Delta a b c) / (2 * a))).
intro;
generalize (Rsqr_eq (x + b / (2 * a)) (sqrt (Delta a b c) / (2 * a)) H3);
intro; elim H4; intro.
left; unfold sol_x1;
generalize
(Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
(sqrt (Delta a b c) / (2 * a)) H5);
replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
intro; rewrite H6; unfold Rdiv; ring.
ring.
right; unfold sol_x2;
generalize
(Rplus_eq_compat_l (- (b / (2 * a))) (x + b / (2 * a))
(- (sqrt (Delta a b c) / (2 * a))) H5);
replace (- (b / (2 * a)) + (x + b / (2 * a))) with x.
intro; rewrite H6; unfold Rdiv; ring.
ring.
rewrite Rsqr_div.
rewrite Rsqr_sqrt.
unfold Rdiv.
repeat rewrite Rmult_assoc.
rewrite (Rmult_comm (/ a)).
rewrite Rmult_assoc.
rewrite <- Rinv_mult_distr.
replace (4 * a * a) with (Rsqr (2 * a)).
reflexivity.
ring_Rsqr.
apply prod_neq_R0;
[ discrR | apply (cond_nonzero a) ].
apply (cond_nonzero a).
assumption.
apply prod_neq_R0; [ discrR | apply (cond_nonzero a) ].
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym.
symmetry ; apply Rmult_1_l.
apply (cond_nonzero a).
unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse.
rewrite Ropp_minus_distr.
reflexivity.
reflexivity.
Qed.
¤ Dauer der Verarbeitung: 0.222 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|