Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Rpower.v   Sprache: Coq

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(*i Due to L.Thery i*)

(************************************************************)
(* Definitions of log and Rpower : R->R->R; main properties *)
(************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Exp_prop.
Require Import Rsqrt_def.
Require Import R_sqrt.
Require Import Sqrt_reg.
Require Import MVT.
Require Import Ranalysis4.
Require Import Lra.
Local Open Scope R_scope.

Lemma P_Rmin : forall (P:R -> Prop) (x y:R), P x -> P y -> P (Rmin x y).
Proof.
  intros P x y H1 H2; unfold Rmin; case (Rle_dec x y); intro;
    assumption.
Qed.

Lemma exp_le_3 : exp 1 <= 3.
Proof.
  assert (exp_1 : exp 1 <> 0).
  assert (H0 := exp_pos 1); redintrorewrite H in H0;
    elim (Rlt_irrefl _ H0).
  apply Rmult_le_reg_l with (/ exp 1).
  apply Rinv_0_lt_compat; apply exp_pos.
  rewrite <- Rinv_l_sym.
  apply Rmult_le_reg_l with (/ 3).
  apply Rinv_0_lt_compat; prove_sup0.
  rewrite Rmult_1_r; rewrite <- (Rmult_comm 3); rewrite <- Rmult_assoc;
    rewrite <- Rinv_l_sym.
  rewrite Rmult_1_l; replace (/ exp 1) with (exp (-1)).
  unfold exp; case (exist_exp (-1)) as (?,e); simpl in |- *;
    unfold exp_in in e;
      assert (H := alternated_series_ineq (fun i:nat => / INR (fact i)) x 1).
  cut
    (sum_f_R0 (tg_alt (fun i:nat => / INR (fact i))) (S (2 * 1)) <= x <=
      sum_f_R0 (tg_alt (fun i:nat => / INR (fact i))) (2 * 1)).
  introelim H0; clear H0; intros H0 _; simpl in H0; unfold tg_alt in H0;
    simpl in H0.
  replace (/ 3) with
  (1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / 2 +
    -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1)) by field.
  apply H0.
  apply H.
  unfold Un_decreasing; intros;
    apply Rmult_le_reg_l with (INR (fact n)).
  apply INR_fact_lt_0.
  apply Rmult_le_reg_l with (INR (fact (S n))).
  apply INR_fact_lt_0.
  rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; rewrite Rmult_comm; rewrite Rmult_assoc;
    rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r; apply le_INR; apply fact_le; apply le_n_Sn.
  apply INR_fact_neq_0.
  apply INR_fact_neq_0.
  assert (H0 := cv_speed_pow_fact 1); unfold Un_cv; unfold Un_cv in H0;
    introselim (H0 _ H1); introsexists x0; intros;
      unfold R_dist in H2; unfold R_dist;
        replace (/ INR (fact n)) with (1 ^ n / INR (fact n)).
  apply (H2 _ H3).
  unfold Rdiv; rewrite pow1; rewrite Rmult_1_l; reflexivity.
  unfold infinite_sum in e; unfold Un_cv, tg_alt; introselim (e _ H0);
    introsexists x0; intros;
      replace (sum_f_R0 (fun i:nat => (-1) ^ i * / INR (fact i)) n) with
      (sum_f_R0 (fun i:nat => / INR (fact i) * (-1) ^ i) n).
  apply (H1 _ H2).
  apply sum_eq; introsapply Rmult_comm.
  apply Rmult_eq_reg_l with (exp 1).
  rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
    rewrite <- Rinv_r_sym.
  reflexivity.
  assumption.
  assumption.
  discrR.
  assumption.
Qed.

(******************************************************************)
(** *                     Properties of  Exp                      *)
(******************************************************************)

Theorem exp_increasing : forall x y:R, x < y -> exp x < exp y.
Proof.
  intros x y H.
  assert (H0 : derivable exp).
  apply derivable_exp.
  assert (H1 := positive_derivative _ H0).
  unfold strict_increasing in H1.
  apply H1.
  intro.
  replace (derive_pt exp x0 (H0 x0)) with (exp x0).
  apply exp_pos.
  symmetry ; apply derive_pt_eq_0.
  apply (derivable_pt_lim_exp x0).
  apply H.
Qed.

Theorem exp_lt_inv : forall x y:R, exp x < exp y -> x < y.
Proof.
  intros x y H; case (Rtotal_order x y); [ intros H1 | intros [H1| H1] ].
  assumption.
  rewrite H1 in H; elim (Rlt_irrefl _ H).
  assert (H2 := exp_increasing _ _ H1).
  elim (Rlt_irrefl _ (Rlt_trans _ _ _ H H2)).
Qed.

Lemma exp_ineq1 : forall x:R, 0 < x -> 1 + x < exp x.
Proof.
  introsapply Rplus_lt_reg_l with (- exp 0); rewrite <- (Rplus_comm (exp x));
    assert (H0 := MVT_cor1 exp 0 x derivable_exp H); elim H0;
      introselim H1; introsunfold Rminus in H2; rewrite H2;
        rewrite Ropp_0; rewrite Rplus_0_r;
          replace (derive_pt exp x0 (derivable_exp x0)) with (exp x0).
  rewrite exp_0; rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
    pattern x at 1; rewrite <- Rmult_1_r; rewrite (Rmult_comm (exp x0));
      apply Rmult_lt_compat_l.
  apply H.
  rewrite <- exp_0; apply exp_increasing; elim H3; intros; assumption.
  symmetry ; apply derive_pt_eq_0; apply derivable_pt_lim_exp.
Qed.

Lemma ln_exists1 : forall y:R, 1 <= y -> { z:R | y = exp z }.
Proof.
  introsset (f := fun x:R => exp x - y).
  assert (H0 : 0 < y) by (apply Rlt_le_trans with 1; auto with real).
  cut (f 0 <= 0); [intro H1|].
  cut (continuity f); [intro H2|].
  cut (0 <= f y); [intro H3|].
  cut (f 0 * f y <= 0); [intro H4|].
  pose proof (IVT_cor f 0 y H2 (Rlt_le _ _ H0) H4) as (t,(_,H7));
    exists t; unfold f in H7; apply Rminus_diag_uniq_sym; exact H7.
  pattern 0 at 2; rewrite <- (Rmult_0_r (f y));
    rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l;
      assumption.
  unfold f; apply Rplus_le_reg_l with y; left;
    apply Rlt_trans with (1 + y).
  rewrite <- (Rplus_comm y); apply Rplus_lt_compat_l; apply Rlt_0_1.
  replace (y + (exp y - y)) with (exp y); [ apply (exp_ineq1 y H0) | ring ].
  unfold f; change (continuity (exp - fct_cte y));
    apply continuity_minus;
      [ apply derivable_continuous; apply derivable_exp
        | apply derivable_continuous; apply derivable_const ].
  unfold f; rewrite exp_0; apply Rplus_le_reg_l with y;
    rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ].
Qed.

(**********)
Lemma ln_exists : forall y:R, 0 < y -> { z:R | y = exp z }.
Proof.
  introsdestruct (Rle_dec 1 y) as [Hle|Hnle].
  apply (ln_exists1 _ Hle).
  assert (H0 : 1 <= / y).
  apply Rmult_le_reg_l with y.
  apply H.
  rewrite <- Rinv_r_sym.
  rewrite Rmult_1_r; leftapply (Rnot_le_lt _ _ Hnle).
  redintrorewrite H0 in H; elim (Rlt_irrefl _ H).
  destruct (ln_exists1 _ H0) as (x,p); exists (- x);
    apply Rmult_eq_reg_l with (exp x / y).
  unfold Rdiv; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
  rewrite Rmult_1_r; rewrite <- (Rmult_comm (/ y)); rewrite Rmult_assoc;
    rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
      rewrite Rmult_1_r; symmetry ; apply p.
  redintro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
  unfold Rdiv; apply prod_neq_R0.
  assert (H3 := exp_pos x); redintro H4; rewrite H4 in H3;
    elim (Rlt_irrefl _ H3).
  apply Rinv_neq_0_compat; redintro H3; rewrite H3 in H;
    elim (Rlt_irrefl _ H).
Qed.

(* Definition of log R+* -> R *)
Definition Rln (y:posreal) : R :=
  let (a,_) := ln_exists (pos y) (cond_pos y) in a.

(* Extension on R *)
Definition ln (x:R) : R :=
  match Rlt_dec 0 x with
    | left a => Rln (mkposreal x a)
    | right a => 0
  end.

Lemma exp_ln : forall x:R, 0 < x -> exp (ln x) = x.
Proof.
  introsunfold ln; decide (Rlt_dec 0 x) with H.
  unfold Rln;
    case (ln_exists (mkposreal x H) (cond_pos (mkposreal x H))) as (?,Hex).
  symmetryapply Hex.
Qed.

Theorem exp_inv : forall x y:R, exp x = exp y -> x = y.
Proof.
  intros x y H; case (Rtotal_order x y); [ intros H1 | intros [H1| H1] ]; auto;
    assert (H2 := exp_increasing _ _ H1); rewrite H in H2;
      elim (Rlt_irrefl _ H2).
Qed.

Theorem exp_Ropp : forall x:R, exp (- x) = / exp x.
Proof.
  intros x; assert (H : exp x <> 0).
  assert (H := exp_pos x); redintrorewrite H0 in H;
    elim (Rlt_irrefl _ H).
  apply Rmult_eq_reg_l with (r := exp x).
  rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0.
  apply Rinv_r_sym.
  apply H.
  apply H.
Qed.

(******************************************************************)
(** *                     Properties of  Ln                       *)
(******************************************************************)

Theorem ln_increasing : forall x y:R, 0 < x -> x < y -> ln x < ln y.
Proof.
  intros x y H H0; apply exp_lt_inv.
  repeat rewrite exp_ln.
  apply H0.
  apply Rlt_trans with x; assumption.
  apply H.
Qed.

Theorem ln_exp : forall x:R, ln (exp x) = x.
Proof.
  intros x; apply exp_inv.
  apply exp_ln.
  apply exp_pos.
Qed.

Theorem ln_1 : ln 1 = 0.
Proof.
  rewrite <- exp_0; rewrite ln_exp; reflexivity.
Qed.

Theorem ln_lt_inv : forall x y:R, 0 < x -> 0 < y -> ln x < ln y -> x < y.
Proof.
  intros x y H H0 H1; rewrite <- (exp_ln x); try rewrite <- (exp_ln y).
  apply exp_increasing; apply H1.
  assumption.
  assumption.
Qed.

Theorem ln_inv : forall x y:R, 0 < x -> 0 < y -> ln x = ln y -> x = y.
Proof.
  intros x y H H0 H'0; case (Rtotal_order x y); [ intros H1 | intros [H1| H1] ];
    auto.
  assert (H2 := ln_increasing _ _ H H1); rewrite H'0 in H2;
    elim (Rlt_irrefl _ H2).
  assert (H2 := ln_increasing _ _ H0 H1); rewrite H'0 in H2;
    elim (Rlt_irrefl _ H2).
Qed.

Theorem ln_mult : forall x y:R, 0 < x -> 0 < y -> ln (x * y) = ln x + ln y.
Proof.
  intros x y H H0; apply exp_inv.
  rewrite exp_plus.
  repeat rewrite exp_ln.
  reflexivity.
  assumption.
  assumption.
  apply Rmult_lt_0_compat; assumption.
Qed.

Theorem ln_Rinv : forall x:R, 0 < x -> ln (/ x) = - ln x.
Proof.
  intros x H; apply exp_inv; repeat rewrite exp_ln || rewrite exp_Ropp.
  reflexivity.
  assumption.
  apply Rinv_0_lt_compat; assumption.
Qed.

Theorem ln_continue :
  forall y:R, 0 < y -> continue_in ln (fun x:R => 0 < x) y.
Proof.
  intros y H.
  unfold continue_in, limit1_in, limit_in; intros eps Heps.
  cut (1 < exp eps); [ intros H1 | idtac ].
  cut (exp (- eps) < 1); [ intros H2 | idtac ].
  exists (Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))); split.
  redapply P_Rmin.
  apply Rmult_lt_0_compat.
  assumption.
  apply Rplus_lt_reg_l with 1.
  rewrite Rplus_0_r; replace (1 + (exp eps - 1)) with (exp eps);
    [ apply H1 | ring ].
  apply Rmult_lt_0_compat.
  assumption.
  apply Rplus_lt_reg_l with (exp (- eps)).
  rewrite Rplus_0_r; replace (exp (- eps) + (1 - exp (- eps))) with 1;
    [ apply H2 | ring ].
  unfold dist, R_met, R_dist; simpl.
  intros x [[H3 H4] H5].
  cut (y * (x * / y) = x).
  intro Hxyy.
  replace (ln x - ln y) with (ln (x * / y)).
  case (Rtotal_order x y); [ intros Hxy | intros [Hxy| Hxy] ].
  rewrite Rabs_left.
  apply Ropp_lt_cancel; rewrite Ropp_involutive.
  apply exp_lt_inv.
  rewrite exp_ln.
  apply Rmult_lt_reg_l with (r := y).
  apply H.
  rewrite Hxyy.
  apply Ropp_lt_cancel.
  apply Rplus_lt_reg_l with (r := y).
  replace (y + - (y * exp (- eps))) with (y * (1 - exp (- eps)));
  [ idtac | ring ].
  replace (y + - x) with (Rabs (x - y)).
  apply Rlt_le_trans with (1 := H5); apply Rmin_r.
  rewrite Rabs_left; [ ring | idtac ].
  apply (Rlt_minus _ _ Hxy).
  apply Rmult_lt_0_compat; [ apply H3 | apply (Rinv_0_lt_compat _ H) ].
  rewrite <- ln_1.
  apply ln_increasing.
  apply Rmult_lt_0_compat; [ apply H3 | apply (Rinv_0_lt_compat _ H) ].
  apply Rmult_lt_reg_l with (r := y).
  apply H.
  rewrite Hxyy; rewrite Rmult_1_r; apply Hxy.
  rewrite Hxy; rewrite Rinv_r.
  rewrite ln_1; rewrite Rabs_R0; apply Heps.
  redintrorewrite H0 in H; elim (Rlt_irrefl _ H).
  rewrite Rabs_right.
  apply exp_lt_inv.
  rewrite exp_ln.
  apply Rmult_lt_reg_l with (r := y).
  apply H.
  rewrite Hxyy.
  apply Rplus_lt_reg_l with (r := - y).
  replace (- y + y * exp eps) with (y * (exp eps - 1)); [ idtac | ring ].
  replace (- y + x) with (Rabs (x - y)).
  apply Rlt_le_trans with (1 := H5); apply Rmin_l.
  rewrite Rabs_right; [ ring | idtac ].
  leftapply (Rgt_minus _ _ Hxy).
  apply Rmult_lt_0_compat; [ apply H3 | apply (Rinv_0_lt_compat _ H) ].
  rewrite <- ln_1.
  apply Rgt_ge; redapply ln_increasing.
  apply Rlt_0_1.
  apply Rmult_lt_reg_l with (r := y).
  apply H.
  rewrite Hxyy; rewrite Rmult_1_r; apply Hxy.
  rewrite ln_mult.
  rewrite ln_Rinv.
  ring.
  assumption.
  assumption.
  apply Rinv_0_lt_compat; assumption.
  rewrite (Rmult_comm x); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
  ring.
  redintrorewrite H0 in H; elim (Rlt_irrefl _ H).
  apply Rmult_lt_reg_l with (exp eps).
  apply exp_pos.
  rewrite <- exp_plus; rewrite Rmult_1_r; rewrite Rplus_opp_r; rewrite exp_0;
    apply H1.
  rewrite <- exp_0.
  apply exp_increasing; apply Heps.
Qed.

(******************************************************************)
(** *                     Definition of  Rpower                   *)
(******************************************************************)

Definition Rpower (x y:R) := exp (y * ln x).

Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope.

(******************************************************************)
(** *                     Properties of  Rpower                   *)
(******************************************************************)

(** Note: [Rpower] is prolongated to [1] on negative real numbers and
    it thus does not extend integer power. The next two lemmas, which
    hold for integer power, accidentally hold on negative real numbers
    as a side effect of the default value taken on negative real
    numbers. Contrastingly, the lemmas that do not hold for the
    integer power of a negative number are stated for [Rpower] on the
    positive numbers only (even if they accidentally hold due to the
    default value of [Rpower] on the negative side, as it is the case
    for [Rpower_O]). *)


Theorem Rpower_plus : forall x y z:R, z ^R (x + y) = z ^R x * z ^R y.
Proof.
  intros x y z; unfold Rpower.
  rewrite Rmult_plus_distr_r; rewrite exp_plus; auto.
Qed.

Theorem Rpower_mult : forall x y z:R, (x ^R y) ^R z = x ^R (y * z).
Proof.
  intros x y z; unfold Rpower.
  rewrite ln_exp.
  replace (z * (y * ln x)) with (y * z * ln x).
  reflexivity.
  ring.
Qed.

Theorem Rpower_O : forall x:R, 0 < x -> x ^R 0 = 1.
Proof.
  intros x _; unfold Rpower.
  rewrite Rmult_0_l; apply exp_0.
Qed.

Theorem Rpower_1 : forall x:R, 0 < x -> x ^R 1 = x.
Proof.
  intros x H; unfold Rpower.
  rewrite Rmult_1_l; apply exp_ln; apply H.
Qed.

Theorem Rpower_pow : forall (n:nat) (x:R), 0 < x -> x ^R INR n = x ^ n.
Proof.
  intros n; elim n; simplauto; fold INR.
  intros x H; apply Rpower_O; auto.
  intros n1; case n1.
  intros H x H0; simplrewrite Rmult_1_r; apply Rpower_1; auto.
  intros n0 H x H0; rewrite Rpower_plus; rewrite H; try rewrite Rpower_1;
    try apply Rmult_comm || assumption.
Qed.

Theorem Rpower_lt :
  forall x y z:R, 1 < x -> y < z -> x ^R y < x ^R z.
Proof.
  intros x y z H H1.
  unfold Rpower.
  apply exp_increasing.
  apply Rmult_lt_compat_r.
  rewrite <- ln_1; apply ln_increasing.
  apply Rlt_0_1.
  apply H.
  apply H1.
Qed.

Theorem Rpower_sqrt : forall x:R, 0 < x -> x ^R (/ 2) = sqrt x.
Proof.
  intros x H.
  apply ln_inv.
  unfold Rpower; apply exp_pos.
  apply sqrt_lt_R0; apply H.
  apply Rmult_eq_reg_l with (INR 2).
  apply exp_inv.
  fold Rpower.
  cut ((x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2).
  unfold Rpower; auto.
  rewrite Rpower_mult.
  rewrite Rinv_l.
  change 1 with (INR 1).
  repeat rewrite Rpower_pow; simpl.
  pattern x at 1; rewrite <- (sqrt_sqrt x (Rlt_le _ _ H)).
  ring.
  apply sqrt_lt_R0; apply H.
  apply H.
  apply not_O_INR; discriminate.
  apply not_O_INR; discriminate.
Qed.

Theorem Rpower_Ropp : forall x y:R, x ^R (- y) = / x ^R y.
Proof.
  unfold Rpower.
  intros x y; rewrite Ropp_mult_distr_l_reverse.
  apply exp_Ropp.
Qed.

Lemma powerRZ_Rpower x z : (0 < x)%R -> powerRZ x z = Rpower x (IZR z).
Proof.
  intros Hx.
  assert (x <> 0)%R
    by now intros Habs; rewrite Habs in Hx; apply (Rlt_irrefl 0).
  destruct (intP z).
  - now rewrite Rpower_O.
  - rewrite <- pow_powerRZ, <- Rpower_pow by assumption.
    now rewrite INR_IZR_INZ.
  - rewrite opp_IZR, Rpower_Ropp.
    rewrite powerRZ_neg, powerRZ_inv by assumption.
    now rewrite <- pow_powerRZ, <- INR_IZR_INZ, Rpower_pow.
Qed.

Theorem Rle_Rpower :
  forall e n m:R, 1 <= e -> n <= m -> e ^R n <= e ^R m.
Proof.
  intros e n m [H | H]; intros H1.
  case H1.
    intros H2; leftapply Rpower_lt; assumption.
    intros H2; rewrite H2; rightreflexivity.
  now rewrite <- H; unfold Rpower; rewrite ln_1, !Rmult_0_r; apply Rle_refl.
Qed.

Theorem ln_lt_2 : / 2 < ln 2.
Proof.
  apply Rmult_lt_reg_l with (r := 2).
  prove_sup0.
  rewrite Rinv_r.
  apply exp_lt_inv.
  apply Rle_lt_trans with (1 := exp_le_3).
  change (3 < 2 ^R (1 + 1)).
  repeat rewrite Rpower_plus; repeat rewrite Rpower_1.
  now apply (IZR_lt 3 4).
  prove_sup0.
  discrR.
Qed.

(*****************************************)
(** * Differentiability of Ln and Rpower *)
(*****************************************)

Theorem limit1_ext :
  forall (f g:R -> R) (D:R -> Prop) (l x:R),
    (forall x:R, D x -> f x = g x) -> limit1_in f D l x -> limit1_in g D l x.
Proof.
  intros f g D l x H; unfold limit1_in, limit_in.
  intros H0 eps H1; case (H0 eps); auto.
  intros x0 [H2 H3]; exists x0; splitauto.
  intros x1 [H4 H5]; rewrite <- H; auto.
Qed.

Theorem limit1_imp :
  forall (f:R -> R) (D D1:R -> Prop) (l x:R),
    (forall x:R, D1 x -> D x) -> limit1_in f D l x -> limit1_in f D1 l x.
Proof.
  intros f D D1 l x H; unfold limit1_in, limit_in.
  intros H0 eps H1; case (H0 eps H1); auto.
  intros alpha [H2 H3]; exists alpha; splitauto.
  intros d [H4 H5]; apply H3; splitauto.
Qed.

Theorem Rinv_Rdiv : forall x y:R, x <> 0 -> y <> 0 -> / (x / y) = y / x.
Proof.
  intros x y H1 H2; unfold Rdiv; rewrite Rinv_mult_distr.
  rewrite Rinv_involutive.
  apply Rmult_comm.
  assumption.
  assumption.
  apply Rinv_neq_0_compat; assumption.
Qed.

Theorem Dln : forall y:R, 0 < y -> D_in ln Rinv (fun x:R => 0 < x) y.
Proof.
  intros y Hy; unfold D_in.
  apply limit1_ext with
    (f := fun x:R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))).
  intros x [HD1 HD2]; repeat rewrite exp_ln.
  unfold Rdiv; rewrite Rinv_mult_distr.
  rewrite Rinv_involutive.
  apply Rmult_comm.
  apply Rminus_eq_contra.
  redintros H2; case HD2.
  symmetry ; apply (ln_inv _ _ HD1 Hy H2).
  apply Rminus_eq_contra; apply (not_eq_sym HD2).
  apply Rinv_neq_0_compat; apply Rminus_eq_contra; redintros H2;
    case HD2; apply ln_inv; auto.
  assumption.
  assumption.
  apply limit_inv with
    (f := fun x:R => (exp (ln x) - exp (ln y)) / (ln x - ln y)).
  apply limit1_imp with
    (f := fun x:R => (fun x:R => (exp x - exp (ln y)) / (x - ln y)) (ln x))
    (D := Dgf (D_x (fun x:R => 0 < x) y) (D_x (fun x:R => True) (ln y)) ln).
  intros x [H1 H2]; split.
  splitauto.
  splitauto.
  redintros H3; case H2; apply ln_inv; auto.
  apply limit_comp with
    (l := ln y) (g := fun x:R => (exp x - exp (ln y)) / (x - ln y)) (f := ln).
  apply ln_continue; auto.
  assert (H0 := derivable_pt_lim_exp (ln y)); unfold derivable_pt_lim in H0;
    unfold limit1_in; unfold limit_in;
      simplunfold R_dist; introselim (H0 _ H);
        introsexists (pos x); split.
  apply (cond_pos x).
  introspattern y at 3; rewrite <- exp_ln.
  pattern x0 at 1; replace x0 with (ln y + (x0 - ln y));
    [ idtac | ring ].
  apply H1.
  elim H2; intros H3 _; unfold D_x in H3; elim H3; clear H3; intros _ H3;
    apply Rminus_eq_contra; apply (not_eq_sym (A:=R));
      apply H3.
  elim H2; clear H2; intros _ H2; apply H2.
  assumption.
  redintrorewrite H in Hy; elim (Rlt_irrefl _ Hy).
Qed.

Lemma derivable_pt_lim_ln : forall x:R, 0 < x -> derivable_pt_lim ln x (/ x).
Proof.
  introsassert (H0 := Dln x H); unfold D_in in H0; unfold limit1_in in H0;
    unfold limit_in in H0; simpl in H0; unfold R_dist in H0;
      unfold derivable_pt_lim; introselim (H0 _ H1);
        introselim H2; clear H2; introsset (alp := Rmin x0 (x / 2));
          assert (H4 : 0 < alp).
  unfold alp; unfold Rmin; case (Rle_dec x0 (x / 2)); intro.
  apply H2.
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
  exists (mkposreal _ H4); introspattern h at 2;
    replace h with (x + h - x); [ idtac | ring ].
  apply H3; split.
  unfold D_x; split.
  destruct (Rcase_abs h) as [Hlt|Hgt].
  assert (H7 : Rabs h < x / 2).
  apply Rlt_le_trans with alp.
  apply H6.
  unfold alp; apply Rmin_r.
  apply Rlt_trans with (x / 2).
  unfold Rdiv; apply Rmult_lt_0_compat;
    [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
  rewrite Rabs_left in H7.
  apply Rplus_lt_reg_l with (- h - x / 2).
  replace (- h - x / 2 + x / 2) with (- h); [ idtac | ring ].
  pattern x at 2; rewrite double_var.
  replace (- h - x / 2 + (x / 2 + x / 2 + h)) with (x / 2); [ apply H7 | ring ].
  apply Hlt.
  apply Rplus_lt_le_0_compat; [ assumption | apply Rge_le; apply Hgt ].
  apply (sym_not_eq (A:=R)); apply Rminus_not_eq; replace (x + h - x) with h;
    [ apply H5 | ring ].
  replace (x + h - x) with h;
  [ apply Rlt_le_trans with alp;
    [ apply H6 | unfold alp; apply Rmin_l ]
    | ring ].
Qed.

Theorem D_in_imp :
  forall (f g:R -> R) (D D1:R -> Prop) (x:R),
    (forall x:R, D1 x -> D x) -> D_in f g D x -> D_in f g D1 x.
Proof.
  intros f g D D1 x H; unfold D_in.
  intros H0; apply limit1_imp with (D := D_x D x); auto.
  intros x1 [H1 H2]; splitauto.
Qed.

Theorem D_in_ext :
  forall (f g h:R -> R) (D:R -> Prop) (x:R),
    f x = g x -> D_in h f D x -> D_in h g D x.
Proof.
  intros f g h D x H; unfold D_in.
  rewrite H; auto.
Qed.

Theorem Dpower :
  forall y z:R,
    0 < y ->
    D_in (fun x:R => x ^R z) (fun x:R => z * x ^R (z - 1)) (
      fun x:R => 0 < x) y.
Proof.
  intros y z H;
    apply D_in_imp with (D := Dgf (fun x:R => 0 < x) (fun x:R => True) ln).
  intros x H0; repeat split.
  assumption.
  apply D_in_ext with (f := fun x:R => / x * (z * exp (z * ln x))).
  unfold Rminus; rewrite Rpower_plus; rewrite Rpower_Ropp;
    rewrite (Rpower_1 _ H); unfold Rpower; ring.
  apply Dcomp with
    (f := ln)
    (g := fun x:R => exp (z * x))
    (df := Rinv)
    (dg := fun x:R => z * exp (z * x)).
  apply (Dln _ H).
  apply D_in_imp with
    (D := Dgf (fun x:R => True) (fun x:R => True) (fun x:R => z * x)).
  intros x H1; repeat splitauto.
  apply
    (Dcomp (fun _:R => True) (fun _:R => True) (fun x => z) exp
      (fun x:R => z * x) exp); simpl.
  apply D_in_ext with (f := fun x:R => z * 1).
  apply Rmult_1_r.
  apply (Dmult_const (fun x => True) (fun x => x) (fun x => 1)); apply Dx.
  assert (H0 := derivable_pt_lim_D_in exp exp (z * ln y)); elim H0; clear H0;
    intros _ H0; apply H0; apply derivable_pt_lim_exp.
Qed.

Theorem derivable_pt_lim_power :
  forall x y:R,
    0 < x -> derivable_pt_lim (fun x => x ^R y) x (y * x ^R (y - 1)).
Proof.
  intros x y H.
  unfold Rminus; rewrite Rpower_plus.
  rewrite Rpower_Ropp.
  rewrite Rpower_1; auto.
  rewrite <- Rmult_assoc.
  unfold Rpower.
  apply derivable_pt_lim_comp with (f1 := ln) (f2 := fun x => exp (y * x)).
  apply derivable_pt_lim_ln; assumption.
  rewrite (Rmult_comm y).
  apply derivable_pt_lim_comp with (f1 := fun x => y * x) (f2 := exp).
  pattern y at 2; replace y with (0 * ln x + y * 1).
  apply derivable_pt_lim_mult with (f1 := fun x:R => y) (f2 := fun x:R => x).
  apply derivable_pt_lim_const with (a := y).
  apply derivable_pt_lim_id.
  ring.
  apply derivable_pt_lim_exp.
Qed.

(* added later. *)

Lemma Rpower_mult_distr :  
  forall x y z, 0 < x -> 0 < y ->
   Rpower x z * Rpower y z = Rpower (x * y) z.
intros x y z x0 y0; unfold Rpower.
rewrite <- exp_plus, ln_mult, Rmult_plus_distr_l; auto.
Qed.

Lemma Rlt_Rpower_l a b c: 0 < c -> 0 < a < b -> a ^R c < b ^R c.
Proof.
intros c0 [a0 ab]; apply exp_increasing.
now apply Rmult_lt_compat_l; autoapply ln_increasing; lra.
Qed.

Lemma Rle_Rpower_l a b c: 0 <= c -> 0 < a <= b -> a ^R c <= b ^R c.
Proof.
intros [c0 | c0];
 [ | introsrewrite <- c0, !Rpower_O; [apply Rle_refl | |] ].
  intros [a0 [ab|ab]].
  now apply Rlt_le, Rlt_Rpower_l;[ | split]; lra.
  rewrite ab; apply Rle_refl.
 apply Rlt_le_trans with a; tauto.
tauto.
Qed.

(* arcsinh function *)

Definition arcsinh x := ln (x + sqrt (x ^ 2 + 1)).

Lemma arcsinh_sinh : forall x, arcsinh (sinh x) = x.
intros x; unfold sinh, arcsinh.
assert (Rminus_eq_0 : forall r, r - r = 0) by (intros; ring).
rewrite <- exp_0, <- (Rminus_eq_0 x); unfold Rminus.
rewrite exp_plus.
match goal with |- context[sqrt ?a] => 
  replace a with (((exp x + exp(-x))/2)^2) by field
end.
rewrite sqrt_pow2;
 [|apply Rlt_le, Rmult_lt_0_compat;[apply Rplus_lt_0_compat; apply exp_pos |
                            apply Rinv_0_lt_compat, Rlt_0_2]].
match goal with |- context[ln ?a] => replace a with (exp x) by field end
rewrite ln_exp; reflexivity.
Qed.

Lemma sinh_arcsinh x : sinh (arcsinh x) = x. 
unfold sinh, arcsinh.
assert (cmp : 0 < x + sqrt (x ^ 2 + 1)).
 destruct (Rle_dec x 0).
  replace (x ^ 2) with ((-x) ^ 2) by ring.
  assert (sqrt ((- x) ^ 2) < sqrt ((-x)^2+1)).
   apply sqrt_lt_1_alt.
   split;[apply pow_le | ]; lra.
  pattern x at 1; replace x with (- (sqrt ((- x) ^ 2))).
   assert (t:= sqrt_pos ((-x)^2)); lra.
  simplrewrite Rmult_1_r, sqrt_square, Ropp_involutive;[reflexivity | lra].
  apply Rplus_lt_le_0_compat;[apply Rnot_le_gt; assumption | apply sqrt_pos].
rewrite exp_ln;[ | assumption].
rewrite exp_Ropp, exp_ln;[ | assumption].
assert (Rmult_minus_distr_r :
         forall x y z, (x - y) * z = x * z - y * z) by (intros; ring).
apply Rminus_diag_uniq; unfold Rdiv; rewrite Rmult_minus_distr_r.
assert (t: forall x y z, x - z = y -> x - y - z = 0);[ | apply t; clear t].
 intros a b c H; rewrite <- H; ring.
apply Rmult_eq_reg_l with (2 * (x + sqrt (x ^ 2 + 1)));[ |
 apply Rgt_not_eq, Rmult_lt_0_compat;[apply Rlt_0_2 | assumption]].
assert (pow2_sqrt : forall x, 0 <= x -> sqrt x ^ 2 = x) by
 (introssimplrewrite Rmult_1_r, sqrt_sqrt; auto).
field_simplify;[rewrite pow2_sqrt;[field | ] | apply Rgt_not_eq; lra].
apply Rplus_le_le_0_compat;[simplrewrite Rmult_1_r; apply (Rle_0_sqr x)|apply Rlt_le, Rlt_0_1].
Qed.

Lemma derivable_pt_lim_arcsinh :
  forall x, derivable_pt_lim arcsinh x (/sqrt (x ^ 2 + 1)).
intros x; unfold arcsinh.
assert (0 < x + sqrt (x ^ 2 + 1)).
 destruct (Rle_dec x 0);
  [ | assert (0 < x) by (apply Rnot_le_gt; assumption);
    apply Rplus_lt_le_0_compat; autoapply sqrt_pos].
 replace (x ^ 2) with ((-x) ^ 2) by ring.
 assert (sqrt ((- x) ^ 2) < sqrt ((-x)^2+1)).
  apply sqrt_lt_1_alt.
  split;[apply pow_le|]; lra.
 pattern x at 1; replace x with (- (sqrt ((- x) ^ 2))).
  assert (t:= sqrt_pos ((-x)^2)); lra.
 simplrewrite Rmult_1_r, sqrt_square, Ropp_involutive; auto; lra.
assert (0 < x ^ 2 + 1).
 apply Rplus_le_lt_0_compat;[simplrewrite Rmult_1_r; apply Rle_0_sqr|lra].
replace (/sqrt (x ^ 2 + 1)) with
 (/(x + sqrt (x ^ 2 + 1)) * 
    (1 + (/(2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)))).
apply (derivable_pt_lim_comp (fun x => x + sqrt (x ^ 2 + 1)) ln).
 apply (derivable_pt_lim_plus).
  apply derivable_pt_lim_id.
   apply (derivable_pt_lim_comp (fun x => x ^ 2 + 1) sqrt x).
    apply derivable_pt_lim_plus.
     apply derivable_pt_lim_pow.
    apply derivable_pt_lim_const.
   apply derivable_pt_lim_sqrt; assumption.
  apply derivable_pt_lim_ln; assumption.
 replace (INR 2 * x ^ 1 + 0) with (2 * x) by (simpl; ring).
replace (1 + / (2 * sqrt (x ^ 2 + 1)) * (2 * x)) with
 (((sqrt (x ^ 2 + 1) + x))/sqrt (x ^ 2 + 1));
 [ | field; apply Rgt_not_eq, sqrt_lt_R0; assumption].
apply Rmult_eq_reg_l with (x + sqrt (x ^ 2 + 1));
  [ | apply Rgt_not_eq; assumption].
rewrite <- Rmult_assoc, Rinv_r;[field | ]; apply Rgt_not_eq; auto;
  apply sqrt_lt_R0; assumption.
Qed.

Lemma arcsinh_lt : forall x y, x < y -> arcsinh x < arcsinh y.
intros x y xy.
case (Rle_dec (arcsinh y) (arcsinh x));[ | apply Rnot_le_lt ].
intros abs; case (Rlt_not_le _ _ xy).
rewrite <- (sinh_arcsinh y), <- (sinh_arcsinh x).
destruct abs as [lt | q];[| rewrite q; lra].
apply Rlt_le, sinh_lt; assumption.
Qed.

Lemma arcsinh_le : forall x y, x <= y -> arcsinh x <= arcsinh y.
intros x y [xy | xqy].
 apply Rlt_le, arcsinh_lt; assumption.
rewrite xqy; apply Rle_refl.
Qed.

Lemma arcsinh_0 : arcsinh 0 = 0.
 unfold arcsinh; rewrite pow_ne_zero, !Rplus_0_l, sqrt_1, ln_1;
  [reflexivity | discriminate].
Qed.

¤ Dauer der Verarbeitung: 0.18 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik