(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** A modular implementation of mergesort (the complexity is O(n.log n) in
the length of the list) *)
(* Initial author: Hugo Herbelin, Oct 2009 *)
Require Import List Setoid Permutation Sorted Orders.
(** Notations and conventions *)
Local Notation "[ ]" := nil.
Local Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..).
Open Scope bool_scope.
Local Coercion is_true : bool >-> Sortclass.
(** The main module defining [mergesort] on a given boolean
order [<=?]. We require minimal hypotheses : this boolean
order should only be total: [forall x y, (x<=?y) \/ (y<=?x)].
Transitivity is not mandatory, but without it one can
only prove [LocallySorted] and not [StronglySorted].
*)
Module Sort (Import X:Orders.TotalLeBool').
Fixpoint merge l1 l2 :=
let fix merge_aux l2 :=
match l1, l2 with
| [], _ => l2
| _, [] => l1
| a1::l1', a2::l2' =>
if a1 <=? a2 then a1 :: merge l1' l2 else a2 :: merge_aux l2'
end
in merge_aux l2.
(** We implement mergesort using an explicit stack of pending mergings.
Pending merging are represented like a binary number where digits are
either None (denoting 0) or Some list to merge (denoting 1). The n-th
digit represents the pending list to be merged at level n, if any.
Merging a list to a stack is like adding 1 to the binary number
represented by the stack but the carry is propagated by merging the
lists. In practice, when used in mergesort, the n-th digit, if non 0,
carries a list of length 2^n. For instance, adding singleton list
[3] to the stack Some [4]::Some [2;6]::None::Some [1;3;5;5]
reduces to propagate the carry [3;4] (resulting of the merge of [3]
and [4]) to the list Some [2;6]::None::Some [1;3;5;5], which reduces
to propagating the carry [2;3;4;6] (resulting of the merge of [3;4] and
[2;6]) to the list None::Some [1;3;5;5], which locally produces
Some [2;3;4;6]::Some [1;3;5;5], i.e. which produces the final result
None::None::Some [2;3;4;6]::Some [1;3;5;5].
For instance, here is how [6;2;3;1;5] is sorted:
<<
operation stack list
iter_merge [] [6;2;3;1;5]
= append_list_to_stack [ + [6]] [2;3;1;5]
-> iter_merge [[6]] [2;3;1;5]
= append_list_to_stack [[6] + [2]] [3;1;5]
= append_list_to_stack [ + [2;6];] [3;1;5]
-> iter_merge [[2;6];] [3;1;5]
= append_list_to_stack [[2;6]; + [3]] [1;5]
-> merge_list [[2;6];[3]] [1;5]
= append_list_to_stack [[2;6];[3] + [1] [5]
= append_list_to_stack [[2;6] + [1;3];] [5]
= append_list_to_stack [ + [1;2;3;6];;] [5]
-> merge_list [[1;2;3;6];;] [5]
= append_list_to_stack [[1;2;3;6];; + [5]] []
-> merge_stack [[1;2;3;6];;[5]]
= [1;2;3;5;6]
>>
The complexity of the algorithm is n*log n, since there are
2^(p-1) mergings to do of length 2, 2^(p-2) of length 4, ..., 2^0
of length 2^p for a list of length 2^p. The algorithm does not need
explicitly cutting the list in 2 parts at each step since it the
successive accumulation of fragments on the stack which ensures
that lists are merged on a dichotomic basis.
*)
Fixpoint merge_list_to_stack stack l :=
match stack with
| [] => [Some l]
| None :: stack' => Some l :: stack'
| Some l' :: stack' => None :: merge_list_to_stack stack' (merge l' l)
end.
Fixpoint merge_stack stack :=
match stack with
| [] => []
| None :: stack' => merge_stack stack'
| Some l :: stack' => merge l (merge_stack stack')
end.
Fixpoint iter_merge stack l :=
match l with
| [] => merge_stack stack
| a::l' => iter_merge (merge_list_to_stack stack [a]) l'
end.
Definition sort := iter_merge [].
(** The proof of correctness *)
Local Notation Sorted := (LocallySorted leb) (only parsing).
Fixpoint SortedStack stack :=
match stack with
| [] => True
| None :: stack' => SortedStack stack'
| Some l :: stack' => Sorted l /\ SortedStack stack'
end.
Local Ltac invert H := inversion H; subst; clear H.
Fixpoint flatten_stack (stack : list (option (list t))) :=
match stack with
| [] => []
| None :: stack' => flatten_stack stack'
| Some l :: stack' => l ++ flatten_stack stack'
end.
Theorem Sorted_merge : forall l1 l2,
Sorted l1 -> Sorted l2 -> Sorted (merge l1 l2).
Proof.
induction l1; induction l2; intros; simpl; auto.
destruct (a <=? a0) eqn:Heq1.
invert H.
simpl. constructor; trivial; rewrite Heq1; constructor.
assert (Sorted (merge (b::l) (a0::l2))) by (apply IHl1; auto).
clear H0 H3 IHl1; simpl in *.
destruct (b <=? a0); constructor; auto || rewrite Heq1; constructor.
assert (a0 <=? a) by
(destruct (leb_total a0 a) as [H'|H']; trivial || (rewrite Heq1 in H'; inversion H')).
invert H0.
constructor; trivial.
assert (Sorted (merge (a::l1) (b::l))) by auto using IHl1.
clear IHl2; simpl in *.
destruct (a <=? b); constructor; auto.
Qed.
Theorem Permuted_merge : forall l1 l2, Permutation (l1++l2) (merge l1 l2).
Proof.
induction l1; simpl merge; intro.
assert (forall l, (fix merge_aux (l0 : list t) : list t := l0) l = l)
as -> by (destruct l; trivial). (* Technical lemma *)
apply Permutation_refl.
induction l2.
rewrite app_nil_r. apply Permutation_refl.
destruct (a <=? a0).
constructor; apply IHl1.
apply Permutation_sym, Permutation_cons_app, Permutation_sym, IHl2.
Qed.
Theorem Sorted_merge_list_to_stack : forall stack l,
SortedStack stack -> Sorted l -> SortedStack (merge_list_to_stack stack l).
Proof.
induction stack as [|[|]]; intros; simpl.
auto.
apply IHstack. destruct H as (_,H1). fold SortedStack in H1. auto.
apply Sorted_merge; auto; destruct H; auto.
auto.
Qed.
Theorem Permuted_merge_list_to_stack : forall stack l,
Permutation (l ++ flatten_stack stack) (flatten_stack (merge_list_to_stack stack l)).
Proof.
induction stack as [|[]]; simpl; intros.
reflexivity.
rewrite app_assoc.
etransitivity.
apply Permutation_app_tail.
etransitivity.
apply Permutation_app_comm.
apply Permuted_merge.
apply IHstack.
reflexivity.
Qed.
Theorem Sorted_merge_stack : forall stack,
SortedStack stack -> Sorted (merge_stack stack).
Proof.
induction stack as [|[|]]; simpl; intros.
constructor; auto.
apply Sorted_merge; tauto.
auto.
Qed.
Theorem Permuted_merge_stack : forall stack,
Permutation (flatten_stack stack) (merge_stack stack).
Proof.
induction stack as [|[]]; simpl.
trivial.
transitivity (l ++ merge_stack stack).
apply Permutation_app_head; trivial.
apply Permuted_merge.
assumption.
Qed.
Theorem Sorted_iter_merge : forall stack l,
SortedStack stack -> Sorted (iter_merge stack l).
Proof.
intros stack l H; induction l in stack, H |- *; simpl.
auto using Sorted_merge_stack.
assert (Sorted [a]) by constructor.
auto using Sorted_merge_list_to_stack.
Qed.
Theorem Permuted_iter_merge : forall l stack,
Permutation (flatten_stack stack ++ l) (iter_merge stack l).
Proof.
induction l; simpl; intros.
rewrite app_nil_r. apply Permuted_merge_stack.
change (a::l) with ([a]++l).
rewrite app_assoc.
etransitivity.
apply Permutation_app_tail.
etransitivity.
apply Permutation_app_comm.
apply Permuted_merge_list_to_stack.
apply IHl.
Qed.
Theorem Sorted_sort : forall l, Sorted (sort l).
Proof.
intro; apply Sorted_iter_merge. constructor.
Qed.
Corollary LocallySorted_sort : forall l, Sorted.Sorted leb (sort l).
Proof. intro; eapply Sorted_LocallySorted_iff, Sorted_sort; auto. Qed.
Theorem Permuted_sort : forall l, Permutation l (sort l).
Proof.
intro; apply (Permuted_iter_merge l []).
Qed.
Corollary StronglySorted_sort : forall l,
Transitive leb -> StronglySorted leb (sort l).
Proof. auto using Sorted_StronglySorted, LocallySorted_sort. Qed.
End Sort.
(** An example *)
Module NatOrder <: TotalLeBool.
Definition t := nat.
Fixpoint leb x y :=
match x, y with
| 0, _ => true
| _, 0 => false
| S x', S y' => leb x' y'
end.
Infix "<=?" := leb (at level 35).
Theorem leb_total : forall a1 a2, a1 <=? a2 \/ a2 <=? a1.
Proof.
induction a1; destruct a2; simpl; auto.
Qed.
End NatOrder.
Module Import NatSort := Sort NatOrder.
Example SimpleMergeExample := Eval compute in sort [5;3;6;1;8;6;0].
¤ Dauer der Verarbeitung: 0.0 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|