|
|
Quellcode-Bibliothek
© Kompilation durch diese Firma
[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]
Datei:
.project
Sprache: Isabelle
|
|
(* Title: HOL/Algebra/Group.thy
Author: Clemens Ballarin, started 4 February 2003
Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
With additional contributions from Martin Baillon and Paulo Emílio de Vilhena.
*)
theory Group
imports Complete_Lattice "HOL-Library.FuncSet"
begin
section \<open>Monoids and Groups\<close>
subsection \<open>Definitions\<close>
text \<open>
Definitions follow @{cite "Jacobson:1985"}.
\<close>
record 'a monoid = "'a partial_object" +
mult :: "['a, 'a] \ 'a" (infixl "\\" 70)
one :: 'a ("\\")
definition
m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\ _" [81] 80)
where "inv\<^bsub>G\<^esub> x = (THE y. y \ carrier G \ x \\<^bsub>G\<^esub> y = \\<^bsub>G\<^esub> \ y \\<^bsub>G\<^esub> x = \\<^bsub>G\<^esub>)"
definition
Units :: "_ => 'a set"
\<comment> \<open>The set of invertible elements\<close>
where "Units G = {y. y \ carrier G \ (\x \ carrier G. x \\<^bsub>G\<^esub> y = \\<^bsub>G\<^esub> \ y \\<^bsub>G\<^esub> x = \\<^bsub>G\<^esub>)}"
locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:
"\x \ carrier G; y \ carrier G\ \ x \ y \ carrier G"
and m_assoc:
"\x \ carrier G; y \ carrier G; z \ carrier G\
\<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and one_closed [intro, simp]: "\ \ carrier G"
and l_one [simp]: "x \ carrier G \ \ \ x = x"
and r_one [simp]: "x \ carrier G \ x \ \ = x"
lemma monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y \ carrier G"
and one_closed: "\ \ carrier G"
and m_assoc:
"!!x y z. [| x \ carrier G; y \ carrier G; z \ carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and l_one: "!!x. x \ carrier G ==> \ \ x = x"
and r_one: "!!x. x \ carrier G ==> x \ \ = x"
shows "monoid G"
by (fast intro!: monoid.intro intro: assms)
lemma (in monoid) Units_closed [dest]:
"x \ Units G ==> x \ carrier G"
by (unfold Units_def) fast
lemma (in monoid) one_unique:
assumes "u \ carrier G"
and "\x. x \ carrier G \ u \ x = x"
shows "u = \"
using assms(2)[OF one_closed] r_one[OF assms(1)] by simp
lemma (in monoid) inv_unique:
assumes eq: "y \ x = \" "x \ y' = \"
and G: "x \ carrier G" "y \ carrier G" "y' \ carrier G"
shows "y = y'"
proof -
from G eq have "y = y \ (x \ y')" by simp
also from G have "... = (y \ x) \ y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed
lemma (in monoid) Units_m_closed [simp, intro]:
assumes x: "x \ Units G" and y: "y \ Units G"
shows "x \ y \ Units G"
proof -
from x obtain x' where x: "x \ carrier G" "x' \ carrier G" and xinv: "x \ x' = \" "x' \ x = \"
unfolding Units_def by fast
from y obtain y' where y: "y \ carrier G" "y' \ carrier G" and yinv: "y \ y' = \" "y' \ y = \"
unfolding Units_def by fast
from x y xinv yinv have "y' \ (x' \ x) \ y = \" by simp
moreover from x y xinv yinv have "x \ (y \ y') \ x' = \" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def
by simp (metis m_assoc m_closed)
qed
lemma (in monoid) Units_one_closed [intro, simp]:
"\ \ Units G"
by (unfold Units_def) auto
lemma (in monoid) Units_inv_closed [intro, simp]:
"x \ Units G ==> inv x \ carrier G"
apply (simp add: Units_def m_inv_def)
by (metis (mono_tags, lifting) inv_unique the_equality)
lemma (in monoid) Units_l_inv_ex:
"x \ Units G ==> \y \ carrier G. y \ x = \"
by (unfold Units_def) auto
lemma (in monoid) Units_r_inv_ex:
"x \ Units G ==> \y \ carrier G. x \ y = \"
by (unfold Units_def) auto
lemma (in monoid) Units_l_inv [simp]:
"x \ Units G ==> inv x \ x = \"
apply (unfold Units_def m_inv_def, simp)
by (metis (mono_tags, lifting) inv_unique the_equality)
lemma (in monoid) Units_r_inv [simp]:
"x \ Units G ==> x \ inv x = \"
by (metis (full_types) Units_closed Units_inv_closed Units_l_inv Units_r_inv_ex inv_unique)
lemma (in monoid) inv_one [simp]:
"inv \ = \"
by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed monoid_axioms)
lemma (in monoid) Units_inv_Units [intro, simp]:
"x \ Units G ==> inv x \ Units G"
proof -
assume x: "x \ Units G"
show "inv x \ Units G"
by (auto simp add: Units_def
intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed
lemma (in monoid) Units_l_cancel [simp]:
"[| x \ Units G; y \ carrier G; z \ carrier G |] ==>
(x \<otimes> y = x \<otimes> z) = (y = z)"
proof
assume eq: "x \ y = x \ z"
and G: "x \ Units G" "y \ carrier G" "z \ carrier G"
then have "(inv x \ x) \ y = (inv x \ x) \ z"
by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by simp
next
assume eq: "y = z"
and G: "x \ Units G" "y \ carrier G" "z \ carrier G"
then show "x \ y = x \ z" by simp
qed
lemma (in monoid) Units_inv_inv [simp]:
"x \ Units G ==> inv (inv x) = x"
proof -
assume x: "x \ Units G"
then have "inv x \ inv (inv x) = inv x \ x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed
lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
fix x y
assume G: "x \ Units G" "y \ Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
with G show "x = y" by simp
qed
lemma (in monoid) Units_inv_comm:
assumes inv: "x \ y = \"
and G: "x \ Units G" "y \ Units G"
shows "y \ x = \"
proof -
from G have "x \ y \ x = x \ \" by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed
lemma (in monoid) carrier_not_empty: "carrier G \ {}"
by auto
(* Jacobson defines submonoid here. *)
(* Jacobson defines the order of a monoid here. *)
subsection \<open>Groups\<close>
text \<open>
A group is a monoid all of whose elements are invertible.
\<close>
locale group = monoid +
assumes Units: "carrier G <= Units G"
lemma (in group) is_group [iff]: "group G" by (rule group_axioms)
lemma (in group) is_monoid [iff]: "monoid G"
by (rule monoid_axioms)
theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y \ carrier G"
and one_closed [simp]: "\ \ carrier G"
and m_assoc:
"!!x y z. [| x \ carrier G; y \ carrier G; z \ carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and l_one [simp]: "!!x. x \ carrier G ==> \ \ x = x"
and l_inv_ex: "!!x. x \ carrier G ==> \y \ carrier G. y \ x = \"
shows "group G"
proof -
have l_cancel [simp]:
"!!x y z. [| x \ carrier G; y \ carrier G; z \ carrier G |] ==>
(x \<otimes> y = x \<otimes> z) = (y = z)"
proof
fix x y z
assume eq: "x \ y = x \ z"
and G: "x \ carrier G" "y \ carrier G" "z \ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv \ carrier G"
and l_inv: "x_inv \ x = \" by fast
from G eq xG have "(x_inv \ x) \ y = (x_inv \ x) \ z"
by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)
next
fix x y z
assume eq: "y = z"
and G: "x \ carrier G" "y \ carrier G" "z \ carrier G"
then show "x \ y = x \ z" by simp
qed
have r_one:
"!!x. x \ carrier G ==> x \ \ = x"
proof -
fix x
assume x: "x \ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv \ carrier G"
and l_inv: "x_inv \ x = \" by fast
from x xG have "x_inv \ (x \ \) = x_inv \ x"
by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x \ \ = x" by simp
qed
have inv_ex:
"\x. x \ carrier G \ \y \ carrier G. y \ x = \ \ x \ y = \"
proof -
fix x
assume x: "x \ carrier G"
with l_inv_ex obtain y where y: "y \ carrier G"
and l_inv: "y \ x = \" by fast
from x y have "y \ (x \ y) = y \ \"
by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x \ y = \"
by simp
from x y show "\y \ carrier G. y \ x = \ \ x \ y = \"
by (fast intro: l_inv r_inv)
qed
then have carrier_subset_Units: "carrier G \ Units G"
by (unfold Units_def) fast
show ?thesis
by standard (auto simp: r_one m_assoc carrier_subset_Units)
qed
lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x \ carrier G ==> \y \ carrier G. y \ x = \"
shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)
lemma (in group) Units_eq [simp]:
"Units G = carrier G"
proof
show "Units G \ carrier G" by fast
next
show "carrier G \ Units G" by (rule Units)
qed
lemma (in group) inv_closed [intro, simp]:
"x \ carrier G ==> inv x \ carrier G"
using Units_inv_closed by simp
lemma (in group) l_inv_ex [simp]:
"x \ carrier G ==> \y \ carrier G. y \ x = \"
using Units_l_inv_ex by simp
lemma (in group) r_inv_ex [simp]:
"x \ carrier G ==> \y \ carrier G. x \ y = \"
using Units_r_inv_ex by simp
lemma (in group) l_inv [simp]:
"x \ carrier G ==> inv x \ x = \"
by simp
subsection \<open>Cancellation Laws and Basic Properties\<close>
lemma (in group) inv_eq_1_iff [simp]:
assumes "x \ carrier G" shows "inv\<^bsub>G\<^esub> x = \\<^bsub>G\<^esub> \ x = \\<^bsub>G\<^esub>"
proof -
have "x = \" if "inv x = \"
proof -
have "inv x \ x = \"
using assms l_inv by blast
then show "x = \"
using that assms by simp
qed
then show ?thesis
by auto
qed
lemma (in group) r_inv [simp]:
"x \ carrier G ==> x \ inv x = \"
by simp
lemma (in group) right_cancel [simp]:
"[| x \ carrier G; y \ carrier G; z \ carrier G |] ==>
(y \<otimes> x = z \<otimes> x) = (y = z)"
by (metis inv_closed m_assoc r_inv r_one)
lemma (in group) inv_inv [simp]:
"x \ carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp
lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp
lemma (in group) inv_mult_group:
"[| x \ carrier G; y \ carrier G |] ==> inv (x \ y) = inv y \ inv x"
proof -
assume G: "x \ carrier G" "y \ carrier G"
then have "inv (x \ y) \ (x \ y) = (inv y \ inv x) \ (x \ y)"
by (simp add: m_assoc) (simp add: m_assoc [symmetric])
with G show ?thesis by (simp del: l_inv Units_l_inv)
qed
lemma (in group) inv_comm:
"[| x \ y = \; x \ carrier G; y \ carrier G |] ==> y \ x = \"
by (rule Units_inv_comm) auto
lemma (in group) inv_equality:
"[|y \ x = \; x \ carrier G; y \ carrier G|] ==> inv x = y"
using inv_unique r_inv by blast
lemma (in group) inv_solve_left:
"\ a \ carrier G; b \ carrier G; c \ carrier G \ \ a = inv b \ c \ c = b \ a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_left':
"\ a \ carrier G; b \ carrier G; c \ carrier G \ \ inv b \ c = a \ c = b \ a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right:
"\ a \ carrier G; b \ carrier G; c \ carrier G \ \ a = b \ inv c \ b = a \ c"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right':
"\a \ carrier G; b \ carrier G; c \ carrier G\ \ b \ inv c = a \ b = a \ c"
by (auto simp: m_assoc)
subsection \<open>Power\<close>
consts
pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr "[^]\" 75)
overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
begin
definition "nat_pow G a n = rec_nat \\<^bsub>G\<^esub> (%u b. b \\<^bsub>G\<^esub> a) n"
end
lemma (in monoid) nat_pow_closed [intro, simp]:
"x \ carrier G ==> x [^] (n::nat) \ carrier G"
by (induct n) (simp_all add: nat_pow_def)
lemma (in monoid) nat_pow_0 [simp]:
"x [^] (0::nat) = \"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_Suc [simp]:
"x [^] (Suc n) = x [^] n \ x"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_one [simp]:
"\ [^] (n::nat) = \"
by (induct n) simp_all
lemma (in monoid) nat_pow_mult:
"x \ carrier G ==> x [^] (n::nat) \ x [^] m = x [^] (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])
lemma (in monoid) nat_pow_comm:
"x \ carrier G \ (x [^] (n::nat)) \ (x [^] (m :: nat)) = (x [^] m) \ (x [^] n)"
using nat_pow_mult[of x n m] nat_pow_mult[of x m n] by (simp add: add.commute)
lemma (in monoid) nat_pow_Suc2:
"x \ carrier G \ x [^] (Suc n) = x \ (x [^] n)"
using nat_pow_mult[of x 1 n] Suc_eq_plus1[of n]
by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc nat_pow_def)
lemma (in monoid) nat_pow_pow:
"x \ carrier G ==> (x [^] n) [^] m = x [^] (n * m::nat)"
by (induct m) (simp, simp add: nat_pow_mult add.commute)
lemma (in monoid) nat_pow_consistent:
"x [^] (n :: nat) = x [^]\<^bsub>(G \ carrier := H \)\<^esub> n"
unfolding nat_pow_def by simp
lemma nat_pow_0 [simp]: "x [^]\<^bsub>G\<^esub> (0::nat) = \\<^bsub>G\<^esub>"
by (simp add: nat_pow_def)
lemma nat_pow_Suc [simp]: "x [^]\<^bsub>G\<^esub> (Suc n) = (x [^]\<^bsub>G\<^esub> n)\\<^bsub>G\<^esub> x"
by (simp add: nat_pow_def)
lemma (in group) nat_pow_inv:
assumes "x \ carrier G" shows "(inv x) [^] (i :: nat) = inv (x [^] i)"
proof (induction i)
case 0 thus ?case by simp
next
case (Suc i)
have "(inv x) [^] Suc i = ((inv x) [^] i) \ inv x"
by simp
also have " ... = (inv (x [^] i)) \ inv x"
by (simp add: Suc.IH Suc.prems)
also have " ... = inv (x \ (x [^] i))"
by (simp add: assms inv_mult_group)
also have " ... = inv (x [^] (Suc i))"
using assms nat_pow_Suc2 by auto
finally show ?case .
qed
overloading int_pow == "pow :: [_, 'a, int] => 'a"
begin
definition "int_pow G a z =
(let p = rec_nat \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a)
in if z < 0 then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))"
end
lemma int_pow_int: "x [^]\<^bsub>G\<^esub> (int n) = x [^]\<^bsub>G\<^esub> n"
by(simp add: int_pow_def nat_pow_def)
lemma pow_nat:
assumes "i\0"
shows "x [^]\<^bsub>G\<^esub> nat i = x [^]\<^bsub>G\<^esub> i"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (simp add: int_pow_int)
next
case (neg n)
then show ?thesis
using assms by linarith
qed
lemma int_pow_0 [simp]: "x [^]\<^bsub>G\<^esub> (0::int) = \\<^bsub>G\<^esub>"
by (simp add: int_pow_def)
lemma int_pow_def2: "a [^]\<^bsub>G\<^esub> z =
(if z < 0 then inv\<^bsub>G\<^esub> (a [^]\<^bsub>G\<^esub> (nat (-z))) else a [^]\<^bsub>G\<^esub> (nat z))"
by (simp add: int_pow_def nat_pow_def)
lemma (in group) int_pow_one [simp]:
"\ [^] (z::int) = \"
by (simp add: int_pow_def2)
lemma (in group) int_pow_closed [intro, simp]:
"x \ carrier G ==> x [^] (i::int) \ carrier G"
by (simp add: int_pow_def2)
lemma (in group) int_pow_1 [simp]:
"x \ carrier G \ x [^] (1::int) = x"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg:
"x \ carrier G \ x [^] (-i::int) = inv (x [^] i)"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg_int: "x \ carrier G \ x [^] -(int n) = inv (x [^] n)"
by (simp add: int_pow_neg int_pow_int)
lemma (in group) int_pow_mult:
assumes "x \ carrier G" shows "x [^] (i + j::int) = x [^] i \ x [^] j"
proof -
have [simp]: "-i - j = -j - i" by simp
show ?thesis
by (auto simp: assms int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult)
qed
lemma (in group) int_pow_inv:
"x \ carrier G \ (inv x) [^] (i :: int) = inv (x [^] i)"
by (metis int_pow_def2 nat_pow_inv)
lemma (in group) int_pow_pow:
assumes "x \ carrier G"
shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)"
proof (cases)
assume n_ge: "n \ 0" thus ?thesis
proof (cases)
assume m_ge: "m \ 0" thus ?thesis
using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2 [where G=G]
by (simp add: mult_less_0_iff nat_mult_distrib)
next
assume m_lt: "\ m \ 0"
with n_ge show ?thesis
apply (simp add: int_pow_def2 mult_less_0_iff)
by (metis assms mult_minus_right n_ge nat_mult_distrib nat_pow_pow)
qed
next
assume n_lt: "\ n \ 0" thus ?thesis
proof (cases)
assume m_ge: "m \ 0"
have "inv x [^] (nat m * nat (- n)) = inv x [^] nat (- (m * n))"
by (metis (full_types) m_ge mult_minus_right nat_mult_distrib)
with m_ge n_lt show ?thesis
by (simp add: int_pow_def2 mult_less_0_iff assms mult.commute nat_pow_inv nat_pow_pow)
next
assume m_lt: "\ m \ 0" thus ?thesis
using n_lt by (auto simp: int_pow_def2 mult_less_0_iff assms nat_mult_distrib_neg nat_pow_inv nat_pow_pow)
qed
qed
lemma (in group) int_pow_diff:
"x \ carrier G \ x [^] (n - m :: int) = x [^] n \ inv (x [^] m)"
by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)
lemma (in group) inj_on_multc: "c \ carrier G \ inj_on (\x. x \ c) (carrier G)"
by(simp add: inj_on_def)
lemma (in group) inj_on_cmult: "c \ carrier G \ inj_on (\x. c \ x) (carrier G)"
by(simp add: inj_on_def)
lemma (in monoid) group_commutes_pow:
fixes n::nat
shows "\x \ y = y \ x; x \ carrier G; y \ carrier G\ \ x [^] n \ y = y \ x [^] n"
apply (induction n, auto)
by (metis m_assoc nat_pow_closed)
lemma (in monoid) pow_mult_distrib:
assumes eq: "x \ y = y \ x" and xy: "x \ carrier G" "y \ carrier G"
shows "(x \ y) [^] (n::nat) = x [^] n \ y [^] n"
proof (induct n)
case (Suc n)
have "x \ (y [^] n \ y) = y [^] n \ x \ y"
by (simp add: eq group_commutes_pow m_assoc xy)
then show ?case
using assms Suc.hyps m_assoc by auto
qed auto
lemma (in group) int_pow_mult_distrib:
assumes eq: "x \ y = y \ x" and xy: "x \ carrier G" "y \ carrier G"
shows "(x \ y) [^] (i::int) = x [^] i \ y [^] i"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (metis eq int_pow_int pow_mult_distrib xy)
next
case (neg n)
then show ?thesis
unfolding neg
apply (simp add: xy int_pow_neg_int del: of_nat_Suc)
by (metis eq inv_mult_group local.nat_pow_Suc nat_pow_closed pow_mult_distrib xy)
qed
lemma (in group) pow_eq_div2:
fixes m n :: nat
assumes x_car: "x \ carrier G"
assumes pow_eq: "x [^] m = x [^] n"
shows "x [^] (m - n) = \"
proof (cases "m < n")
case False
have "\ \ x [^] m = x [^] m" by (simp add: x_car)
also have "\ = x [^] (m - n) \ x [^] n"
using False by (simp add: nat_pow_mult x_car)
also have "\ = x [^] (m - n) \ x [^] m"
by (simp add: pow_eq)
finally show ?thesis
by (metis nat_pow_closed one_closed right_cancel x_car)
qed simp
subsection \<open>Submonoids\<close>
locale submonoid = \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
fixes H and G (structure)
assumes subset: "H \ carrier G"
and m_closed [intro, simp]: "\x \ H; y \ H\ \ x \ y \ H"
and one_closed [simp]: "\ \ H"
lemma (in submonoid) is_submonoid: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
"submonoid H G" by (rule submonoid_axioms)
lemma (in submonoid) mem_carrier [simp]: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
"x \ H \ x \ carrier G"
using subset by blast
lemma (in submonoid) submonoid_is_monoid [intro]: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "monoid G"
shows "monoid (G\carrier := H\)"
proof -
interpret monoid G by fact
show ?thesis
by (simp add: monoid_def m_assoc)
qed
lemma submonoid_nonempty: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
"~ submonoid {} G"
by (blast dest: submonoid.one_closed)
lemma (in submonoid) finite_monoid_imp_card_positive: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
"finite (carrier G) ==> 0 < card H"
proof (rule classical)
assume "finite (carrier G)" and a: "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with is_submonoid a have "submonoid {} G" by simp
with submonoid_nonempty show ?thesis by contradiction
qed
lemma (in monoid) monoid_incl_imp_submonoid : \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "H \ carrier G"
and "monoid (G\carrier := H\)"
shows "submonoid H G"
proof (intro submonoid.intro[OF assms(1)])
have ab_eq : "\ a b. a \ H \ b \ H \ a \\<^bsub>G\carrier := H\\<^esub> b = a \ b" using assms by simp
have "\a b. a \ H \ b \ H \ a \ b \ carrier (G\carrier := H\) "
using assms ab_eq unfolding group_def using monoid.m_closed by fastforce
thus "\a b. a \ H \ b \ H \ a \ b \ H" by simp
show "\ \ H " using monoid.one_closed[OF assms(2)] assms by simp
qed
lemma (in monoid) inv_unique': \<^marker>\contributor \Martin Baillon\\
assumes "x \ carrier G" "y \ carrier G"
shows "\ x \ y = \; y \ x = \ \ \ y = inv x"
proof -
assume "x \ y = \" and l_inv: "y \ x = \"
hence unit: "x \ Units G"
using assms unfolding Units_def by auto
show "y = inv x"
using inv_unique[OF l_inv Units_r_inv[OF unit] assms Units_inv_closed[OF unit]] .
qed
lemma (in monoid) m_inv_monoid_consistent: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "x \ Units (G \ carrier := H \)" and "submonoid H G"
shows "inv\<^bsub>(G \ carrier := H \)\<^esub> x = inv x"
proof -
have monoid: "monoid (G \ carrier := H \)"
using submonoid.submonoid_is_monoid[OF assms(2) monoid_axioms] .
obtain y where y: "y \ H" "x \ y = \" "y \ x = \"
using assms(1) unfolding Units_def by auto
have x: "x \ H" and in_carrier: "x \ carrier G" "y \ carrier G"
using y(1) submonoid.subset[OF assms(2)] assms(1) unfolding Units_def by auto
show ?thesis
using monoid.inv_unique'[OF monoid, of x y] x y
using inv_unique'[OF in_carrier y(2-3)] by auto
qed
subsection \<open>Subgroups\<close>
locale subgroup =
fixes H and G (structure)
assumes subset: "H \ carrier G"
and m_closed [intro, simp]: "\x \ H; y \ H\ \ x \ y \ H"
and one_closed [simp]: "\ \ H"
and m_inv_closed [intro,simp]: "x \ H \ inv x \ H"
lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)
declare (in subgroup) group.intro [intro]
lemma (in subgroup) mem_carrier [simp]:
"x \ H \ x \ carrier G"
using subset by blast
lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G\carrier := H\)"
proof -
interpret group G by fact
have "Group.monoid (G\carrier := H\)"
by (simp add: monoid_axioms submonoid.intro submonoid.submonoid_is_monoid subset)
then show ?thesis
by (rule monoid.group_l_invI) (auto intro: l_inv mem_carrier)
qed
lemma subgroup_is_submonoid:
assumes "subgroup H G" shows "submonoid H G"
using assms by (auto intro: submonoid.intro simp add: subgroup_def)
lemma (in group) subgroup_Units:
assumes "subgroup H G" shows "H \ Units (G \ carrier := H \)"
using group.Units[OF subgroup.subgroup_is_group[OF assms group_axioms]] by simp
lemma (in group) m_inv_consistent [simp]:
assumes "subgroup H G" "x \ H"
shows "inv\<^bsub>(G \ carrier := H \)\<^esub> x = inv x"
using assms m_inv_monoid_consistent[OF _ subgroup_is_submonoid] subgroup_Units[of H] by auto
lemma (in group) int_pow_consistent: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "subgroup H G" "x \ H"
shows "x [^] (n :: int) = x [^]\<^bsub>(G \ carrier := H \)\<^esub> n"
proof (cases)
assume ge: "n \ 0"
hence "x [^] n = x [^] (nat n)"
using int_pow_def2 [of G] by auto
also have " ... = x [^]\<^bsub>(G \ carrier := H \)\<^esub> (nat n)"
using nat_pow_consistent by simp
also have " ... = x [^]\<^bsub>(G \ carrier := H \)\<^esub> n"
by (metis ge int_nat_eq int_pow_int)
finally show ?thesis .
next
assume "\ n \ 0" hence lt: "n < 0" by simp
hence "x [^] n = inv (x [^] (nat (- n)))"
using int_pow_def2 [of G] by auto
also have " ... = (inv x) [^] (nat (- n))"
by (metis assms nat_pow_inv subgroup.mem_carrier)
also have " ... = (inv\<^bsub>(G \ carrier := H \)\<^esub> x) [^]\<^bsub>(G \ carrier := H \)\<^esub> (nat (- n))"
using m_inv_consistent[OF assms] nat_pow_consistent by auto
also have " ... = inv\<^bsub>(G \ carrier := H \)\<^esub> (x [^]\<^bsub>(G \ carrier := H \)\<^esub> (nat (- n)))"
using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1) is_group]] assms(2) by auto
also have " ... = x [^]\<^bsub>(G \ carrier := H \)\<^esub> n"
by (simp add: int_pow_def2 lt)
finally show ?thesis .
qed
text \<open>
Since \<^term>\<open>H\<close> is nonempty, it contains some element \<^term>\<open>x\<close>. Since
it is closed under inverse, it contains \<open>inv x\<close>. Since
it is closed under product, it contains \<open>x \<otimes> inv x = \<one>\<close>.
\<close>
lemma (in group) one_in_subset:
"[| H \ carrier G; H \ {}; \a \ H. inv a \ H; \a\H. \b\H. a \ b \ H |]
==> \<one> \<in> H"
by force
text \<open>A characterization of subgroups: closed, non-empty subset.\<close>
lemma (in group) subgroupI:
assumes subset: "H \ carrier G" and non_empty: "H \ {}"
and inv: "!!a. a \ H \ inv a \ H"
and mult: "!!a b. \a \ H; b \ H\ \ a \ b \ H"
shows "subgroup H G"
proof (simp add: subgroup_def assms)
show "\ \ H" by (rule one_in_subset) (auto simp only: assms)
qed
lemma (in group) subgroupE:
assumes "subgroup H G"
shows "H \ carrier G"
and "H \ {}"
and "\a. a \ H \ inv a \ H"
and "\a b. \ a \ H; b \ H \ \ a \ b \ H"
using assms unfolding subgroup_def[of H G] by auto
declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
lemma subgroup_nonempty:
"\ subgroup {} G"
by (blast dest: subgroup.one_closed)
lemma (in subgroup) finite_imp_card_positive: "finite (carrier G) \ 0 < card H"
using subset one_closed card_gt_0_iff finite_subset by blast
lemma (in subgroup) subgroup_is_submonoid : \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
"submonoid H G"
by (simp add: submonoid.intro subset)
lemma (in group) submonoid_subgroupI : \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "submonoid H G"
and "\a. a \ H \ inv a \ H"
shows "subgroup H G"
by (metis assms subgroup_def submonoid_def)
lemma (in group) group_incl_imp_subgroup: \<^marker>\<open>contributor \<open>Martin Baillon\<close>\<close>
assumes "H \ carrier G"
and "group (G\carrier := H\)"
shows "subgroup H G"
proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]])
show "monoid (G\carrier := H\)" using group_def assms by blast
have ab_eq : "\ a b. a \ H \ b \ H \ a \\<^bsub>G\carrier := H\\<^esub> b = a \ b" using assms by simp
fix a assume aH : "a \ H"
have " inv\<^bsub>G\carrier := H\\<^esub> a \ carrier G"
using assms aH group.inv_closed[OF assms(2)] by auto
moreover have "\\<^bsub>G\carrier := H\\<^esub> = \" using assms monoid.one_closed ab_eq one_def by simp
hence "a \\<^bsub>G\carrier := H\\<^esub> inv\<^bsub>G\carrier := H\\<^esub> a= \"
using assms ab_eq aH group.r_inv[OF assms(2)] by simp
hence "a \ inv\<^bsub>G\carrier := H\\<^esub> a= \"
using aH assms group.inv_closed[OF assms(2)] ab_eq by simp
ultimately have "inv\<^bsub>G\carrier := H\\<^esub> a = inv a"
by (metis aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality)
moreover have "inv\<^bsub>G\carrier := H\\<^esub> a \ H"
using aH group.inv_closed[OF assms(2)] by auto
ultimately show "inv a \ H" by auto
qed
subsection \<open>Direct Products\<close>
definition
DirProd :: "_ \ _ \ ('a \ 'b) monoid" (infixr "\\" 80) where
"G \\ H =
\<lparr>carrier = carrier G \<times> carrier H,
mult = (\<lambda>(g, h) (g', h'). (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')),
one = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)\<rparr>"
lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G \\ H)"
proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)
qed
text\<open>Does not use the previous result because it's easier just to use auto.\<close>
lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G \\ H)"
proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)
qed
lemma carrier_DirProd [simp]: "carrier (G \\ H) = carrier G \ carrier H"
by (simp add: DirProd_def)
lemma one_DirProd [simp]: "\\<^bsub>G \\ H\<^esub> = (\\<^bsub>G\<^esub>, \\<^bsub>H\<^esub>)"
by (simp add: DirProd_def)
lemma mult_DirProd [simp]: "(g, h) \\<^bsub>(G \\ H)\<^esub> (g', h') = (g \\<^bsub>G\<^esub> g', h \\<^bsub>H\<^esub> h')"
by (simp add: DirProd_def)
lemma mult_DirProd': "x \\<^bsub>(G \\ H)\<^esub> y = (fst x \\<^bsub>G\<^esub> fst y, snd x \\<^bsub>H\<^esub> snd y)"
by (subst mult_DirProd [symmetric]) simp
lemma DirProd_assoc: "(G \\ H \\ I) = (G \\ (H \\ I))"
by auto
lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g \ carrier G"
and h: "h \ carrier H"
shows "m_inv (G \\ H) (g, h) = (inv\<^bsub>G\<^esub> g, inv\<^bsub>H\<^esub> h)"
proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G \\ H"
by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed
lemma DirProd_subgroups :
assumes "group G"
and "subgroup H G"
and "group K"
and "subgroup I K"
shows "subgroup (H \ I) (G \\ K)"
proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
have "H \ carrier G" "I \ carrier K" using subgroup.subset assms by blast+
thus "(H \ I) \ carrier (G \\ K)" unfolding DirProd_def by auto
have "Group.group ((G\carrier := H\) \\ (K\carrier := I\))"
using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
subgroup.subgroup_is_group[OF assms(4)assms(3)]].
moreover have "((G\carrier := H\) \\ (K\carrier := I\)) = ((G \\ K)\carrier := H \ I\)"
unfolding DirProd_def using assms by simp
ultimately show "Group.group ((G \\ K)\carrier := H \ I\)" by simp
qed
subsection \<open>Homomorphisms (mono and epi) and Isomorphisms\<close>
definition
hom :: "_ => _ => ('a => 'b) set" where
"hom G H =
{h. h \<in> carrier G \<rightarrow> carrier H \<and>
(\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y)}"
lemma homI:
"\\x. x \ carrier G \ h x \ carrier H;
\<And>x y. \<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y\<rbrakk> \<Longrightarrow> h \<in> hom G H"
by (auto simp: hom_def)
lemma hom_carrier: "h \ hom G H \ h ` carrier G \ carrier H"
by (auto simp: hom_def)
lemma hom_in_carrier: "\h \ hom G H; x \ carrier G\ \ h x \ carrier H"
by (auto simp: hom_def)
lemma hom_compose:
"\ f \ hom G H; g \ hom H I \ \ g \ f \ hom G I"
unfolding hom_def by (auto simp add: Pi_iff)
lemma (in group) hom_restrict:
assumes "h \ hom G H" and "\g. g \ carrier G \ h g = t g" shows "t \ hom G H"
using assms unfolding hom_def by (auto simp add: Pi_iff)
lemma (in group) hom_compose:
"[|h \ hom G H; i \ hom H I|] ==> compose (carrier G) i h \ hom G I"
by (fastforce simp add: hom_def compose_def)
lemma (in group) restrict_hom_iff [simp]:
"(\x. if x \ carrier G then f x else g x) \ hom G H \ f \ hom G H"
by (simp add: hom_def Pi_iff)
definition iso :: "_ => _ => ('a => 'b) set"
where "iso G H = {h. h \ hom G H \ bij_betw h (carrier G) (carrier H)}"
definition is_iso :: "_ \ _ \ bool" (infixr "\" 60)
where "G \ H = (iso G H \ {})"
definition mon where "mon G H = {f \ hom G H. inj_on f (carrier G)}"
definition epi where "epi G H = {f \ hom G H. f ` (carrier G) = carrier H}"
lemma isoI:
"\h \ hom G H; bij_betw h (carrier G) (carrier H)\ \ h \ iso G H"
by (auto simp: iso_def)
lemma is_isoI: "h \ iso G H \ G \ H"
using is_iso_def by auto
lemma epi_iff_subset:
"f \ epi G G' \ f \ hom G G' \ carrier G' \ f ` carrier G"
by (auto simp: epi_def hom_def)
lemma iso_iff_mon_epi: "f \ iso G H \ f \ mon G H \ f \ epi G H"
by (auto simp: iso_def mon_def epi_def bij_betw_def)
lemma iso_set_refl: "(\x. x) \ iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma id_iso: "id \ iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
corollary iso_refl [simp]: "G \ G"
using iso_set_refl unfolding is_iso_def by auto
lemma iso_iff:
"h \ iso G H \ h \ hom G H \ h ` (carrier G) = carrier H \ inj_on h (carrier G)"
by (auto simp: iso_def hom_def bij_betw_def)
lemma iso_imp_homomorphism:
"h \ iso G H \ h \ hom G H"
by (simp add: iso_iff)
lemma trivial_hom:
"group H \ (\x. one H) \ hom G H"
by (auto simp: hom_def Group.group_def)
lemma (in group) hom_eq:
assumes "f \ hom G H" "\x. x \ carrier G \ f' x = f x"
shows "f' \ hom G H"
using assms by (auto simp: hom_def)
lemma (in group) iso_eq:
assumes "f \ iso G H" "\x. x \ carrier G \ f' x = f x"
shows "f' \ iso G H"
using assms by (fastforce simp: iso_def inj_on_def bij_betw_def hom_eq image_iff)
lemma (in group) iso_set_sym:
assumes "h \ iso G H"
shows "inv_into (carrier G) h \ iso H G"
proof -
have h: "h \ hom G H" "bij_betw h (carrier G) (carrier H)"
using assms by (auto simp add: iso_def bij_betw_inv_into)
then have HG: "bij_betw (inv_into (carrier G) h) (carrier H) (carrier G)"
by (simp add: bij_betw_inv_into)
have "inv_into (carrier G) h \ hom H G"
unfolding hom_def
proof safe
show *: "\x. x \ carrier H \ inv_into (carrier G) h x \ carrier G"
by (meson HG bij_betwE)
show "inv_into (carrier G) h (x \\<^bsub>H\<^esub> y) = inv_into (carrier G) h x \ inv_into (carrier G) h y"
if "x \ carrier H" "y \ carrier H" for x y
proof (rule inv_into_f_eq)
show "inj_on h (carrier G)"
using bij_betw_def h(2) by blast
show "inv_into (carrier G) h x \ inv_into (carrier G) h y \ carrier G"
by (simp add: * that)
show "h (inv_into (carrier G) h x \ inv_into (carrier G) h y) = x \\<^bsub>H\<^esub> y"
using h bij_betw_inv_into_right [of h] unfolding hom_def by (simp add: "*" that)
qed
qed
then show ?thesis
by (simp add: Group.iso_def bij_betw_inv_into h)
qed
corollary (in group) iso_sym: "G \ H \ H \ G"
using iso_set_sym unfolding is_iso_def by auto
lemma iso_set_trans:
"\h \ Group.iso G H; i \ Group.iso H I\ \ i \ h \ Group.iso G I"
by (force simp: iso_def hom_compose intro: bij_betw_trans)
corollary iso_trans [trans]: "\G \ H ; H \ I\ \ G \ I"
using iso_set_trans unfolding is_iso_def by blast
lemma iso_same_card: "G \ H \ card (carrier G) = card (carrier H)"
using bij_betw_same_card unfolding is_iso_def iso_def by auto
lemma iso_finite: "G \ H \ finite(carrier G) \ finite(carrier H)"
by (auto simp: is_iso_def iso_def bij_betw_finite)
lemma mon_compose:
"\f \ mon G H; g \ mon H K\ \ (g \ f) \ mon G K"
by (auto simp: mon_def intro: hom_compose comp_inj_on inj_on_subset [OF _ hom_carrier])
lemma mon_compose_rev:
"\f \ hom G H; g \ hom H K; (g \ f) \ mon G K\ \ f \ mon G H"
using inj_on_imageI2 by (auto simp: mon_def)
lemma epi_compose:
"\f \ epi G H; g \ epi H K\ \ (g \ f) \ epi G K"
using hom_compose by (force simp: epi_def hom_compose simp flip: image_image)
lemma epi_compose_rev:
"\f \ hom G H; g \ hom H K; (g \ f) \ epi G K\ \ g \ epi H K"
by (fastforce simp: epi_def hom_def Pi_iff image_def set_eq_iff)
lemma iso_compose_rev:
"\f \ hom G H; g \ hom H K; (g \ f) \ iso G K\ \ f \ mon G H \ g \ epi H K"
unfolding iso_iff_mon_epi using mon_compose_rev epi_compose_rev by blast
lemma epi_iso_compose_rev:
assumes "f \ epi G H" "g \ hom H K" "(g \ f) \ iso G K"
shows "f \ iso G H \ g \ iso H K"
proof
show "f \ iso G H"
by (metis (no_types, lifting) assms epi_def iso_compose_rev iso_iff_mon_epi mem_Collect_eq)
then have "f \ hom G H \ bij_betw f (carrier G) (carrier H)"
using Group.iso_def \<open>f \<in> Group.iso G H\<close> by blast
then have "bij_betw g (carrier H) (carrier K)"
using Group.iso_def assms(3) bij_betw_comp_iff by blast
then show "g \ iso H K"
using Group.iso_def assms(2) by blast
qed
lemma mon_left_invertible:
"\f \ hom G H; \x. x \ carrier G \ g(f x) = x\ \ f \ mon G H"
by (simp add: mon_def inj_on_def) metis
lemma epi_right_invertible:
"\g \ hom H G; f \ carrier G \ carrier H; \x. x \ carrier G \ g(f x) = x\ \ g \ epi H G"
by (force simp: Pi_iff epi_iff_subset image_subset_iff_funcset subset_iff)
lemma (in monoid) hom_imp_img_monoid: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "h \ hom G H"
shows "monoid (H \ carrier := h ` (carrier G), one := h \\<^bsub>G\<^esub> \)" (is "monoid ?h_img")
proof (rule monoidI)
show "\\<^bsub>?h_img\<^esub> \ carrier ?h_img"
by auto
next
fix x y z assume "x \ carrier ?h_img" "y \ carrier ?h_img" "z \ carrier ?h_img"
then obtain g1 g2 g3
where g1: "g1 \ carrier G" "x = h g1"
and g2: "g2 \ carrier G" "y = h g2"
and g3: "g3 \ carrier G" "z = h g3"
using image_iff[where ?f = h and ?A = "carrier G"] by auto
have aux_lemma:
"\a b. \ a \ carrier G; b \ carrier G \ \ h a \\<^bsub>(?h_img)\<^esub> h b = h (a \ b)"
using assms unfolding hom_def by auto
show "x \\<^bsub>(?h_img)\<^esub> \\<^bsub>(?h_img)\<^esub> = x"
using aux_lemma[OF g1(1) one_closed] g1(2) r_one[OF g1(1)] by simp
show "\\<^bsub>(?h_img)\<^esub> \\<^bsub>(?h_img)\<^esub> x = x"
using aux_lemma[OF one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp
have "x \\<^bsub>(?h_img)\<^esub> y = h (g1 \ g2)"
using aux_lemma g1 g2 by auto
thus "x \\<^bsub>(?h_img)\<^esub> y \ carrier ?h_img"
using g1(1) g2(1) by simp
have "(x \\<^bsub>(?h_img)\<^esub> y) \\<^bsub>(?h_img)\<^esub> z = h ((g1 \ g2) \ g3)"
using aux_lemma g1 g2 g3 by auto
also have " ... = h (g1 \ (g2 \ g3))"
using m_assoc[OF g1(1) g2(1) g3(1)] by simp
also have " ... = x \\<^bsub>(?h_img)\<^esub> (y \\<^bsub>(?h_img)\<^esub> z)"
using aux_lemma g1 g2 g3 by auto
finally show "(x \\<^bsub>(?h_img)\<^esub> y) \\<^bsub>(?h_img)\<^esub> z = x \\<^bsub>(?h_img)\<^esub> (y \\<^bsub>(?h_img)\<^esub> z)" .
qed
lemma (in group) hom_imp_img_group: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "h \ hom G H"
shows "group (H \ carrier := h ` (carrier G), one := h \\<^bsub>G\<^esub> \)" (is "group ?h_img")
proof -
interpret monoid ?h_img
using hom_imp_img_monoid[OF assms] .
show ?thesis
proof (unfold_locales)
show "carrier ?h_img \ Units ?h_img"
proof (auto simp add: Units_def)
have aux_lemma:
"\g1 g2. \ g1 \ carrier G; g2 \ carrier G \ \ h g1 \\<^bsub>H\<^esub> h g2 = h (g1 \ g2)"
using assms unfolding hom_def by auto
fix g1 assume g1: "g1 \ carrier G"
thus "\g2 \ carrier G. (h g2) \\<^bsub>H\<^esub> (h g1) = h \ \ (h g1) \\<^bsub>H\<^esub> (h g2) = h \"
using aux_lemma[OF g1 inv_closed[OF g1]]
aux_lemma[OF inv_closed[OF g1] g1]
inv_closed by auto
qed
qed
qed
lemma (in group) iso_imp_group: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "G \ H" and "monoid H"
shows "group H"
proof -
obtain \<phi> where phi: "\<phi> \<in> iso G H" "inv_into (carrier G) \<phi> \<in> iso H G"
using iso_set_sym assms unfolding is_iso_def by blast
define \<psi> where psi_def: "\<psi> = inv_into (carrier G) \<phi>"
have surj: "\ ` (carrier G) = (carrier H)" "\ ` (carrier H) = (carrier G)"
and inj: "inj_on \ (carrier G)" "inj_on \ (carrier H)"
and phi_hom: "\g1 g2. \ g1 \ carrier G; g2 \ carrier G \ \ \ (g1 \ g2) = (\ g1) \\<^bsub>H\<^esub> (\ g2)"
and psi_hom: "\h1 h2. \ h1 \ carrier H; h2 \ carrier H \ \ \ (h1 \\<^bsub>H\<^esub> h2) = (\ h1) \ (\ h2)"
using phi psi_def unfolding iso_def bij_betw_def hom_def by auto
have phi_one: "\ \ = \\<^bsub>H\<^esub>"
proof -
have "(\ \) \\<^bsub>H\<^esub> \\<^bsub>H\<^esub> = (\ \) \\<^bsub>H\<^esub> (\ \)"
by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one surj(1))
thus ?thesis
by (metis (no_types, hide_lams) Units_eq Units_one_closed assms(2) f_inv_into_f imageI
monoid.l_one monoid.one_closed phi_hom psi_def r_one surj)
qed
have "carrier H \ Units H"
proof
fix h assume h: "h \ carrier H"
let ?inv_h = "\ (inv (\ h))"
have "h \\<^bsub>H\<^esub> ?inv_h = \ (\ h) \\<^bsub>H\<^esub> ?inv_h"
by (simp add: f_inv_into_f h psi_def surj(1))
also have " ... = \ ((\ h) \ inv (\ h))"
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = \ \"
by (simp add: h inv_into_into psi_def surj(1))
finally have 1: "h \\<^bsub>H\<^esub> ?inv_h = \\<^bsub>H\<^esub>"
using phi_one by simp
have "?inv_h \\<^bsub>H\<^esub> h = ?inv_h \\<^bsub>H\<^esub> \ (\ h)"
by (simp add: f_inv_into_f h psi_def surj(1))
also have " ... = \ (inv (\ h) \ (\ h))"
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = \ \"
by (simp add: h inv_into_into psi_def surj(1))
finally have 2: "?inv_h \\<^bsub>H\<^esub> h = \\<^bsub>H\<^esub>"
using phi_one by simp
thus "h \ Units H" unfolding Units_def using 1 2 h surj by fastforce
qed
thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp
qed
corollary (in group) iso_imp_img_group: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "h \ iso G H"
shows "group (H \ one := h \ \)"
proof -
let ?h_img = "H \ carrier := h ` (carrier G), one := h \ \"
have "h \ iso G ?h_img"
using assms unfolding iso_def hom_def bij_betw_def by auto
hence "G \ ?h_img"
unfolding is_iso_def by auto
hence "group ?h_img"
using iso_imp_group[of ?h_img] hom_imp_img_monoid[of h H] assms unfolding iso_def by simp
moreover have "carrier H = carrier ?h_img"
using assms unfolding iso_def bij_betw_def by simp
hence "H \ one := h \ \ = ?h_img"
by simp
ultimately show ?thesis by simp
qed
subsubsection \<open>HOL Light's concept of an isomorphism pair\<close>
definition group_isomorphisms
where
"group_isomorphisms G H f g \
f \<in> hom G H \<and> g \<in> hom H G \<and>
(\<forall>x \<in> carrier G. g(f x) = x) \<and>
(\<forall>y \<in> carrier H. f(g y) = y)"
lemma group_isomorphisms_sym: "group_isomorphisms G H f g \ group_isomorphisms H G g f"
by (auto simp: group_isomorphisms_def)
lemma group_isomorphisms_imp_iso: "group_isomorphisms G H f g \ f \ iso G H"
by (auto simp: iso_def inj_on_def image_def group_isomorphisms_def hom_def bij_betw_def Pi_iff, metis+)
lemma (in group) iso_iff_group_isomorphisms:
"f \ iso G H \ (\g. group_isomorphisms G H f g)"
proof safe
show "\g. group_isomorphisms G H f g" if "f \ Group.iso G H"
unfolding group_isomorphisms_def
proof (intro exI conjI)
let ?g = "inv_into (carrier G) f"
show "\x\carrier G. ?g (f x) = x"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_left mem_Collect_eq that)
show "\y\carrier H. f (?g y) = y"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_right mem_Collect_eq that)
qed (use Group.iso_def iso_set_sym that in \<open>blast+\<close>)
next
fix g
assume "group_isomorphisms G H f g"
then show "f \ Group.iso G H"
by (auto simp: iso_def group_isomorphisms_def hom_in_carrier intro: bij_betw_byWitness)
qed
subsubsection \<open>Involving direct products\<close>
lemma DirProd_commute_iso_set:
shows "(\(x,y). (y,x)) \ iso (G \\ H) (H \\ G)"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
corollary DirProd_commute_iso :
"(G \\ H) \ (H \\ G)"
using DirProd_commute_iso_set unfolding is_iso_def by blast
lemma DirProd_assoc_iso_set:
shows "(\(x,y,z). (x,(y,z))) \ iso (G \\ H \\ I) (G \\ (H \\ I))"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
lemma (in group) DirProd_iso_set_trans:
assumes "g \ iso G G2"
and "h \ iso H I"
shows "(\(x,y). (g x, h y)) \ iso (G \\ H) (G2 \\ I)"
proof-
have "(\(x,y). (g x, h y)) \ hom (G \\ H) (G2 \\ I)"
using assms unfolding iso_def hom_def by auto
moreover have " inj_on (\(x,y). (g x, h y)) (carrier (G \\ H))"
using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto
moreover have "(\(x, y). (g x, h y)) ` carrier (G \\ H) = carrier (G2 \\ I)"
using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce
ultimately show "(\(x,y). (g x, h y)) \ iso (G \\ H) (G2 \\ I)"
unfolding iso_def bij_betw_def by auto
qed
corollary (in group) DirProd_iso_trans :
assumes "G \ G2" and "H \ I"
shows "G \\ H \ G2 \\ I"
using DirProd_iso_set_trans assms unfolding is_iso_def by blast
lemma hom_pairwise: "f \ hom G (DirProd H K) \ (fst \ f) \ hom G H \ (snd \ f) \ hom G K"
apply (auto simp: hom_def mult_DirProd' dest: Pi_mem)
apply (metis Product_Type.mem_Times_iff comp_eq_dest_lhs funcset_mem)
by (metis mult_DirProd prod.collapse)
lemma hom_paired:
"(\x. (f x,g x)) \ hom G (DirProd H K) \ f \ hom G H \ g \ hom G K"
by (simp add: hom_pairwise o_def)
lemma hom_paired2:
assumes "group G" "group H"
shows "(\(x,y). (f x,g y)) \ hom (DirProd G H) (DirProd G' H') \ f \ hom G G' \ g \ hom H H'"
using assms
by (fastforce simp: hom_def Pi_def dest!: group.is_monoid)
lemma iso_paired2:
assumes "group G" "group H"
shows "(\(x,y). (f x,g y)) \ iso (DirProd G H) (DirProd G' H') \ f \ iso G G' \ g \ iso H H'"
using assms
by (fastforce simp add: iso_def inj_on_def bij_betw_def hom_paired2 image_paired_Times
times_eq_iff group_def monoid.carrier_not_empty)
lemma hom_of_fst:
assumes "group H"
shows "(f \ fst) \ hom (DirProd G H) K \ f \ hom G K"
proof -
interpret group H
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed
lemma hom_of_snd:
assumes "group G"
shows "(f \ snd) \ hom (DirProd G H) K \ f \ hom H K"
proof -
interpret group G
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed
subsection\<open>The locale for a homomorphism between two groups\<close>
text\<open>Basis for homomorphism proofs: we assume two groups \<^term>\<open>G\<close> and
\<^term>\<open>H\<close>, with a homomorphism \<^term>\<open>h\<close> between them\<close>
locale group_hom = G?: group G + H?: group H for G (structure) and H (structure) +
fixes h
assumes homh [simp]: "h \ hom G H"
declare group_hom.homh [simp]
lemma (in group_hom) hom_mult [simp]:
"[| x \ carrier G; y \ carrier G |] ==> h (x \\<^bsub>G\<^esub> y) = h x \\<^bsub>H\<^esub> h y"
proof -
assume "x \ carrier G" "y \ carrier G"
with homh [unfolded hom_def] show ?thesis by simp
qed
lemma (in group_hom) hom_closed [simp]:
"x \ carrier G ==> h x \ carrier H"
proof -
assume "x \ carrier G"
with homh [unfolded hom_def] show ?thesis by auto
qed
lemma (in group_hom) one_closed: "h \ \ carrier H"
by simp
lemma (in group_hom) hom_one [simp]: "h \ = \\<^bsub>H\<^esub>"
proof -
have "h \ \\<^bsub>H\<^esub> \\<^bsub>H\<^esub> = h \ \\<^bsub>H\<^esub> h \"
by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis
by (metis H.Units_eq H.Units_l_cancel H.one_closed local.one_closed)
qed
lemma hom_one:
assumes "h \ hom G H" "group G" "group H"
shows "h (one G) = one H"
apply (rule group_hom.hom_one)
by (simp add: assms group_hom_axioms_def group_hom_def)
lemma hom_mult:
"\h \ hom G H; x \ carrier G; y \ carrier G\ \ h (x \\<^bsub>G\<^esub> y) = h x \\<^bsub>H\<^esub> h y"
by (auto simp: hom_def)
lemma (in group_hom) inv_closed [simp]:
"x \ carrier G ==> h (inv x) \ carrier H"
by simp
lemma (in group_hom) hom_inv [simp]:
assumes "x \ carrier G" shows "h (inv x) = inv\<^bsub>H\<^esub> (h x)"
proof -
have "h x \\<^bsub>H\<^esub> h (inv x) = h x \\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)"
using assms by (simp flip: hom_mult)
with assms show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed
lemma (in group) int_pow_is_hom: \<^marker>\<open>contributor \<open>Joachim Breitner\<close>\<close>
"x \ carrier G \ (([^]) x) \ hom \ carrier = UNIV, mult = (+), one = 0::int \ G "
unfolding hom_def by (simp add: int_pow_mult)
lemma (in group_hom) img_is_subgroup: "subgroup (h ` (carrier G)) H" \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
apply (rule subgroupI)
apply (auto simp add: image_subsetI)
apply (metis G.inv_closed hom_inv image_iff)
by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed)
lemma (in group_hom) subgroup_img_is_subgroup: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "subgroup I G"
shows "subgroup (h ` I) H"
proof -
have "h \ hom (G \ carrier := I \) H"
using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh
unfolding hom_def by auto
hence "group_hom (G \ carrier := I \) H h"
using subgroup.subgroup_is_group[OF assms G.is_group] is_group
unfolding group_hom_def group_hom_axioms_def by simp
thus ?thesis
using group_hom.img_is_subgroup[of "G \ carrier := I \" H h] by simp
qed
lemma (in group_hom) induced_group_hom: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "subgroup I G"
shows "group_hom (G \ carrier := I \) (H \ carrier := h ` I \) h"
proof -
have "h \ hom (G \ carrier := I \) (H \ carrier := h ` I \)"
using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
thus ?thesis
unfolding group_hom_def group_hom_axioms_def
using subgroup.subgroup_is_group[OF assms G.is_group]
subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms] is_group] by simp
qed
lemma (in group) canonical_inj_is_hom: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "subgroup H G"
shows "group_hom (G \ carrier := H \) G id"
unfolding group_hom_def group_hom_axioms_def hom_def
using subgroup.subgroup_is_group[OF assms is_group]
is_group subgroup.subset[OF assms] by auto
lemma (in group_hom) hom_nat_pow: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
"x \ carrier G \ h (x [^] (n :: nat)) = (h x) [^]\<^bsub>H\<^esub> n"
by (induction n) auto
lemma (in group_hom) hom_int_pow: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
"x \ carrier G \ h (x [^] (n :: int)) = (h x) [^]\<^bsub>H\<^esub> n"
using hom_nat_pow by (simp add: int_pow_def2)
lemma hom_nat_pow:
"\h \ hom G H; x \ carrier G; group G; group H\ \ h (x [^]\<^bsub>G\<^esub> (n :: nat)) = (h x) [^]\<^bsub>H\<^esub> n"
by (simp add: group_hom.hom_nat_pow group_hom_axioms_def group_hom_def)
lemma hom_int_pow:
"\h \ hom G H; x \ carrier G; group G; group H\ \ h (x [^]\<^bsub>G\<^esub> (n :: int)) = (h x) [^]\<^bsub>H\<^esub> n"
by (simp add: group_hom.hom_int_pow group_hom_axioms.intro group_hom_def)
subsection \<open>Commutative Structures\<close>
text \<open>
Naming convention: multiplicative structures that are commutative
are called \emph{commutative}, additive structures are called
\emph{Abelian}.
\<close>
locale comm_monoid = monoid +
assumes m_comm: "\x \ carrier G; y \ carrier G\ \ x \ y = y \ x"
lemma (in comm_monoid) m_lcomm:
"\x \ carrier G; y \ carrier G; z \ carrier G\ \
x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
proof -
assume xyz: "x \ carrier G" "y \ carrier G" "z \ carrier G"
from xyz have "x \ (y \ z) = (x \ y) \ z" by (simp add: m_assoc)
also from xyz have "... = (y \ x) \ z" by (simp add: m_comm)
also from xyz have "... = y \ (x \ z)" by (simp add: m_assoc)
finally show ?thesis .
qed
lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
lemma comm_monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y \ carrier G"
and one_closed: "\ \ carrier G"
and m_assoc:
"!!x y z. [| x \ carrier G; y \ carrier G; z \ carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and l_one: "!!x. x \ carrier G ==> \ \ x = x"
and m_comm:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y = y \ x"
shows "comm_monoid G"
using l_one
by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
intro: assms simp: m_closed one_closed m_comm)
lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y = y \ x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)
lemma (in comm_monoid) submonoid_is_comm_monoid :
assumes "submonoid H G"
shows "comm_monoid (G\carrier := H\)"
proof (intro monoid.monoid_comm_monoidI)
show "monoid (G\carrier := H\)"
using submonoid.submonoid_is_monoid assms comm_monoid_axioms comm_monoid_def by blast
show "\x y. x \ carrier (G\carrier := H\) \ y \ carrier (G\carrier := H\)
\<Longrightarrow> x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y = y \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> x"
by simp (meson assms m_comm submonoid.mem_carrier)
qed
locale comm_group = comm_monoid + group
lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y = y \ x"
shows "comm_group G"
by standard (simp_all add: m_comm)
lemma comm_groupI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y \ carrier G"
and one_closed: "\ \ carrier G"
and m_assoc:
"!!x y z. [| x \ carrier G; y \ carrier G; z \ carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and m_comm:
"!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y = y \ x"
and l_one: "!!x. x \ carrier G ==> \ \ x = x"
and l_inv_ex: "!!x. x \ carrier G ==> \y \ carrier G. y \ x = \"
shows "comm_group G"
by (fast intro: group.group_comm_groupI groupI assms)
lemma comm_groupE:
fixes G (structure)
assumes "comm_group G"
shows "\x y. \ x \ carrier G; y \ carrier G \ \ x \ y \ carrier G"
and "\ \ carrier G"
and "\x y z. \ x \ carrier G; y \ carrier G; z \ carrier G \ \ (x \ y) \ z = x \ (y \ z)"
and "\x y. \ x \ carrier G; y \ carrier G \ \ x \ y = y \ x"
and "\x. x \ carrier G \ \ \ x = x"
and "\x. x \ carrier G \ \y \ carrier G. y \ x = \"
apply (simp_all add: group.axioms assms comm_group.axioms comm_monoid.m_comm comm_monoid.m_ac(1))
by (simp_all add: Group.group.axioms(1) assms comm_group.axioms(2) monoid.m_closed group.r_inv_ex)
lemma (in comm_group) inv_mult:
"[| x \ carrier G; y \ carrier G |] ==> inv (x \ y) = inv x \ inv y"
by (simp add: m_ac inv_mult_group)
lemma (in comm_monoid) nat_pow_distrib:
fixes n::nat
assumes "x \ carrier G" "y \ carrier G"
shows "(x \ y) [^] n = x [^] n \ y [^] n"
by (simp add: assms pow_mult_distrib m_comm)
lemma (in comm_group) int_pow_distrib:
assumes "x \ carrier G" "y \ carrier G"
shows "(x \ y) [^] (i::int) = x [^] i \ y [^] i"
by (simp add: assms int_pow_mult_distrib m_comm)
lemma (in comm_monoid) hom_imp_img_comm_monoid: \<^marker>\<open>contributor \<open>Paulo Emílio de Vilhena\<close>\<close>
assumes "h \ hom G H"
shows "comm_monoid (H \ carrier := h ` (carrier G), one := h \\<^bsub>G\<^esub> \)" (is "comm_monoid ?h_img")
proof (rule monoid.monoid_comm_monoidI)
show "monoid ?h_img"
using hom_imp_img_monoid[OF assms] .
next
fix x y assume "x \ carrier ?h_img" "y \ carrier ?h_img"
then obtain g1 g2
where g1: "g1 \ carrier G" "x = h g1"
and g2: "g2 \ carrier G" "y = h g2"
by auto
have "x \\<^bsub>(?h_img)\<^esub> y = h (g1 \ g2)"
using g1 g2 assms unfolding hom_def by auto
also have " ... = h (g2 \ g1)"
using m_comm[OF g1(1) g2(1)] by simp
also have " ... = y \\<^bsub>(?h_img)\<^esub> x"
using g1 g2 assms unfolding hom_def by auto
finally show "x \\<^bsub>(?h_img)\<^esub> y = y \\<^bsub>(?h_img)\<^esub> x" .
qed
lemma (in comm_group) hom_group_mult:
assumes "f \ hom H G" "g \ hom H G"
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.64 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|
|
|
|
|