/*
* Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// output_c.cpp - Class CPP file output routines for architecture definition
#include "adlc.hpp"
// Utilities to characterize effect statements
static bool is_def(int usedef) {
switch(usedef) {
case Component::DEF:
case Component::USE_DEF: return true; break;
}
return false;
}
// Define an array containing the machine register names, strings.
static void defineRegNames(FILE *fp, RegisterForm *registers) {
if (registers) {
fprintf(fp,"\n");
fprintf(fp,"// An array of character pointers to machine register names.\n");
fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
// Output the register name for each register in the allocation classes
RegDef *reg_def = NULL;
RegDef *next = NULL;
registers->reset_RegDefs();
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
next = registers->iter_RegDefs();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma);
}
// Finish defining enumeration
fprintf(fp,"};\n");
fprintf(fp,"\n");
fprintf(fp,"// An array of character pointers to machine register names.\n");
fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
reg_def = NULL;
next = NULL;
registers->reset_RegDefs();
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
next = registers->iter_RegDefs();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
}
// Finish defining array
fprintf(fp,"\t};\n");
fprintf(fp,"\n");
fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
}
}
// Define an array containing the machine register encoding values
static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
if (registers) {
fprintf(fp,"\n");
fprintf(fp,"// An array of the machine register encode values\n");
fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
// Output the register encoding for each register in the allocation classes
RegDef *reg_def = NULL;
RegDef *next = NULL;
registers->reset_RegDefs();
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
next = registers->iter_RegDefs();
const char* register_encode = reg_def->register_encode();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
int encval;
if (!ADLParser::is_int_token(register_encode, encval)) {
fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname);
} else {
// Output known constants in hex char format (backward compatibility).
assert(encval < 256, "Exceeded supported width for register encoding");
fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname);
}
}
// Finish defining enumeration
fprintf(fp,"};\n");
} // Done defining array
}
// Output an enumeration of register class names
static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
if (registers) {
// Output an enumeration of register class names
fprintf(fp,"\n");
fprintf(fp,"// Enumeration of register class names\n");
fprintf(fp, "enum machRegisterClass {\n");
registers->_rclasses.reset();
for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
const char * class_name_to_upper = toUpper(class_name);
fprintf(fp," %s,\n", class_name_to_upper);
delete[] class_name_to_upper;
}
// Finish defining enumeration
fprintf(fp, " _last_Mach_Reg_Class\n");
fprintf(fp, "};\n");
}
}
// Declare an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::declare_register_masks(FILE *fp_hpp) {
const char *rc_name;
if (_register) {
// Build enumeration of user-defined register classes.
defineRegClassEnum(fp_hpp, _register);
// Generate a list of register masks, one for each class.
fprintf(fp_hpp,"\n");
fprintf(fp_hpp,"// Register masks, one for each register class.\n");
_register->_rclasses.reset();
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
RegClass *reg_class = _register->getRegClass(rc_name);
assert(reg_class, "Using an undefined register class");
reg_class->declare_register_masks(fp_hpp);
}
}
}
// Generate an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::build_register_masks(FILE *fp_cpp) {
const char *rc_name;
if (_register) {
// Generate a list of register masks, one for each class.
fprintf(fp_cpp,"\n");
fprintf(fp_cpp,"// Register masks, one for each register class.\n");
_register->_rclasses.reset();
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
RegClass *reg_class = _register->getRegClass(rc_name);
assert(reg_class, "Using an undefined register class");
reg_class->build_register_masks(fp_cpp);
}
}
}
// Compute an index for an array in the pipeline_reads_NNN arrays
static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
{
int templen = 1;
int paramcount = 0;
const char *paramname;
if (pipeclass->_parameters.count() == 0)
return -1;
pipeclass->_parameters.reset();
paramname = pipeclass->_parameters.iter();
const PipeClassOperandForm *pipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
pipeclass->_parameters.reset();
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
const PipeClassOperandForm *tmppipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (tmppipeopnd)
templen += 10 + (int)strlen(tmppipeopnd->_stage);
else
templen += 19;
paramcount++;
}
// See if the count is zero
if (paramcount == 0) {
return -1;
}
char *operand_stages = new char [templen];
operand_stages[0] = 0;
int i = 0;
templen = 0;
pipeclass->_parameters.reset();
paramname = pipeclass->_parameters.iter();
pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
pipeclass->_parameters.reset();
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
const PipeClassOperandForm *tmppipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
tmppipeopnd ? tmppipeopnd->_stage : "undefined",
(++i < paramcount ? ',' : ' ') );
}
// See if the same string is in the table
int ndx = pipeline_reads.index(operand_stages);
// No, add it to the table
if (ndx < 0) {
pipeline_reads.addName(operand_stages);
ndx = pipeline_reads.index(operand_stages);
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
ndx+1, paramcount, operand_stages);
}
else
delete [] operand_stages;
return (ndx);
}
// Compute an index for an array in the pipeline_res_stages_NNN arrays
static int pipeline_res_stages_initializer(
FILE *fp_cpp,
PipelineForm *pipeline,
NameList &pipeline_res_stages,
PipeClassForm *pipeclass)
{
const PipeClassResourceForm *piperesource;
int * res_stages = new int [pipeline->_rescount];
int i;
for (i = 0; i < pipeline->_rescount; i++)
res_stages[i] = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
for (i = 0; i < pipeline->_rescount; i++)
if ((1 << i) & used_mask) {
int stage = pipeline->_stages.index(piperesource->_stage);
if (res_stages[i] < stage+1)
res_stages[i] = stage+1;
}
}
// Compute the length needed for the resource list
int commentlen = 0;
int max_stage = 0;
for (i = 0; i < pipeline->_rescount; i++) {
if (res_stages[i] == 0) {
if (max_stage < 9)
max_stage = 9;
}
else {
int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
if (max_stage < stagelen)
max_stage = stagelen;
}
commentlen += (int)strlen(pipeline->_reslist.name(i));
}
int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
// Allocate space for the resource list
char * resource_stages = new char [templen];
templen = 0;
for (i = 0; i < pipeline->_rescount; i++) {
const char * const resname =
res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
resname, max_stage - (int)strlen(resname) + 1,
(i < pipeline->_rescount-1) ? "," : "",
pipeline->_reslist.name(i));
}
// See if the same string is in the table
int ndx = pipeline_res_stages.index(resource_stages);
// No, add it to the table
if (ndx < 0) {
pipeline_res_stages.addName(resource_stages);
ndx = pipeline_res_stages.index(resource_stages);
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
ndx+1, pipeline->_rescount, resource_stages);
}
else
delete [] resource_stages;
delete [] res_stages;
return (ndx);
}
// Compute an index for an array in the pipeline_res_cycles_NNN arrays
static int pipeline_res_cycles_initializer(
FILE *fp_cpp,
PipelineForm *pipeline,
NameList &pipeline_res_cycles,
PipeClassForm *pipeclass)
{
const PipeClassResourceForm *piperesource;
int * res_cycles = new int [pipeline->_rescount];
int i;
for (i = 0; i < pipeline->_rescount; i++)
res_cycles[i] = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
for (i = 0; i < pipeline->_rescount; i++)
if ((1 << i) & used_mask) {
int cycles = piperesource->_cycles;
if (res_cycles[i] < cycles)
res_cycles[i] = cycles;
}
}
// Pre-compute the string length
int templen;
int cyclelen = 0, commentlen = 0;
int max_cycles = 0;
char temp[32];
for (i = 0; i < pipeline->_rescount; i++) {
if (max_cycles < res_cycles[i])
max_cycles = res_cycles[i];
templen = sprintf(temp, "%d", res_cycles[i]);
if (cyclelen < templen)
cyclelen = templen;
commentlen += (int)strlen(pipeline->_reslist.name(i));
}
templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
// Allocate space for the resource list
char * resource_cycles = new char [templen];
templen = 0;
for (i = 0; i < pipeline->_rescount; i++) {
templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
}
// See if the same string is in the table
int ndx = pipeline_res_cycles.index(resource_cycles);
// No, add it to the table
if (ndx < 0) {
pipeline_res_cycles.addName(resource_cycles);
ndx = pipeline_res_cycles.index(resource_cycles);
fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
ndx+1, pipeline->_rescount, resource_cycles);
}
else
delete [] resource_cycles;
delete [] res_cycles;
return (ndx);
}
//typedef unsigned long long uint64_t;
// Compute an index for an array in the pipeline_res_mask_NNN arrays
static int pipeline_res_mask_initializer(
FILE *fp_cpp,
PipelineForm *pipeline,
NameList &pipeline_res_mask,
NameList &pipeline_res_args,
PipeClassForm *pipeclass)
{
const PipeClassResourceForm *piperesource;
const uint rescount = pipeline->_rescount;
const uint maxcycleused = pipeline->_maxcycleused;
const uint cyclemasksize = (maxcycleused + 31) >> 5;
int i, j;
uint element_count = 0;
uint *res_mask = new uint [cyclemasksize];
uint resources_used = 0;
uint resources_used_exclusively = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
element_count++;
}
// Pre-compute the string length
int templen;
int commentlen = 0;
int max_cycles = 0;
int cyclelen = ((maxcycleused + 3) >> 2);
int masklen = (rescount + 3) >> 2;
int cycledigit = 0;
for (i = maxcycleused; i > 0; i /= 10)
cycledigit++;
int maskdigit = 0;
for (i = rescount; i > 0; i /= 10)
maskdigit++;
static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
static const char* pipeline_use_element = "Pipeline_Use_Element";
templen = 1 +
(int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
(cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
// Allocate space for the resource list
char * resource_mask = new char [templen];
char * last_comma = NULL;
templen = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
if (!used_mask) {
fprintf(stderr, "*** used_mask is 0 ***\n");
}
resources_used |= used_mask;
uint lb, ub;
for (lb = 0; (used_mask & (1 << lb)) == 0; lb++);
for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
if (lb == ub) {
resources_used_exclusively |= used_mask;
}
int formatlen =
sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
pipeline_use_element,
masklen, used_mask,
cycledigit, lb, cycledigit, ub,
((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
pipeline_use_cycle_mask);
templen += formatlen;
memset(res_mask, 0, cyclemasksize * sizeof(uint));
int cycles = piperesource->_cycles;
uint stage = pipeline->_stages.index(piperesource->_stage);
if ((uint)NameList::Not_in_list == stage) {
fprintf(stderr,
"pipeline_res_mask_initializer: "
"semantic error: "
"pipeline stage undeclared: %s\n",
piperesource->_stage);
exit(1);
}
uint upper_limit = stage + cycles - 1;
uint lower_limit = stage - 1;
uint upper_idx = upper_limit >> 5;
uint lower_idx = lower_limit >> 5;
uint upper_position = upper_limit & 0x1f;
uint lower_position = lower_limit & 0x1f;
uint mask = (((uint)1) << upper_position) - 1;
while (upper_idx > lower_idx) {
res_mask[upper_idx--] |= mask;
mask = (uint)-1;
}
mask -= (((uint)1) << lower_position) - 1;
res_mask[upper_idx] |= mask;
for (j = cyclemasksize-1; j >= 0; j--) {
formatlen =
sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
templen += formatlen;
}
resource_mask[templen++] = ')';
resource_mask[templen++] = ')';
last_comma = &resource_mask[templen];
resource_mask[templen++] = ',';
resource_mask[templen++] = '\n';
}
resource_mask[templen] = 0;
if (last_comma) {
last_comma[0] = ' ';
}
// See if the same string is in the table
int ndx = pipeline_res_mask.index(resource_mask);
// No, add it to the table
if (ndx < 0) {
pipeline_res_mask.addName(resource_mask);
ndx = pipeline_res_mask.index(resource_mask);
if (strlen(resource_mask) > 0)
fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
ndx+1, element_count, resource_mask);
// "0x012345678, 0x012345678, 4294967295"
char* args = new char [36 + 1];
int printed = sprintf(args, "0x%x, 0x%x, %u",
resources_used, resources_used_exclusively, element_count);
assert(printed <= 36, "overflow");
pipeline_res_args.addName(args);
}
else {
delete [] resource_mask;
}
delete [] res_mask;
//delete [] res_masks;
return (ndx);
}
void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
const char *classname;
const char *resourcename;
int resourcenamelen = 0;
NameList pipeline_reads;
NameList pipeline_res_stages;
NameList pipeline_res_cycles;
NameList pipeline_res_masks;
NameList pipeline_res_args;
const int default_latency = 1;
const int non_operand_latency = 0;
const int node_latency = 0;
if (!_pipeline) {
fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
fprintf(fp_cpp, " return %d;\n", non_operand_latency);
fprintf(fp_cpp, "}\n");
return;
}
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
fprintf(fp_cpp, " \"undefined\"");
for (int s = 0; s < _pipeline->_stagecnt; s++)
fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
fprintf(fp_cpp, "\n };\n\n");
fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
_pipeline->_stagecnt);
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp, "#endif\n\n");
fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
fprintf(fp_cpp, " // See if the functional units overlap\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
fprintf(fp_cpp, " if (predUse->multiple())\n");
fprintf(fp_cpp, " continue;\n\n");
fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
fprintf(fp_cpp, " if (currUse->multiple())\n");
fprintf(fp_cpp, " continue;\n\n");
fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
fprintf(fp_cpp, " y <<= 1;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n\n");
fprintf(fp_cpp, " // There is the potential for overlap\n");
fprintf(fp_cpp, " return (start);\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n"span>);
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
fprintf(fp_cpp, " uint min_delay = %d;\n",
_pipeline->_maxcycleused+1);
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " uint curr_delay = delay;\n");
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
fprintf(fp_cpp, " y <<= 1;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " else {\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
fprintf(fp_cpp, " y <<= 1;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n\n");
fprintf(fp_cpp, " return (delay);\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
fprintf(fp_cpp, " break;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " else {\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
fprintf(fp_cpp, " int const default_latency = 1;\n");
fprintf(fp_cpp, "\n");
#if 0
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n");
fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n");
fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
fprintf(fp_cpp, " return (default_latency);\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " return (delta);\n");
fprintf(fp_cpp, "}\n\n");
if (!_pipeline)
/* Do Nothing */;
else if (_pipeline->_maxcycleused <= 32) {
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
fprintf(fp_cpp, "}\n\n");
}
else {
uint l;
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
for (l = 1; l <= masklen; l++)
fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
fprintf(fp_cpp, ");\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
for (l = 1; l <= masklen; l++)
fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
fprintf(fp_cpp, ");\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n "span>);
for (l = 1; l <= masklen; l++)
fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
fprintf(fp_cpp, "\n}\n\n");
}
/* Get the length of all the resource names */
for (_pipeline->_reslist.reset(), resourcenamelen = 0;
(resourcename = _pipeline->_reslist.iter()) != NULL;
resourcenamelen += (int)strlen(resourcename));
// Create the pipeline class description
fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
for (int i2 = masklen-1; i2 >= 0; i2--)
fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
}
fprintf(fp_cpp, "};\n\n");
fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
_pipeline->_rescount);
for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
int maxWriteStage = -1;
int maxMoreInstrs = 0;
int paramcount = 0;
int i = 0;
const char *paramname;
int resource_count = (_pipeline->_rescount + 3) >> 2;
// Scan the operands, looking for last output stage and number of inputs
for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
const PipeClassOperandForm *pipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (pipeopnd) {
if (pipeopnd->_iswrite) {
int stagenum = _pipeline->_stages.index(pipeopnd->_stage);
int moreinsts = pipeopnd->_more_instrs;
if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
maxWriteStage = stagenum;
maxMoreInstrs = moreinsts;
}
}
}
if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
paramcount++;
}
// Create the list of stages for the operands that are read
// Note that we will build a NameList to reduce the number of copies
int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
int pipeline_res_stages_index = pipeline_res_stages_initializer(
fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
int pipeline_res_mask_index = pipeline_res_mask_initializer(
fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
#if 0
// Process the Resources
const PipeClassResourceForm *piperesource;
unsigned resources_used = 0;
unsigned exclusive_resources_used = 0;
unsigned resource_groups = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
if (used_mask)
resource_groups++;
resources_used |= used_mask;
if ((used_mask & (used_mask-1)) == 0)
exclusive_resources_used |= used_mask;
}
if (resource_groups > 0) {
fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
pipeclass->_num, resource_groups);
for (pipeclass->_resUsage.reset(), i = 1;
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
i++ ) {
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
if (used_mask) {
fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
}
}
fprintf(fp_cpp, "};\n\n");
}
#endif
// Create the pipeline class description
fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
pipeclass->_num);
if (maxWriteStage < 0)
fprintf(fp_cpp, "(uint)stage_undefined");
else if (maxMoreInstrs == 0)
fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
else
fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
paramcount,
pipeclass->hasFixedLatency() ? "true" : "false",
pipeclass->fixedLatency(),
pipeclass->InstructionCount(),
pipeclass->hasBranchDelay() ? "true" : "false",
pipeclass->hasMultipleBundles() ? "true" : "false",
pipeclass->forceSerialization() ? "true" : "false",
pipeclass->mayHaveNoCode() ? "true" : "false" );
if (paramcount > 0) {
fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
pipeline_reads_index+1);
}
else
fprintf(fp_cpp, " NULL,");
fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
pipeline_res_stages_index+1);
fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
pipeline_res_cycles_index+1);
fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
pipeline_res_args.name(pipeline_res_mask_index));
if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
pipeline_res_mask_index+1);
else
fprintf(fp_cpp, "NULL");
fprintf(fp_cpp, "));\n");
}
// Generate the Node::latency method if _pipeline defined
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
if (_pipeline) {
#if 0
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n");
#endif
fprintf(fp_cpp, " uint j;\n");
fprintf(fp_cpp, " // verify in legal range for inputs\n");
fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
fprintf(fp_cpp, " // verify input is not null\n");
fprintf(fp_cpp, " Node *pred = in(i);\n");
fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
non_operand_latency);
fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
node_latency);
fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
fprintf(fp_cpp, " j = m->oper_input_base();\n");
fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
non_operand_latency);
fprintf(fp_cpp, " // determine which operand this is in\n");
fprintf(fp_cpp, " uint n = m->num_opnds();\n");
fprintf(fp_cpp, " int delta = %d;\n\n",
non_operand_latency);
fprintf(fp_cpp, " uint k;\n");
fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
fprintf(fp_cpp, " if (i < j)\n");
fprintf(fp_cpp, " break;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " if (k < n)\n");
fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
}
else {
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
fprintf(fp_cpp, " return %d;\n",
non_operand_latency);
}
fprintf(fp_cpp, "}\n\n");
// Output the list of nop nodes
fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
const char *nop;
int nopcnt = 0;
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
int i = 0;
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
}
fprintf(fp_cpp, "};\n\n");
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
fprintf(fp_cpp, " \"\",\n");
fprintf(fp_cpp, " \"use nop delay\",\n");
fprintf(fp_cpp, " \"use unconditional delay\",\n");
fprintf(fp_cpp, " \"use conditional delay\",\n");
fprintf(fp_cpp, " \"used in conditional delay\",\n");
fprintf(fp_cpp, " \"used in unconditional delay\",\n");
fprintf(fp_cpp, " \"used in all conditional delays\",\n");
fprintf(fp_cpp, " };\n\n");
fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
for (i = 0; i < _pipeline->_rescount; i++)
fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
fprintf(fp_cpp, "};\n\n");
// See if the same string is in the table
fprintf(fp_cpp, " bool needs_comma = false;\n\n");
fprintf(fp_cpp, " if (_flags) {\n");
fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n");
fprintf(fp_cpp, " needs_comma = true;\n");
fprintf(fp_cpp, " };\n");
fprintf(fp_cpp, " if (instr_count()) {\n");
fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
fprintf(fp_cpp, " needs_comma = true;\n");
fprintf(fp_cpp, " };\n");
fprintf(fp_cpp, " uint r = resources_used();\n");
fprintf(fp_cpp, " if (r) {\n");
fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n");
fprintf(fp_cpp, " needs_comma = true;\n");
fprintf(fp_cpp, " };\n");
fprintf(fp_cpp, " st->print(\"\\n\");\n");
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp, "#endif\n");
}
// ---------------------------------------------------------------------------
//------------------------------Utilities to build Instruction Classes--------
// ---------------------------------------------------------------------------
static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
node, regMask);
}
static void print_block_index(FILE *fp, int inst_position) {
assert( inst_position >= 0, "Instruction number less than zero");
fprintf(fp, "block_index");
if( inst_position != 0 ) {
fprintf(fp, " - %d", inst_position);
}
}
// Scan the peepmatch and output a test for each instruction
static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
int parent = -1;
int inst_position = 0;
const char* inst_name = NULL;
int input = 0;
fprintf(fp, " // Check instruction sub-tree\n");
pmatch->reset();
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
inst_name != NULL;
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
// If this is not a placeholder
if( ! pmatch->is_placeholder() ) {
// Define temporaries 'inst#', based on parent and parent's input index
if( parent != -1 ) { // root was initialized
fprintf(fp, " // Identify previous instruction if inside this block\n");
fprintf(fp, " if( ");
print_block_index(fp, inst_position);
fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
print_block_index(fp, inst_position);
fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
fprintf(fp, "n->as_Mach() : NULL;\n }\n");
}
// When not the root
// Test we have the correct instruction by comparing the rule.
if( parent != -1 ) {
fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
inst_position, inst_position, inst_name);
}
} else {
// Check that user did not try to constrain a placeholder
assert( ! pconstraint->constrains_instruction(inst_position),
"fatal(): Can not constrain a placeholder instruction");
}
}
}
// Build mapping for register indices, num_edges to input
static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
int parent = -1;
int inst_position = 0;
const char* inst_name = NULL;
int input = 0;
fprintf(fp, " // Build map to register info\n");
pmatch->reset();
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
inst_name != NULL;
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
// If this is not a placeholder
if( ! pmatch->is_placeholder() ) {
// Define temporaries 'inst#', based on self's inst_position
InstructForm *inst = globals[inst_name]->is_instruction();
if( inst != NULL ) {
char inst_prefix[] = "instXXXX_";
sprintf(inst_prefix, "inst%d_", inst_position);
char receiver[] = "instXXXX->";
sprintf(receiver, "inst%d->", inst_position);
inst->index_temps( fp, globals, inst_prefix, receiver );
}
}
}
}
// Generate tests for the constraints
static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
fprintf(fp, "\n");
fprintf(fp, " // Check constraints on sub-tree-leaves\n");
// Build mapping from num_edges to local variables
build_instruction_index_mapping( fp, globals, pmatch );
// Build constraint tests
if( pconstraint != NULL ) {
fprintf(fp, " matches = matches &&");
bool first_constraint = true;
while( pconstraint != NULL ) {
// indentation and connecting '&&'
const char *indentation = " ";
fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));
// Only have '==' relation implemented
if( strcmp(pconstraint->_relation,"==") != 0 ) {
assert( false, "Unimplemented()" );
}
// LEFT
int left_index = pconstraint->_left_inst;
const char *left_op = pconstraint->_left_op;
// Access info on the instructions whose operands are compared
InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
assert( inst_left, "Parser should guaranty this is an instruction");
int left_op_base = inst_left->oper_input_base(globals);
// Access info on the operands being compared
int left_op_index = inst_left->operand_position(left_op, Component::USE);
if( left_op_index == -1 ) {
left_op_index = inst_left->operand_position(left_op, Component::DEF);
if( left_op_index == -1 ) {
left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
}
}
assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction");
ComponentList components_left = inst_left->_components;
const char *left_comp_type = components_left.at(left_op_index)->_type;
OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
// RIGHT
int right_op_index = -1;
int right_index = pconstraint->_right_inst;
const char *right_op = pconstraint->_right_op;
if( right_index != -1 ) { // Match operand
// Access info on the instructions whose operands are compared
InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
assert( inst_right, "Parser should guaranty this is an instruction");
int right_op_base = inst_right->oper_input_base(globals);
// Access info on the operands being compared
right_op_index = inst_right->operand_position(right_op, Component::USE);
if( right_op_index == -1 ) {
right_op_index = inst_right->operand_position(right_op, Component::DEF);
if( right_op_index == -1 ) {
right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
}
}
assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
ComponentList components_right = inst_right->_components;
const char *right_comp_type = components_right.at(right_op_index)->_type;
OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
assert( right_interface_type == left_interface_type, "Both must be same interface");
} else { // Else match register
// assert( false, "should be a register" );
}
//
// Check for equivalence
//
// fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */ == /* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
// left_index, left_op_index, left_index, left_reg_index, left_index, left_op
// right_index, right_op, right_index, right_op_index, right_index, right_reg_index);
// fprintf(fp, ")");
//
switch( left_interface_type ) {
case Form::register_interface: {
// Check that they are allocated to the same register
// Need parameter for index position if not result operand
char left_reg_index[] = ",inst4294967295_idx4294967295";
if( left_op_index != 0 ) {
// Must have index into operands
sprintf(left_reg_index,",inst%u_idx%u", (unsigned)left_index, (unsigned)left_op_index);
} else {
strcpy(left_reg_index, "");
}
fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
left_index, left_op_index, left_index, left_reg_index, left_index, left_op );
fprintf(fp, " == ");
if( right_index != -1 ) {
char right_reg_index[] = ",inst4294967295_idx4294967295";
if( right_op_index != 0 ) {
// Must have index into operands
sprintf(right_reg_index,",inst%u_idx%u", (unsigned)right_index, (unsigned)right_op_index);
} else {
strcpy(right_reg_index, "");
}
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
} else {
fprintf(fp, "%s_enc", right_op );
}
fprintf(fp,")");
break;
}
case Form::constant_interface: {
// Compare the '->constant()' values
fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
right_index, right_op, right_index, right_op_index );
break;
}
case Form::memory_interface: {
// Compare 'base', 'index', 'scale', and 'disp'
// base
fprintf(fp, "( \n");
fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
// index
fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
// scale
fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
right_index, right_op, right_index, right_op_index );
// disp
fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
fprintf(fp, ") \n");
break;
}
case Form::conditional_interface: {
// Compare the condition code being tested
assert( false, "Unimplemented()" );
break;
}
default: {
assert( false, "ShouldNotReachHere()" );
break;
}
}
// Advance to next constraint
pconstraint = pconstraint->next();
first_constraint = false;
}
fprintf(fp, ";\n");
}
}
// // EXPERIMENTAL -- TEMPORARY code
// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
// int op_index = instr->operand_position(op_name, Component::USE);
// if( op_index == -1 ) {
// op_index = instr->operand_position(op_name, Component::DEF);
// if( op_index == -1 ) {
// op_index = instr->operand_position(op_name, Component::USE_DEF);
// }
// }
// assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
//
// ComponentList components_right = instr->_components;
// char *right_comp_type = components_right.at(op_index)->_type;
// OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
// Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
//
// return;
// }
// Construct the new sub-tree
static void generate_peepreplace( FILE *fp, FormDict &globals, int peephole_number, PeepMatch *pmatch,
PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
fprintf(fp, " // IF instructions and constraints matched\n");
fprintf(fp, " if( matches ) {\n");
fprintf(fp, " // generate the new sub-tree\n");
fprintf(fp, " assert( true, \"Debug stopping point\");\n");
if( preplace != NULL ) {
// Get the root of the new sub-tree
const char *root_inst = NULL;
preplace->next_instruction(root_inst);
InstructForm *root_form = globals[root_inst]->is_instruction();
assert( root_form != NULL, "Replacement instruction was not previously defined");
fprintf(fp, " %sNode *root = new %sNode();\n", root_inst, root_inst);
int inst_num;
const char *op_name;
int opnds_index = 0; // define result operand
// Then install the use-operands for the new sub-tree
// preplace->reset(); // reset breaks iteration
for( preplace->next_operand( inst_num, op_name );
op_name != NULL;
preplace->next_operand( inst_num, op_name ) ) {
InstructForm *inst_form;
inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction();
assert( inst_form, "Parser should guaranty this is an instruction");
int inst_op_num = inst_form->operand_position(op_name, Component::USE);
if( inst_op_num == NameList::Not_in_list )
inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
// find the name of the OperandForm from the local name
const Form *form = inst_form->_localNames[op_name];
OperandForm *op_form = form->is_operand();
if( opnds_index == 0 ) {
// Initial setup of new instruction
fprintf(fp, " // ----- Initial setup -----\n");
//
// Add control edge for this node
fprintf(fp, " root->add_req(_in[0]); // control edge\n");
// Add unmatched edges from root of match tree
int op_base = root_form->oper_input_base(globals);
for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n",
inst_num, unmatched_edge);
}
// If new instruction captures bottom type
if( root_form->captures_bottom_type(globals) ) {
// Get bottom type from instruction whose result we are replacing
fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num);
}
// Define result register and result operand
fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
fprintf(fp, " // ----- Done with initial setup -----\n");
} else {
if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
// Do not have ideal edges for constants after matching
fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
inst_op_num, inst_num, inst_op_num,
inst_op_num, inst_num, inst_op_num+1, inst_op_num );
fprintf(fp, " root->add_req( inst%d->in(x%d) );\n",
inst_num, inst_op_num );
} else {
fprintf(fp, " // no ideal edge for constants after matching\n");
}
fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
opnds_index, inst_num, inst_op_num );
}
++opnds_index;
}
}else {
// Replacing subtree with empty-tree
assert( false, "ShouldNotReachHere();");
}
// Set output of the new node
fprintf(fp, " inst0->replace_by(root);\n");
// Mark the node as removed because peephole does not remove nodes from the graph
for (int i = 0; i <= max_position; i++) {
fprintf(fp, " inst%d->set_removed();\n", i);
fprintf(fp, " cfg_->map_node_to_block(inst%d, nullptr);\n", i);
}
for (int i = 0; i <= max_position; i++) {
fprintf(fp, " block->remove_node(block_index - %d);\n", i);
}
fprintf(fp, " block->insert_node(root, block_index - %d);\n", max_position);
fprintf(fp, " cfg_->map_node_to_block(root, block);\n");
// Return the peephole index
fprintf(fp, " return %d; // return the peephole index;\n", peephole_number);
fprintf(fp, " }\n");
}
// Define the Peephole method for an instruction node
void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
// Generate Peephole function header
fprintf(fp, "int %sNode::peephole(Block* block, int block_index, PhaseCFG* cfg_, PhaseRegAlloc* ra_) {\n", node->_ident);
fprintf(fp, " bool matches = true;\n");
// Identify the maximum instruction position,
// generate temporaries that hold current instruction
//
// MachNode *inst0 = NULL;
// ...
// MachNode *instMAX = NULL;
//
int max_position = 0;
Peephole *peep;
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
if (peep->procedure() != NULL) {
continue;
}
PeepMatch *pmatch = peep->match();
assert( pmatch != NULL, "fatal(), missing peepmatch rule");
if( max_position < pmatch->max_position() ) max_position = pmatch->max_position();
}
for( int i = 0; i <= max_position; ++i ) {
if( i == 0 ) {
fprintf(fp, " MachNode *inst0 = this;\n");
} else {
fprintf(fp, " MachNode *inst%d = NULL;\n", i);
}
}
// For each peephole rule in architecture description
// Construct a test for the desired instruction sub-tree
// then check the constraints
// If these match, Generate the new subtree
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
int peephole_number = peep->peephole_number();
PeepPredicate *ppredicate = peep->predicate();
PeepMatch *pmatch = peep->match();
PeepProcedure *pprocedure = peep->procedure();
PeepConstraint *pconstraint = peep->constraints();
PeepReplace *preplace = peep->replacement();
// Root of this peephole is the current MachNode
assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
"root of PeepMatch does not match instruction");
// Make each peephole rule individually selectable
fprintf(fp, " if( ((OptoPeepholeAt == -1) || (OptoPeepholeAt==%d)) && ( %s ) ) {\n",
peephole_number, ppredicate != NULL ? ppredicate->rule() : "true");
if (pprocedure == NULL) {
fprintf(fp, " matches = true;\n");
// Scan the peepmatch and output a test for each instruction
check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
// Check constraints and build replacement inside scope
fprintf(fp, " // If instruction subtree matches\n");
fprintf(fp, " if( matches ) {\n");
// Generate tests for the constraints
check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
// Construct the new sub-tree
generate_peepreplace( fp, _globalNames, peephole_number, pmatch, pconstraint, preplace, max_position );
// End of scope for this peephole's constraints
fprintf(fp, " }\n");
} else {
const char* replace_inst = NULL;
preplace->next_instruction(replace_inst);
// Generate the target instruction
fprintf(fp, " auto replacing = [](){ return static_cast(new %sNode()); };\n", replace_inst);
// Call the precedure
fprintf(fp, " bool replacement = Peephole::%s(block, block_index, cfg_, ra_, replacing", pprocedure->name());
int parent = -1;
int inst_position = 0;
const char* inst_name = NULL;
int input = 0;
pmatch->reset();
for (pmatch->next_instruction(parent, inst_position, inst_name, input);
inst_name != NULL;
pmatch->next_instruction(parent, inst_position, inst_name, input)) {
fprintf(fp, ", %s_rule", inst_name);
}
fprintf(fp, ");\n");
// If substitution succeeded, return the new node
fprintf(fp, " if (replacement) {\n");
fprintf(fp, " return %d;\n", peephole_number);
fprintf(fp, " }\n");
}
// Closing brace '}' to make each peephole rule individually selectable
fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
fprintf(fp, "\n");
}
fprintf(fp, " return -1; // No peephole rules matched\n");
fprintf(fp, "}\n");
fprintf(fp, "\n");
}
// Define the Expand method for an instruction node
void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
unsigned cnt = 0; // Count nodes we have expand into
unsigned i;
// Generate Expand function header
fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
fprintf(fp, " Compile* C = Compile::current();\n");
// Generate expand code
if( node->expands() ) {
const char *opid;
int new_pos, exp_pos;
const char *new_id = NULL;
const Form *frm = NULL;
InstructForm *new_inst = NULL;
OperandForm *new_oper = NULL;
unsigned numo = node->num_opnds() +
node->_exprule->_newopers.count();
// If necessary, generate any operands created in expand rule
if (node->_exprule->_newopers.count()) {
for(node->_exprule->_newopers.reset();
(new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
frm = node->_localNames[new_id];
assert(frm, "Invalid entry in new operands list of expand rule");
new_oper = frm->is_operand();
char *tmp = (char *)node->_exprule->_newopconst[new_id];
if (tmp == NULL) {
fprintf(fp," MachOper *op%d = new %sOper();\n",
cnt, new_oper->_ident);
}
else {
fprintf(fp," MachOper *op%d = new %sOper(%s);\n",
cnt, new_oper->_ident, tmp);
}
}
}
cnt = 0;
// Generate the temps to use for DAG building
for(i = 0; i < numo; i++) {
if (i < node->num_opnds()) {
fprintf(fp," MachNode *tmp%d = this;\n", i);
}
else {
fprintf(fp," MachNode *tmp%d = NULL;\n", i);
}
}
// Build mapping from num_edges to local variables
fprintf(fp," unsigned num0 = 0;\n");
for( i = 1; i < node->num_opnds(); i++ ) {
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
}
// Build a mapping from operand index to input edges
fprintf(fp," unsigned idx0 = oper_input_base();\n");
// The order in which the memory input is added to a node is very
// strange. Store nodes get a memory input before Expand is
// called and other nodes get it afterwards or before depending on
// match order so oper_input_base is wrong during expansion. This
// code adjusts it so that expansion will work correctly.
int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
if (has_memory_edge) {
fprintf(fp," if (mem == (Node*)1) {\n");
fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
fprintf(fp," }\n");
}
for( i = 0; i < node->num_opnds(); i++ ) {
fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
i+1,i,i);
}
// Declare variable to hold root of expansion
fprintf(fp," MachNode *result = NULL;\n");
// Iterate over the instructions 'node' expands into
ExpandRule *expand = node->_exprule;
NameAndList *expand_instr = NULL;
for (expand->reset_instructions();
(expand_instr = expand->iter_instructions()) != NULL; cnt++) {
new_id = expand_instr->name();
InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
if (!expand_instruction) {
globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
node->_ident, new_id);
continue;
}
// Build the node for the instruction
fprintf(fp,"\n %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
// Add control edge for this node
fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
// Build the operand for the value this node defines.
Form *form = (Form*)_globalNames[new_id];
assert(form, "'new_id' must be a defined form name");
// Grab the InstructForm for the new instruction
new_inst = form->is_instruction();
assert(new_inst, "'new_id' must be an instruction name");
if (node->is_ideal_if() && new_inst->is_ideal_if()) {
fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
}
if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
}
// Fill in the bottom_type where requested
if (node->captures_bottom_type(_globalNames) &&
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.66 Sekunden
(vorverarbeitet)
¤
|
Laden
Fehler beim Verzeichnis:
in der Quellcodebibliothek suchen
Die farbliche Syntaxdarstellung ist noch experimentell.
|