Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: testlib_threads.h   Sprache: C

/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#ifndef SHARE_OPTO_NODE_HPP
#define SHARE_OPTO_NODE_HPP

#include "libadt/vectset.hpp"
#include "opto/compile.hpp"
#include "opto/type.hpp"
#include "utilities/copy.hpp"

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style


class AbstractLockNode;
class AddNode;
class AddPNode;
class AliasInfo;
class AllocateArrayNode;
class AllocateNode;
class ArrayCopyNode;
class BaseCountedLoopNode;
class BaseCountedLoopEndNode;
class BlackholeNode;
class Block;
class BoolNode;
class BoxLockNode;
class CMoveNode;
class CallDynamicJavaNode;
class CallJavaNode;
class CallLeafNode;
class CallLeafNoFPNode;
class CallNode;
class CallRuntimeNode;
class CallStaticJavaNode;
class CastFFNode;
class CastDDNode;
class CastVVNode;
class CastIINode;
class CastLLNode;
class CatchNode;
class CatchProjNode;
class CheckCastPPNode;
class ClearArrayNode;
class CmpNode;
class CodeBuffer;
class ConstraintCastNode;
class ConNode;
class CompareAndSwapNode;
class CompareAndExchangeNode;
class CountedLoopNode;
class CountedLoopEndNode;
class DecodeNarrowPtrNode;
class DecodeNNode;
class DecodeNKlassNode;
class EncodeNarrowPtrNode;
class EncodePNode;
class EncodePKlassNode;
class FastLockNode;
class FastUnlockNode;
class HaltNode;
class IfNode;
class IfProjNode;
class IfFalseNode;
class IfTrueNode;
class InitializeNode;
class JVMState;
class JumpNode;
class JumpProjNode;
class LoadNode;
class LoadStoreNode;
class LoadStoreConditionalNode;
class LockNode;
class LongCountedLoopNode;
class LongCountedLoopEndNode;
class LoopNode;
class LShiftNode;
class MachBranchNode;
class MachCallDynamicJavaNode;
class MachCallJavaNode;
class MachCallLeafNode;
class MachCallNode;
class MachCallRuntimeNode;
class MachCallStaticJavaNode;
class MachConstantBaseNode;
class MachConstantNode;
class MachGotoNode;
class MachIfNode;
class MachJumpNode;
class MachNode;
class MachNullCheckNode;
class MachProjNode;
class MachReturnNode;
class MachSafePointNode;
class MachSpillCopyNode;
class MachTempNode;
class MachMergeNode;
class MachMemBarNode;
class Matcher;
class MemBarNode;
class MemBarStoreStoreNode;
class MemNode;
class MergeMemNode;
class MoveNode;
class MulNode;
class MultiNode;
class MultiBranchNode;
class NeverBranchNode;
class Opaque1Node;
class OuterStripMinedLoopNode;
class OuterStripMinedLoopEndNode;
class Node;
class Node_Array;
class Node_List;
class Node_Stack;
class OopMap;
class ParmNode;
class PCTableNode;
class PhaseCCP;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseTransform;
class PhaseValues;
class PhiNode;
class Pipeline;
class PopulateIndexNode;
class ProjNode;
class RangeCheckNode;
class RegMask;
class RegionNode;
class RootNode;
class SafePointNode;
class SafePointScalarObjectNode;
class StartNode;
class State;
class StoreNode;
class SubNode;
class SubTypeCheckNode;
class Type;
class TypeNode;
class UnlockNode;
class VectorNode;
class LoadVectorNode;
class LoadVectorMaskedNode;
class StoreVectorMaskedNode;
class LoadVectorGatherNode;
class StoreVectorNode;
class StoreVectorScatterNode;
class VectorMaskCmpNode;
class VectorUnboxNode;
class VectorSet;
class VectorReinterpretNode;
class ShiftVNode;
class ExpandVNode;
class CompressVNode;
class CompressMNode;


#ifndef OPTO_DU_ITERATOR_ASSERT
#ifdef ASSERT
#define OPTO_DU_ITERATOR_ASSERT 1
#else
#define OPTO_DU_ITERATOR_ASSERT 0
#endif
#endif //OPTO_DU_ITERATOR_ASSERT

#if OPTO_DU_ITERATOR_ASSERT
class DUIterator;
class DUIterator_Fast;
class DUIterator_Last;
#else
typedef uint   DUIterator;
typedef Node** DUIterator_Fast;
typedef Node** DUIterator_Last;
#endif

// Node Sentinel
#define NodeSentinel (Node*)-1

// Unknown count frequency
#define COUNT_UNKNOWN (-1.0f)

//------------------------------Node-------------------------------------------
// Nodes define actions in the program.  They create values, which have types.
// They are both vertices in a directed graph and program primitives.  Nodes
// are labeled; the label is the "opcode", the primitive function in the lambda
// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
// the Node's function.  These inputs also define a Type equation for the Node.
// Solving these Type equations amounts to doing dataflow analysis.
// Control and data are uniformly represented in the graph.  Finally, Nodes
// have a unique dense integer index which is used to index into side arrays
// whenever I have phase-specific information.

class Node {
  friend class VMStructs;

  // Lots of restrictions on cloning Nodes
  NONCOPYABLE(Node);

public:
  friend class Compile;
  #if OPTO_DU_ITERATOR_ASSERT
  friend class DUIterator_Common;
  friend class DUIterator;
  friend class DUIterator_Fast;
  friend class DUIterator_Last;
  #endif

  // Because Nodes come and go, I define an Arena of Node structures to pull
  // from.  This should allow fast access to node creation & deletion.  This
  // field is a local cache of a value defined in some "program fragment" for
  // which these Nodes are just a part of.

  inline voidoperator new(size_t x) throw() {
    Compile* C = Compile::current();
    Node* n = (Node*)C->node_arena()->AmallocWords(x);
    return (void*)n;
  }

  // Delete is a NOP
  void operator deletevoid *ptr ) {}
  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
  void destruct(PhaseValues* phase);

  // Create a new Node.  Required is the number is of inputs required for
  // semantic correctness.
  Node( uint required );

  // Create a new Node with given input edges.
  // This version requires use of the "edge-count" new.
  // E.g.  new (C,3) FooNode( C, NULL, left, right );
  Node( Node *n0 );
  Node( Node *n0, Node *n1 );
  Node( Node *n0, Node *n1, Node *n2 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
  Node( Node *n0, Node *n1, Node *n2, Node *n3,
            Node *n4, Node *n5, Node *n6 );

  // Clone an inherited Node given only the base Node type.
  Node* clone() const;

  // Clone a Node, immediately supplying one or two new edges.
  // The first and second arguments, if non-null, replace in(1) and in(2),
  // respectively.
  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
    Node* nn = clone();
    if (in1 != NULL)  nn->set_req(1, in1);
    if (in2 != NULL)  nn->set_req(2, in2);
    return nn;
  }

private:
  // Shared setup for the above constructors.
  // Handles all interactions with Compile::current.
  // Puts initial values in all Node fields except _idx.
  // Returns the initial value for _idx, which cannot
  // be initialized by assignment.
  inline int Init(int req);

//----------------- input edge handling
protected:
  friend class PhaseCFG;        // Access to address of _in array elements
  Node **_in;                   // Array of use-def references to Nodes
  Node **_out;                  // Array of def-use references to Nodes

  // Input edges are split into two categories.  Required edges are required
  // for semantic correctness; order is important and NULLs are allowed.
  // Precedence edges are used to help determine execution order and are
  // added, e.g., for scheduling purposes.  They are unordered and not
  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
  // are required, from _cnt to _max-1 are precedence edges.
  node_idx_t _cnt;              // Total number of required Node inputs.

  node_idx_t _max;              // Actual length of input array.

  // Output edges are an unordered list of def-use edges which exactly
  // correspond to required input edges which point from other nodes
  // to this one.  Thus the count of the output edges is the number of
  // users of this node.
  node_idx_t _outcnt;           // Total number of Node outputs.

  node_idx_t _outmax;           // Actual length of output array.

  // Grow the actual input array to the next larger power-of-2 bigger than len.
  void grow( uint len );
  // Grow the output array to the next larger power-of-2 bigger than len.
  void out_grow( uint len );

 public:
  // Each Node is assigned a unique small/dense number.  This number is used
  // to index into auxiliary arrays of data and bit vectors.
  // The field _idx is declared constant to defend against inadvertent assignments,
  // since it is used by clients as a naked field. However, the field's value can be
  // changed using the set_idx() method.
  //
  // The PhaseRenumberLive phase renumbers nodes based on liveness information.
  // Therefore, it updates the value of the _idx field. The parse-time _idx is
  // preserved in _parse_idx.
  const node_idx_t _idx;
  DEBUG_ONLY(const node_idx_t _parse_idx;)
  // IGV node identifier. Two nodes, possibly in different compilation phases,
  // have the same IGV identifier if (and only if) they are the very same node
  // (same memory address) or one is "derived" from the other (by e.g.
  // renumbering or matching). This identifier makes it possible to follow the
  // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
  NOT_PRODUCT(node_idx_t _igv_idx;)

  // Get the (read-only) number of input edges
  uint req() const { return _cnt; }
  uint len() const { return _max; }
  // Get the (read-only) number of output edges
  uint outcnt() const { return _outcnt; }

#if OPTO_DU_ITERATOR_ASSERT
  // Iterate over the out-edges of this node.  Deletions are illegal.
  inline DUIterator outs() const;
  // Use this when the out array might have changed to suppress asserts.
  inline DUIterator& refresh_out_pos(DUIterator& i) const;
  // Does the node have an out at this position?  (Used for iteration.)
  inline bool has_out(DUIterator& i) const;
  inline Node*    out(DUIterator& i) const;
  // Iterate over the out-edges of this node.  All changes are illegal.
  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
  inline Node*    fast_out(DUIterator_Fast& i) const;
  // Iterate over the out-edges of this node, deleting one at a time.
  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
  inline Node*    last_out(DUIterator_Last& i) const;
  // The inline bodies of all these methods are after the iterator definitions.
#else
  // Iterate over the out-edges of this node.  Deletions are illegal.
  // This iteration uses integral indexes, to decouple from array reallocations.
  DUIterator outs() const  { return 0; }
  // Use this when the out array might have changed to suppress asserts.
  DUIterator refresh_out_pos(DUIterator i) const { return i; }

  // Reference to the i'th output Node.  Error if out of bounds.
  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
  // Does the node have an out at this position?  (Used for iteration.)
  bool has_out(DUIterator i) const { return i < _outcnt; }

  // Iterate over the out-edges of this node.  All changes are illegal.
  // This iteration uses a pointer internal to the out array.
  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
    Node** out = _out;
    // Assign a limit pointer to the reference argument:
    max = out + (ptrdiff_t)_outcnt;
    // Return the base pointer:
    return out;
  }
  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
  // Iterate over the out-edges of this node, deleting one at a time.
  // This iteration uses a pointer internal to the out array.
  DUIterator_Last last_outs(DUIterator_Last& min) const {
    Node** out = _out;
    // Assign a limit pointer to the reference argument:
    min = out;
    // Return the pointer to the start of the iteration:
    return out + (ptrdiff_t)_outcnt - 1;
  }
  Node*    last_out(DUIterator_Last i) const  { return *i; }
#endif

  // Reference to the i'th input Node.  Error if out of bounds.
  Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
  // Reference to the i'th input Node.  NULL if out of bounds.
  Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
  // Reference to the i'th output Node.  Error if out of bounds.
  // Use this accessor sparingly.  We are going trying to use iterators instead.
  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
  // Return the unique out edge.
  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
  // Delete out edge at position 'i' by moving last out edge to position 'i'
  void  raw_del_out(uint i) {
    assert(i < _outcnt,"oob");
    assert(_outcnt > 0,"oob");
    #if OPTO_DU_ITERATOR_ASSERT
    // Record that a change happened here.
    debug_only(_last_del = _out[i]; ++_del_tick);
    #endif
    _out[i] = _out[--_outcnt];
    // Smash the old edge so it can't be used accidentally.
    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
  }

#ifdef ASSERT
  bool is_dead() const;
#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
  bool is_reachable_from_root() const;
#endif
  // Check whether node has become unreachable
  bool is_unreachable(PhaseIterGVN &igvn) const;

  // Set a required input edge, also updates corresponding output edge
  void add_req( Node *n ); // Append a NEW required input
  void add_req( Node *n0, Node *n1 ) {
    add_req(n0); add_req(n1); }
  void add_req( Node *n0, Node *n1, Node *n2 ) {
    add_req(n0); add_req(n1); add_req(n2); }
  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
  void del_req( uint idx ); // Delete required edge & compact
  void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
  void ins_req( uint i, Node *n ); // Insert a NEW required input
  void set_req( uint i, Node *n ) {
    assert( is_not_dead(n), "can not use dead node");
    assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
    assert( !VerifyHashTableKeys || _hash_lock == 0,
            "remove node from hash table before modifying it");
    Node** p = &_in[i];    // cache this._in, across the del_out call
    if (*p != NULL)  (*p)->del_out((Node *)this);
    (*p) = n;
    if (n != NULL)      n->add_out((Node *)this);
    Compile::current()->record_modified_node(this);
  }
  // Light version of set_req() to init inputs after node creation.
  void init_req( uint i, Node *n ) {
    assert( i == 0 && this == n ||
            is_not_dead(n), "can not use dead node");
    assert( i < _cnt, "oob");
    assert( !VerifyHashTableKeys || _hash_lock == 0,
            "remove node from hash table before modifying it");
    assert( _in[i] == NULL, "sanity");
    _in[i] = n;
    if (n != NULL)      n->add_out((Node *)this);
    Compile::current()->record_modified_node(this);
  }
  // Find first occurrence of n among my edges:
  int find_edge(Node* n);
  int find_prec_edge(Node* n) {
    for (uint i = req(); i < len(); i++) {
      if (_in[i] == n) return i;
      if (_in[i] == NULL) {
        DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
        break;
      }
    }
    return -1;
  }
  int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = NULL);
  int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
  // NULL out all inputs to eliminate incoming Def-Use edges.
  void disconnect_inputs(Compile* C);

  // Quickly, return true if and only if I am Compile::current()->top().
  bool is_top() const {
    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
    return (_out == NULL);
  }
  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
  void setup_is_top();

  // Strip away casting.  (It is depth-limited.)
  Node* uncast(bool keep_deps = falseconst;
  // Return whether two Nodes are equivalent, after stripping casting.
  bool eqv_uncast(const Node* n, bool keep_deps = falseconst {
    return (this->uncast(keep_deps) == n->uncast(keep_deps));
  }

  // Find out of current node that matches opcode.
  Node* find_out_with(int opcode);
  // Return true if the current node has an out that matches opcode.
  bool has_out_with(int opcode);
  // Return true if the current node has an out that matches any of the opcodes.
  bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);

private:
  static Node* uncast_helper(const Node* n, bool keep_deps);

  // Add an output edge to the end of the list
  void add_out( Node *n ) {
    if (is_top())  return;
    if( _outcnt == _outmax ) out_grow(_outcnt);
    _out[_outcnt++] = n;
  }
  // Delete an output edge
  void del_out( Node *n ) {
    if (is_top())  return;
    Node** outp = &_out[_outcnt];
    // Find and remove n
    do {
      assert(outp > _out, "Missing Def-Use edge");
    } while (*--outp != n);
    *outp = _out[--_outcnt];
    // Smash the old edge so it can't be used accidentally.
    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
    // Record that a change happened here.
    #if OPTO_DU_ITERATOR_ASSERT
    debug_only(_last_del = n; ++_del_tick);
    #endif
  }
  // Close gap after removing edge.
  void close_prec_gap_at(uint gap) {
    assert(_cnt <= gap && gap < _max, "no valid prec edge");
    uint i = gap;
    Node *last = NULL;
    for (; i < _max-1; ++i) {
      Node *next = _in[i+1];
      if (next == NULL) break;
      last = next;
    }
    _in[gap] = last; // Move last slot to empty one.
    _in[i] = NULL;   // NULL out last slot.
  }

public:
  // Globally replace this node by a given new node, updating all uses.
  void replace_by(Node* new_node);
  // Globally replace this node by a given new node, updating all uses
  // and cutting input edges of old node.
  void subsume_by(Node* new_node, Compile* c) {
    replace_by(new_node);
    disconnect_inputs(c);
  }
  void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
  void set_req_X(uint i, Node *n, PhaseGVN *gvn);
  // Find the one non-null required input.  RegionNode only
  Node *nonnull_req() const;
  // Add or remove precedence edges
  void add_prec( Node *n );
  void rm_prec( uint i );

  // Note: prec(i) will not necessarily point to n if edge already exists.
  void set_prec( uint i, Node *n ) {
    assert(i < _max, "oob: i=%d, _max=%d", i, _max);
    assert(is_not_dead(n), "can not use dead node");
    assert(i >= _cnt, "not a precedence edge");
    // Avoid spec violation: duplicated prec edge.
    if (_in[i] == n) return;
    if (n == NULL || find_prec_edge(n) != -1) {
      rm_prec(i);
      return;
    }
    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
    _in[i] = n;
    n->add_out((Node *)this);
    Compile::current()->record_modified_node(this);
  }

  // Set this node's index, used by cisc_version to replace current node
  void set_idx(uint new_idx) {
    const node_idx_t* ref = &_idx;
    *(node_idx_t*)ref = new_idx;
  }
  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
  void swap_edges(uint i1, uint i2) {
    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
    // Def-Use info is unchanged
    Node* n1 = in(i1);
    Node* n2 = in(i2);
    _in[i1] = n2;
    _in[i2] = n1;
    // If this node is in the hash table, make sure it doesn't need a rehash.
    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
  }

  // Iterators over input Nodes for a Node X are written as:
  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
  // NOTE: Required edges can contain embedded NULL pointers.

//----------------- Other Node Properties

  // Generate class IDs for (some) ideal nodes so that it is possible to determine
  // the type of a node using a non-virtual method call (the method is_<Node>() below).
  //
  // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
  // the type of the node the ID represents; another subset of an ID's bits are reserved
  // for the superclasses of the node represented by the ID.
  //
  // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
  // returns false. A.is_A() returns true.
  //
  // If two classes, A and B, have the same superclass, a different bit of A's class id
  // is reserved for A's type than for B's type. That bit is specified by the third
  // parameter in the macro DEFINE_CLASS_ID.
  //
  // By convention, classes with deeper hierarchy are declared first. Moreover,
  // classes with the same hierarchy depth are sorted by usage frequency.
  //
  // The query method masks the bits to cut off bits of subclasses and then compares
  // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
  //
  //  Class_MachCall=30, ClassMask_MachCall=31
  // 12               8               4               0
  //  0   0   0   0   0   0   0   0   1   1   1   1   0
  //                                  |   |   |   |
  //                                  |   |   |   Bit_Mach=2
  //                                  |   |   Bit_MachReturn=4
  //                                  |   Bit_MachSafePoint=8
  //                                  Bit_MachCall=16
  //
  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
  // 12               8               4               0
  //  0   0   0   0   0   0   0   1   1   1   0   0   0
  //                              |   |   |
  //                              |   |   Bit_Region=8
  //                              |   Bit_Loop=16
  //                              Bit_CountedLoop=32

  #define DEFINE_CLASS_ID(cl, supcl, subn) \
  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
  Class_##cl = Class_##supcl + Bit_##cl , \
  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,

  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
  // so that its values fit into 32 bits.
  enum NodeClasses {
    Bit_Node   = 0x00000000,
    Class_Node = 0x00000000,
    ClassMask_Node = 0xFFFFFFFF,

    DEFINE_CLASS_ID(Multi, Node, 0)
      DEFINE_CLASS_ID(SafePoint, Multi, 0)
        DEFINE_CLASS_ID(Call,      SafePoint, 0)
          DEFINE_CLASS_ID(CallJava,         Call, 0)
            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
              DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
          DEFINE_CLASS_ID(Allocate,         Call, 2)
            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
          DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
          DEFINE_CLASS_ID(Catch,       PCTable, 0)
          DEFINE_CLASS_ID(Jump,        PCTable, 1)
        DEFINE_CLASS_ID(If,          MultiBranch, 1)
          DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
            DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
            DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
          DEFINE_CLASS_ID(RangeCheck,             If, 1)
          DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
      DEFINE_CLASS_ID(Start,       Multi, 2)
      DEFINE_CLASS_ID(MemBar,      Multi, 3)
        DEFINE_CLASS_ID(Initialize,       MemBar, 0)
        DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)

    DEFINE_CLASS_ID(Mach,  Node, 1)
      DEFINE_CLASS_ID(MachReturn, Mach, 0)
        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
      DEFINE_CLASS_ID(MachBranch, Mach, 1)
        DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
        DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
        DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
      DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
      DEFINE_CLASS_ID(MachTemp,         Mach, 3)
      DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
      DEFINE_CLASS_ID(MachConstant,     Mach, 5)
        DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
      DEFINE_CLASS_ID(MachMerge,        Mach, 6)
      DEFINE_CLASS_ID(MachMemBar,       Mach, 7)

    DEFINE_CLASS_ID(Type,  Node, 2)
      DEFINE_CLASS_ID(Phi,   Type, 0)
      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
        DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
        DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
        DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
        DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
        DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
        DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
      DEFINE_CLASS_ID(CMove, Type, 3)
      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
      DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
        DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
        DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
      DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
        DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
        DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
      DEFINE_CLASS_ID(Vector, Type, 7)
        DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
        DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
        DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
        DEFINE_CLASS_ID(ShiftV, Vector, 3)
        DEFINE_CLASS_ID(CompressV, Vector, 4)
        DEFINE_CLASS_ID(ExpandV, Vector, 5)
        DEFINE_CLASS_ID(CompressM, Vector, 6)

    DEFINE_CLASS_ID(Proj,  Node, 3)
      DEFINE_CLASS_ID(CatchProj, Proj, 0)
      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
      DEFINE_CLASS_ID(IfProj,    Proj, 2)
        DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
        DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
      DEFINE_CLASS_ID(Parm,      Proj, 4)
      DEFINE_CLASS_ID(MachProj,  Proj, 5)

    DEFINE_CLASS_ID(Mem, Node, 4)
      DEFINE_CLASS_ID(Load, Mem, 0)
        DEFINE_CLASS_ID(LoadVector,  Load, 0)
          DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
          DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
          DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
      DEFINE_CLASS_ID(Store, Mem, 1)
        DEFINE_CLASS_ID(StoreVector, Store, 0)
          DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
          DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
          DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
      DEFINE_CLASS_ID(LoadStore, Mem, 2)
        DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
          DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
        DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)

    DEFINE_CLASS_ID(Region, Node, 5)
      DEFINE_CLASS_ID(Loop, Region, 0)
        DEFINE_CLASS_ID(Root,                Loop, 0)
        DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
          DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
          DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
        DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)

    DEFINE_CLASS_ID(Sub,   Node, 6)
      DEFINE_CLASS_ID(Cmp,   Sub, 0)
        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
        DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2)

    DEFINE_CLASS_ID(MergeMem, Node, 7)
    DEFINE_CLASS_ID(Bool,     Node, 8)
    DEFINE_CLASS_ID(AddP,     Node, 9)
    DEFINE_CLASS_ID(BoxLock,  Node, 10)
    DEFINE_CLASS_ID(Add,      Node, 11)
    DEFINE_CLASS_ID(Mul,      Node, 12)
    DEFINE_CLASS_ID(ClearArray, Node, 14)
    DEFINE_CLASS_ID(Halt,     Node, 15)
    DEFINE_CLASS_ID(Opaque1,  Node, 16)
    DEFINE_CLASS_ID(Move,     Node, 17)
    DEFINE_CLASS_ID(LShift,   Node, 18)

    _max_classes  = ClassMask_Move
  };
  #undef DEFINE_CLASS_ID

  // Flags are sorted by usage frequency.
  enum NodeFlags {
    Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
    Flag_rematerialize               = 1 << 1,
    Flag_needs_anti_dependence_check = 1 << 2,
    Flag_is_macro                    = 1 << 3,
    Flag_is_Con                      = 1 << 4,
    Flag_is_cisc_alternate           = 1 << 5,
    Flag_is_dead_loop_safe           = 1 << 6,
    Flag_may_be_short_branch         = 1 << 7,
    Flag_avoid_back_to_back_before   = 1 << 8,
    Flag_avoid_back_to_back_after    = 1 << 9,
    Flag_has_call                    = 1 << 10,
    Flag_is_reduction                = 1 << 11,
    Flag_is_scheduled                = 1 << 12,
    Flag_is_expensive                = 1 << 13,
    Flag_is_predicated_vector        = 1 << 14,
    Flag_for_post_loop_opts_igvn     = 1 << 15,
    Flag_is_removed_by_peephole      = 1 << 16,
    Flag_is_predicated_using_blend   = 1 << 17,
    _last_flag                       = Flag_is_predicated_using_blend
  };

  class PD;

private:
  juint _class_id;
  juint _flags;

  static juint max_flags();

protected:
  // These methods should be called from constructors only.
  void init_class_id(juint c) {
    _class_id = c; // cast out const
  }
  void init_flags(uint fl) {
    assert(fl <= max_flags(), "invalid node flag");
    _flags |= fl;
  }
  void clear_flag(uint fl) {
    assert(fl <= max_flags(), "invalid node flag");
    _flags &= ~fl;
  }

public:
  const juint class_id() const { return _class_id; }

  const juint flags() const { return _flags; }

  void add_flag(juint fl) { init_flags(fl); }

  void remove_flag(juint fl) { clear_flag(fl); }

  // Return a dense integer opcode number
  virtual int Opcode() const;

  // Virtual inherited Node size
  virtual uint size_of() const;

  // Other interesting Node properties
  #define DEFINE_CLASS_QUERY(type)                           \
  bool is_##type() const {                                   \
    return ((_class_id & ClassMask_##type) == Class_##type); \
  }                                                          \
  type##Node *as_##type() const {                            \
    assert(is_##type(), "invalid node class: %s", Name()); \
    return (type##Node*)this;                                \
  }                                                          \
  type##Node* isa_##type() const {                           \
    return (is_##type()) ? as_##type() : NULL;               \
  }

  DEFINE_CLASS_QUERY(AbstractLock)
  DEFINE_CLASS_QUERY(Add)
  DEFINE_CLASS_QUERY(AddP)
  DEFINE_CLASS_QUERY(Allocate)
  DEFINE_CLASS_QUERY(AllocateArray)
  DEFINE_CLASS_QUERY(ArrayCopy)
  DEFINE_CLASS_QUERY(BaseCountedLoop)
  DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
  DEFINE_CLASS_QUERY(Bool)
  DEFINE_CLASS_QUERY(BoxLock)
  DEFINE_CLASS_QUERY(Call)
  DEFINE_CLASS_QUERY(CallDynamicJava)
  DEFINE_CLASS_QUERY(CallJava)
  DEFINE_CLASS_QUERY(CallLeaf)
  DEFINE_CLASS_QUERY(CallLeafNoFP)
  DEFINE_CLASS_QUERY(CallRuntime)
  DEFINE_CLASS_QUERY(CallStaticJava)
  DEFINE_CLASS_QUERY(Catch)
  DEFINE_CLASS_QUERY(CatchProj)
  DEFINE_CLASS_QUERY(CheckCastPP)
  DEFINE_CLASS_QUERY(CastII)
  DEFINE_CLASS_QUERY(CastLL)
  DEFINE_CLASS_QUERY(ConstraintCast)
  DEFINE_CLASS_QUERY(ClearArray)
  DEFINE_CLASS_QUERY(CMove)
  DEFINE_CLASS_QUERY(Cmp)
  DEFINE_CLASS_QUERY(CountedLoop)
  DEFINE_CLASS_QUERY(CountedLoopEnd)
  DEFINE_CLASS_QUERY(DecodeNarrowPtr)
  DEFINE_CLASS_QUERY(DecodeN)
  DEFINE_CLASS_QUERY(DecodeNKlass)
  DEFINE_CLASS_QUERY(EncodeNarrowPtr)
  DEFINE_CLASS_QUERY(EncodeP)
  DEFINE_CLASS_QUERY(EncodePKlass)
  DEFINE_CLASS_QUERY(FastLock)
  DEFINE_CLASS_QUERY(FastUnlock)
  DEFINE_CLASS_QUERY(Halt)
  DEFINE_CLASS_QUERY(If)
  DEFINE_CLASS_QUERY(RangeCheck)
  DEFINE_CLASS_QUERY(IfProj)
  DEFINE_CLASS_QUERY(IfFalse)
  DEFINE_CLASS_QUERY(IfTrue)
  DEFINE_CLASS_QUERY(Initialize)
  DEFINE_CLASS_QUERY(Jump)
  DEFINE_CLASS_QUERY(JumpProj)
  DEFINE_CLASS_QUERY(LongCountedLoop)
  DEFINE_CLASS_QUERY(LongCountedLoopEnd)
  DEFINE_CLASS_QUERY(Load)
  DEFINE_CLASS_QUERY(LoadStore)
  DEFINE_CLASS_QUERY(LoadStoreConditional)
  DEFINE_CLASS_QUERY(Lock)
  DEFINE_CLASS_QUERY(Loop)
  DEFINE_CLASS_QUERY(LShift)
  DEFINE_CLASS_QUERY(Mach)
  DEFINE_CLASS_QUERY(MachBranch)
  DEFINE_CLASS_QUERY(MachCall)
  DEFINE_CLASS_QUERY(MachCallDynamicJava)
  DEFINE_CLASS_QUERY(MachCallJava)
  DEFINE_CLASS_QUERY(MachCallLeaf)
  DEFINE_CLASS_QUERY(MachCallRuntime)
  DEFINE_CLASS_QUERY(MachCallStaticJava)
  DEFINE_CLASS_QUERY(MachConstantBase)
  DEFINE_CLASS_QUERY(MachConstant)
  DEFINE_CLASS_QUERY(MachGoto)
  DEFINE_CLASS_QUERY(MachIf)
  DEFINE_CLASS_QUERY(MachJump)
  DEFINE_CLASS_QUERY(MachNullCheck)
  DEFINE_CLASS_QUERY(MachProj)
  DEFINE_CLASS_QUERY(MachReturn)
  DEFINE_CLASS_QUERY(MachSafePoint)
  DEFINE_CLASS_QUERY(MachSpillCopy)
  DEFINE_CLASS_QUERY(MachTemp)
  DEFINE_CLASS_QUERY(MachMemBar)
  DEFINE_CLASS_QUERY(MachMerge)
  DEFINE_CLASS_QUERY(Mem)
  DEFINE_CLASS_QUERY(MemBar)
  DEFINE_CLASS_QUERY(MemBarStoreStore)
  DEFINE_CLASS_QUERY(MergeMem)
  DEFINE_CLASS_QUERY(Move)
  DEFINE_CLASS_QUERY(Mul)
  DEFINE_CLASS_QUERY(Multi)
  DEFINE_CLASS_QUERY(MultiBranch)
  DEFINE_CLASS_QUERY(Opaque1)
  DEFINE_CLASS_QUERY(OuterStripMinedLoop)
  DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
  DEFINE_CLASS_QUERY(Parm)
  DEFINE_CLASS_QUERY(PCTable)
  DEFINE_CLASS_QUERY(Phi)
  DEFINE_CLASS_QUERY(Proj)
  DEFINE_CLASS_QUERY(Region)
  DEFINE_CLASS_QUERY(Root)
  DEFINE_CLASS_QUERY(SafePoint)
  DEFINE_CLASS_QUERY(SafePointScalarObject)
  DEFINE_CLASS_QUERY(Start)
  DEFINE_CLASS_QUERY(Store)
  DEFINE_CLASS_QUERY(Sub)
  DEFINE_CLASS_QUERY(SubTypeCheck)
  DEFINE_CLASS_QUERY(Type)
  DEFINE_CLASS_QUERY(Vector)
  DEFINE_CLASS_QUERY(VectorMaskCmp)
  DEFINE_CLASS_QUERY(VectorUnbox)
  DEFINE_CLASS_QUERY(VectorReinterpret)
  DEFINE_CLASS_QUERY(CompressV)
  DEFINE_CLASS_QUERY(ExpandV)
  DEFINE_CLASS_QUERY(CompressM)
  DEFINE_CLASS_QUERY(LoadVector)
  DEFINE_CLASS_QUERY(LoadVectorGather)
  DEFINE_CLASS_QUERY(StoreVector)
  DEFINE_CLASS_QUERY(StoreVectorScatter)
  DEFINE_CLASS_QUERY(ShiftV)
  DEFINE_CLASS_QUERY(Unlock)

  #undef DEFINE_CLASS_QUERY

  // duplicate of is_MachSpillCopy()
  bool is_SpillCopy () const {
    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
  }

  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
  // The data node which is safe to leave in dead loop during IGVN optimization.
  bool is_dead_loop_safe() const;

  // is_Copy() returns copied edge index (0 or 1)
  uint is_Copy() const { return (_flags & Flag_is_Copy); }

  virtual bool is_CFG() const { return false; }

  // If this node is control-dependent on a test, can it be
  // rerouted to a dominating equivalent test?  This is usually
  // true of non-CFG nodes, but can be false for operations which
  // depend for their correct sequencing on more than one test.
  // (In that case, hoisting to a dominating test may silently
  // skip some other important test.)
  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };

  // When building basic blocks, I need to have a notion of block beginning
  // Nodes, next block selector Nodes (block enders), and next block
  // projections.  These calls need to work on their machine equivalents.  The
  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
  bool is_block_start() const {
    if ( is_Region() )
      return this == (const Node*)in(0);
    else
      return is_Start();
  }

  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
  // Goto and Return.  This call also returns the block ending Node.
  virtual const Node *is_block_proj() const;

  // The node is a "macro" node which needs to be expanded before matching
  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
  // The node is expensive: the best control is set during loop opts
  bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }

  // An arithmetic node which accumulates a data in a loop.
  // It must have the loop's phi as input and provide a def to the phi.
  bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }

  bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }

  bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }

  // Used in lcm to mark nodes that have scheduled
  bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }

  bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }

//----------------- Optimization

  // Get the worst-case Type output for this Node.
  virtual const class Type *bottom_type() const;

  // If we find a better type for a node, try to record it permanently.
  // Return true if this node actually changed.
  // Be sure to do the hash_delete game in the "rehash" variant.
  void raise_bottom_type(const Type* new_type);

  // Get the address type with which this node uses and/or defs memory,
  // or NULL if none.  The address type is conservatively wide.
  // Returns non-null for calls, membars, loads, stores, etc.
  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
  virtual const class TypePtr *adr_type() const { return NULL; }

  // Return an existing node which computes the same function as this node.
  // The optimistic combined algorithm requires this to return a Node which
  // is a small number of steps away (e.g., one of my inputs).
  virtual Node* Identity(PhaseGVN* phase);

  // Return the set of values this Node can take on at runtime.
  virtual const Type* Value(PhaseGVN* phase) const;

  // Return a node which is more "ideal" than the current node.
  // The invariants on this call are subtle.  If in doubt, read the
  // treatise in node.cpp above the default implementation AND TEST WITH
  // +VerifyIterativeGVN!
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Some nodes have specific Ideal subgraph transformations only if they are
  // unique users of specific nodes. Such nodes should be put on IGVN worklist
  // for the transformations to happen.
  bool has_special_unique_user() const;

  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  Node* find_exact_control(Node* ctrl);

  // Check if 'this' node dominates or equal to 'sub'.
  bool dominates(Node* sub, Node_List &nlist);

protected:
  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
public:

  // See if there is valid pipeline info
  static  const Pipeline *pipeline_class();
  virtual const Pipeline *pipeline() const;

  // Compute the latency from the def to this instruction of the ith input node
  uint latency(uint i);

  // Hash & compare functions, for pessimistic value numbering

  // If the hash function returns the special sentinel value NO_HASH,
  // the node is guaranteed never to compare equal to any other node.
  // If we accidentally generate a hash with value NO_HASH the node
  // won't go into the table and we'll lose a little optimization.
  static const uint NO_HASH = 0;
  virtual uint hash() const;
  virtual bool cmp( const Node &n ) const;

  // Operation appears to be iteratively computed (such as an induction variable)
  // It is possible for this operation to return false for a loop-varying
  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  bool is_iteratively_computed();

  // Determine if a node is a counted loop induction variable.
  // NOTE: The method is defined in "loopnode.cpp".
  bool is_cloop_ind_var() const;

  // Return a node with opcode "opc" and same inputs as "this" if one can
  // be found; Otherwise return NULL;
  Node* find_similar(int opc);

  // Return the unique control out if only one. Null if none or more than one.
  Node* unique_ctrl_out_or_null() const;
  // Return the unique control out. Asserts if none or more than one control out.
  Node* unique_ctrl_out() const;

  // Set control or add control as precedence edge
  void ensure_control_or_add_prec(Node* c);

//----------------- Code Generation

  // Ideal register class for Matching.  Zero means unmatched instruction
  // (these are cloned instead of converted to machine nodes).
  virtual uint ideal_reg() const;

  static const uint NotAMachineReg;   // must be > max. machine register

  // Do we Match on this edge index or not?  Generally false for Control
  // and true for everything else.  Weird for calls & returns.
  virtual uint match_edge(uint idx) const;

  // Register class output is returned in
  virtual const RegMask &out_RegMask() const;
  // Register class input is expected in
  virtual const RegMask &in_RegMask(uint) const;
  // Should we clone rather than spill this instruction?
  bool rematerialize() const;

  // Return JVM State Object if this Node carries debug info, or NULL otherwise
  virtual JVMState* jvms() const;

  // Print as assembly
  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
  // Emit bytes starting at parameter 'ptr'
  // Bump 'ptr' by the number of output bytes
  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
  // Size of instruction in bytes
  virtual uint size(PhaseRegAlloc *ra_) const;

  // Convenience function to extract an integer constant from a node.
  // If it is not an integer constant (either Con, CastII, or Mach),
  // return value_if_unknown.
  jint find_int_con(jint value_if_unknown) const {
    const TypeInt* t = find_int_type();
    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  }
  // Return the constant, knowing it is an integer constant already
  jint get_int() const {
    const TypeInt* t = find_int_type();
    guarantee(t != NULL, "must be con");
    return t->get_con();
  }
  // Here's where the work is done.  Can produce non-constant int types too.
  const TypeInt* find_int_type() const;
  const TypeInteger* find_integer_type(BasicType bt) const;

  // Same thing for long (and intptr_t, via type.hpp):
  jlong get_long() const {
    const TypeLong* t = find_long_type();
    guarantee(t != NULL, "must be con");
    return t->get_con();
  }
  jlong find_long_con(jint value_if_unknown) const {
    const TypeLong* t = find_long_type();
    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
  }
  const TypeLong* find_long_type() const;

  jlong get_integer_as_long(BasicType bt) const {
    const TypeInteger* t = find_integer_type(bt);
    guarantee(t != NULL && t->is_con(), "must be con");
    return t->get_con_as_long(bt);
  }
  jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
    const TypeInteger* t = find_integer_type(bt);
    if (t == NULL || !t->is_con())  return value_if_unknown;
    return t->get_con_as_long(bt);
  }
  const TypePtr* get_ptr_type() const;

  // These guys are called by code generated by ADLC:
  intptr_t get_ptr() const;
  intptr_t get_narrowcon() const;
  jdouble getd() const;
  jfloat getf() const;

  // Nodes which are pinned into basic blocks
  virtual bool pinned() const { return false; }

  // Nodes which use memory without consuming it, hence need antidependences
  // More specifically, needs_anti_dependence_check returns true iff the node
  // (a) does a load, and (b) does not perform a store (except perhaps to a
  // stack slot or some other unaliased location).
  bool needs_anti_dependence_check() const;

  // Return which operand this instruction may cisc-spill. In other words,
  // return operand position that can convert from reg to memory access
  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }

  // Whether this is a memory-writing machine node.
  bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }

//----------------- Printing, etc
#ifndef PRODUCT
 public:
  Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
  Node* find_ctrl(int idx); // Search control ancestors for the given idx.
  void dump_bfs(const int max_distance, Node* target, const char* options) const// Print BFS traversal
  void dump_bfs(const int max_distance) const// dump_bfs(max_distance, nullptr, nullptr)
  class DumpConfig {
   public:
    // overridden to implement coloring of node idx
    virtual void pre_dump(outputStream *st, const Node* n) = 0;
    virtual void post_dump(outputStream *st) = 0;
  };
  void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
  void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
  void dump() const// print node with newline
  void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const// Print this node.
  void dump(int depth) const;        // Print this node, recursively to depth d
  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  void dump_comp() const;            // Print this node in compact representation.
  // Print this node in compact representation.
  void dump_comp(const char* suffix, outputStream *st = tty) const;
 private:
  virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
  virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
  virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
 public:
  virtual void dump_spec(outputStream *st) const {};      // Print per-node info
  // Print compact per-node info
  virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }

  static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);

  // This call defines a class-unique string used to identify class instances
  virtual const char *Name() const;

  void dump_format(PhaseRegAlloc *ra) const// debug access to MachNode::format(...)
  static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
#endif
#ifdef ASSERT
  void verify_construction();
  bool verify_jvms(const JVMState* jvms) const;

  Node* _debug_orig;                   // Original version of this, if any.
  Node*  debug_orig() const            { return _debug_orig; }
  void   set_debug_orig(Node* orig);   // _debug_orig = orig
  void   dump_orig(outputStream *st, bool print_key = trueconst;

  int  _debug_idx;                     // Unique value assigned to every node.
  int   debug_idx() const              { return _debug_idx; }
  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }

  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }

  static void init_NodeProperty();

  #if OPTO_DU_ITERATOR_ASSERT
  const Node* _last_del;               // The last deleted node.
  uint        _del_tick;               // Bumped when a deletion happens..
  #endif
#endif
};

inline bool not_a_node(const Node* n) {
  if (n == NULL)                   return true;
  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  return false;
}

//-----------------------------------------------------------------------------
// Iterators over DU info, and associated Node functions.

#if OPTO_DU_ITERATOR_ASSERT

// Common code for assertion checking on DU iterators.
class DUIterator_Common {
#ifdef ASSERT
 protected:
  bool         _vdui;               // cached value of VerifyDUIterators
  const Node*  _node;               // the node containing the _out array
  uint         _outcnt;             // cached node->_outcnt
  uint         _del_tick;           // cached node->_del_tick
  Node*        _last;               // last value produced by the iterator

  void sample(const Node* node);    // used by c'tor to set up for verifies
  void verify(const Node* node, bool at_end_ok = false);
  void verify_resync();
  void reset(const DUIterator_Common& that);

// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
#else
  #define I_VDUI_ONLY(i,x) { }
#endif //ASSERT
};

#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)

// Default DU iterator.  Allows appends onto the out array.
// Allows deletion from the out array only at the current point.
// Usage:
//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
//    Node* y = x->out(i);
//    ...
//  }
// Compiles in product mode to a unsigned integer index, which indexes
// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
// also reloads x->_outcnt.  If you delete, you must perform "--i" just
// before continuing the loop.  You must delete only the last-produced
// edge.  You must delete only a single copy of the last-produced edge,
// or else you must delete all copies at once (the first time the edge
// is produced by the iterator).
class DUIterator : public DUIterator_Common {
  friend class Node;

  // This is the index which provides the product-mode behavior.
  // Whatever the product-mode version of the system does to the
  // DUI index is done to this index.  All other fields in
  // this class are used only for assertion checking.
  uint         _idx;

  #ifdef ASSERT
  uint         _refresh_tick;    // Records the refresh activity.

  void sample(const Node* node); // Initialize _refresh_tick etc.
  void verify(const Node* node, bool at_end_ok = false);
  void verify_increment();       // Verify an increment operation.
  void verify_resync();          // Verify that we can back up over a deletion.
  void verify_finish();          // Verify that the loop terminated properly.
  void refresh();                // Resample verification info.
  void reset(const DUIterator& that);  // Resample after assignment.
  #endif

  DUIterator(const Node* node, int dummy_to_avoid_conversion)
    { _idx = 0;                         debug_only(sample(node)); }

 public:
  // initialize to garbage; clear _vdui to disable asserts
  DUIterator()
    { /*initialize to garbage*/         debug_only(_vdui = false); }

  DUIterator(const DUIterator& that)
    { _idx = that._idx;                 debug_only(_vdui = false; reset(that)); }

  void operator++(int dummy_to_specify_postfix_op)
    { _idx++;                           VDUI_ONLY(verify_increment()); }

  void operator--()
    { VDUI_ONLY(verify_resync());       --_idx; }

  ~DUIterator()
    { VDUI_ONLY(verify_finish()); }

  void operator=(const DUIterator& that)
    { _idx = that._idx;                 debug_only(reset(that)); }
};

DUIterator Node::outs() const
  { return DUIterator(this, 0); }
DUIterator& Node::refresh_out_pos(DUIterator& i) const
  { I_VDUI_ONLY(i, i.refresh());        return i; }
bool Node::has_out(DUIterator& i) const
  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
Node*    Node::out(DUIterator& i) const
  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }


// Faster DU iterator.  Disallows insertions into the out array.
// Allows deletion from the out array only at the current point.
// Usage:
//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
//    Node* y = x->fast_out(i);
//    ...
//  }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x.  If you delete,
// you must perform "--i; --imax" just before continuing the loop.
// If you delete multiple copies of the same edge, you must decrement
// imax, but not i, multiple times:  "--i, imax -= num_edges".
class DUIterator_Fast : public DUIterator_Common {
  friend class Node;
  friend class DUIterator_Last;

  // This is the pointer which provides the product-mode behavior.
  // Whatever the product-mode version of the system does to the
  // DUI pointer is done to this pointer.  All other fields in
  // this class are used only for assertion checking.
  Node**       _outp;

  #ifdef ASSERT
  void verify(const Node* node, bool at_end_ok = false);
  void verify_limit();
  void verify_resync();
  void verify_relimit(uint n);
  void reset(const DUIterator_Fast& that);
  #endif

  // Note:  offset must be signed, since -1 is sometimes passed
  DUIterator_Fast(const Node* node, ptrdiff_t offset)
    { _outp = node->_out + offset;      debug_only(sample(node)); }

 public:
  // initialize to garbage; clear _vdui to disable asserts
  DUIterator_Fast()
    { /*initialize to garbage*/         debug_only(_vdui = false); }

  DUIterator_Fast(const DUIterator_Fast& that)
    { _outp = that._outp;               debug_only(_vdui = false; reset(that)); }

  void operator++(int dummy_to_specify_postfix_op)
    { _outp++;                          VDUI_ONLY(verify(_node, true)); }

  void operator--()
    { VDUI_ONLY(verify_resync());       --_outp; }

  void operator-=(uint n)   // applied to the limit only
    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }

  bool operator<(DUIterator_Fast& limit) {
    I_VDUI_ONLY(*this, this->verify(_node, true));
    I_VDUI_ONLY(limit, limit.verify_limit());
    return _outp < limit._outp;
  }

  void operator=(const DUIterator_Fast& that)
    { _outp = that._outp;               debug_only(reset(that)); }
};

DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  // Assign a limit pointer to the reference argument:
  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  // Return the base pointer:
  return DUIterator_Fast(this, 0);
}
Node* Node::fast_out(DUIterator_Fast& i) const {
  I_VDUI_ONLY(i, i.verify(this));
  return debug_only(i._last=) *i._outp;
}


// Faster DU iterator.  Requires each successive edge to be removed.
// Does not allow insertion of any edges.
// Usage:
//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
//    Node* y = x->last_out(i);
//    ...
//  }
// Compiles in product mode to raw Node** pointer arithmetic, with
// no reloading of pointers from the original node x.
class DUIterator_Last : private DUIterator_Fast {
  friend class Node;

  #ifdef ASSERT
  void verify(const Node* node, bool at_end_ok = false);
  void verify_limit();
  void verify_step(uint num_edges);
  #endif

  // Note:  offset must be signed, since -1 is sometimes passed
  DUIterator_Last(const Node* node, ptrdiff_t offset)
    : DUIterator_Fast(node, offset) { }

  void operator++(int dummy_to_specify_postfix_op) {} // do not use
  void operator<(int)                              {} // do not use

 public:
  DUIterator_Last() { }
  // initialize to garbage

  DUIterator_Last(const DUIterator_Last& that) = default;

  void operator--()
    { _outp--;              VDUI_ONLY(verify_step(1));  }

  void operator-=(uint n)
    { _outp -= n;           VDUI_ONLY(verify_step(n));  }

  bool operator>=(DUIterator_Last& limit) {
    I_VDUI_ONLY(*this, this->verify(_node, true));
    I_VDUI_ONLY(limit, limit.verify_limit());
    return _outp >= limit._outp;
  }

  DUIterator_Last& operator=(const DUIterator_Last& that) = default;
};

DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  // Assign a limit pointer to the reference argument:
  imin = DUIterator_Last(this, 0);
  // Return the initial pointer:
  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
}
Node* Node::last_out(DUIterator_Last& i) const {
  I_VDUI_ONLY(i, i.verify(this));
  return debug_only(i._last=) *i._outp;
}

#endif //OPTO_DU_ITERATOR_ASSERT

#undef I_VDUI_ONLY
#undef VDUI_ONLY

// An Iterator that truly follows the iterator pattern.  Doesn't
// support deletion but could be made to.
//
//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
//     Node* m = i.get();
//
class SimpleDUIterator : public StackObj {
 private:
  Node* node;
  DUIterator_Fast i;
  DUIterator_Fast imax;
 public:
  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  bool has_next() { return i < imax; }
  void next() { i++; }
  Node* get() { return node->fast_out(i); }
};


//-----------------------------------------------------------------------------
// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
// Abstractly provides an infinite array of Node*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Node_Array : public AnyObj {
  friend class VMStructs;
protected:
  Arena* _a;                    // Arena to allocate in
  uint   _max;
  Node** _nodes;
  void   grow( uint i );        // Grow array node to fit
public:
  Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
    _nodes = NEW_ARENA_ARRAY(a, Node*, max);
    clear();
  }

  Node_Array(Node_Array* na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
  Node** adr() { return _nodes; }
  // Extend the mapping: index i maps to Node *n.
  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  void insert( uint i, Node *n );
  void remove( uint i );        // Remove, preserving order
  // Clear all entries in _nodes to NULL but keep storage
  void clear() {
    Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
  }

  uint Size() const { return _max; }
  void dump() const;
};

class Node_List : public Node_Array {
  friend class VMStructs;
  uint _cnt;
public:
  Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
  Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
  bool contains(const Node* n) const {
    for (uint e = 0; e < size(); e++) {
      if (at(e) == n) return true;
    }
    return false;
  }
  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  void push( Node *b ) { map(_cnt++,b); }
  void yank( Node *n );         // Find and remove
  Node *pop() { return _nodes[--_cnt]; }
  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  void copy(const Node_List& from) {
    if (from._max > _max) {
      grow(from._max);
    }
    _cnt = from._cnt;
    Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
  }

  uint size() const { return _cnt; }
  void dump() const;
  void dump_simple() const;
};

//------------------------------Unique_Node_List-------------------------------
class Unique_Node_List : public Node_List {
  friend class VMStructs;
  VectorSet _in_worklist;
  uint _clock_index;            // Index in list where to pop from next
public:
  Unique_Node_List() : Node_List(), _clock_index(0) {}
  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}

  void remove( Node *n );
  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  VectorSet& member_set(){ return _in_worklist; }

  void push(Node* b) {
    if( !_in_worklist.test_set(b->_idx) )
      Node_List::push(b);
  }
  Node *pop() {
    if( _clock_index >= size() ) _clock_index = 0;
    Node *b = at(_clock_index);
    map( _clock_index, Node_List::pop());
    if (size() != 0) _clock_index++; // Always start from 0
    _in_worklist.remove(b->_idx);
    return b;
  }
  Node *remove(uint i) {
    Node *b = Node_List::at(i);
    _in_worklist.remove(b->_idx);
    map(i,Node_List::pop());
    return b;
  }
  void yank(Node *n) {
    _in_worklist.remove(n->_idx);
    Node_List::yank(n);
  }
  void  clear() {
    _in_worklist.clear();        // Discards storage but grows automatically
    Node_List::clear();
    _clock_index = 0;
  }

  // Used after parsing to remove useless nodes before Iterative GVN
  void remove_useless_nodes(VectorSet& useful);

  bool contains(const Node* n) const {
    fatal("use faster member() instead");
    return false;
  }

#ifndef PRODUCT
  void print_set() const { _in_worklist.print(); }
#endif
};

// Unique_Mixed_Node_List
// unique: nodes are added only once
// mixed: allow new and old nodes
class Unique_Mixed_Node_List : public ResourceObj {
public:
  Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}

  void add(Node* node) {
    if (not_a_node(node)) {
      return// Gracefully handle NULL, -1, 0xabababab, etc.
    }
    if (_visited_set[node] == nullptr) {
      _visited_set.Insert(node, node);
      _worklist.push(node);
    }
  }

  Node* operator[] (uint i) const {
    return _worklist[i];
  }

  size_t size() {
    return _worklist.size();
  }

private:
  Dict _visited_set;
  Node_List _worklist;
};

// Inline definition of Compile::record_for_igvn must be deferred to this point.
inline void Compile::record_for_igvn(Node* n) {
  _for_igvn->push(n);
}

//------------------------------Node_Stack-------------------------------------
class Node_Stack {
  friend class VMStructs;
protected:
  struct INode {
    Node *node; // Processed node
    uint  indx; // Index of next node's child
  };
  INode *_inode_top; // tos, stack grows up
  INode *_inode_max; // End of _inodes == _inodes + _max
  INode *_inodes;    // Array storage for the stack
  Arena *_a;         // Arena to allocate in
  void grow();
public:
  Node_Stack(int size) {
    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
    _a = Thread::current()->resource_area();
    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
    _inode_max = _inodes + max;
    _inode_top = _inodes - 1; // stack is empty
  }

  Node_Stack(Arena *a, int size) : _a(a) {
    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
    _inode_max = _inodes + max;
    _inode_top = _inodes - 1; // stack is empty
  }

  void pop() {
    assert(_inode_top >= _inodes, "node stack underflow");
    --_inode_top;
  }
  void push(Node *n, uint i) {
    ++_inode_top;
    if (_inode_top >= _inode_max) grow();
    INode *top = _inode_top; // optimization
    top->node = n;
    top->indx = i;
  }
  Node *node() const {
    return _inode_top->node;
  }
  Node* node_at(uint i) const {
    assert(_inodes + i <= _inode_top, "in range");
    return _inodes[i].node;
  }
  uint index() const {
    return _inode_top->indx;
  }
  uint index_at(uint i) const {
    assert(_inodes + i <= _inode_top, "in range");
    return _inodes[i].indx;
  }
  void set_node(Node *n) {
    _inode_top->node = n;
  }
  void set_index(uint i) {
    _inode_top->indx = i;
  }
  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); // Max size
  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); // Current size
  bool is_nonempty() const { return (_inode_top >= _inodes); }
  bool is_empty() const { return (_inode_top < _inodes); }
  void clear() { _inode_top = _inodes - 1; } // retain storage

  // Node_Stack is used to map nodes.
  Node* find(uint idx) const;
};


//-----------------------------Node_Notes--------------------------------------
// Debugging or profiling annotations loosely and sparsely associated
// with some nodes.  See Compile::node_notes_at for the accessor.
class Node_Notes {
  friend class VMStructs;
  JVMState* _jvms;

public:
  Node_Notes(JVMState* jvms = NULL) {
    _jvms = jvms;
  }

  JVMState* jvms()            { return _jvms; }
  void  set_jvms(JVMState* x) {        _jvms = x; }

  // True if there is nothing here.
  bool is_clear() {
    return (_jvms == NULL);
  }

  // Make there be nothing here.
  void clear() {
    _jvms = NULL;
  }

  // Make a new, clean node notes.
  static Node_Notes* make(Compile* C) {
    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
    nn->clear();
    return nn;
  }

  Node_Notes* clone(Compile* C) {
    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
    (*nn) = (*this);
    return nn;
  }

  // Absorb any information from source.
  bool update_from(Node_Notes* source) {
--> --------------------

--> maximum size reached

--> --------------------

¤ Dauer der Verarbeitung: 0.88 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik