Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: NSub.v   Sprache: Coq

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Export NMulOrder.

Module Type NSubProp (Import N : NAxiomsMiniSig').
Include NMulOrderProp N.

Theorem sub_0_l : forall n, 0 - n == 0.
Proof.
induct n.
apply sub_0_r.
intros n IH; rewrite sub_succ_r; rewrite IH. now apply pred_0.
Qed.

Theorem sub_succ : forall n m, S n - S m == n - m.
Proof.
intro n; induct m.
rewrite sub_succ_r. do 2 rewrite sub_0_r. now rewrite pred_succ.
intros m IH. rewrite sub_succ_r. rewrite IH. now rewrite sub_succ_r.
Qed.

Theorem sub_diag : forall n, n - n == 0.
Proof.
induct n. apply sub_0_r. intros n IH; rewrite sub_succ; now rewrite IH.
Qed.

Theorem sub_gt : forall n m, n > m -> n - m ~= 0.
Proof.
intros n m H; elim H using lt_ind_rel; clear n m H.
solve_proper.
introrewrite sub_0_r; apply neq_succ_0.
introsnow rewrite sub_succ.
Qed.

Theorem add_sub_assoc : forall n m p, p <= m -> n + (m - p) == (n + m) - p.
Proof.
intros n m p; induct p.
intronow do 2 rewrite sub_0_r.
intros p IH H. do 2 rewrite sub_succ_r.
rewrite <- IH by (apply lt_le_incl; now apply le_succ_l).
rewrite add_pred_r by (apply sub_gt; now apply le_succ_l).
reflexivity.
Qed.

Theorem sub_succ_l : forall n m, n <= m -> S m - n == S (m - n).
Proof.
intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)).
symmetrynow apply add_sub_assoc.
Qed.

Theorem add_sub : forall n m, (n + m) - m == n.
Proof.
intros n m. rewrite <- add_sub_assoc by (apply le_refl).
rewrite sub_diag; now rewrite add_0_r.
Qed.

Theorem sub_add : forall n m, n <= m -> (m - n) + n == m.
Proof.
intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption.
rewrite add_comm. apply add_sub.
Qed.

Theorem add_sub_eq_l : forall n m p, m + p == n -> n - m == p.
Proof.
intros n m p H. symmetry.
assert (H1 : m + p - m == n - m) by now rewrite H.
rewrite add_comm in H1. now rewrite add_sub in H1.
Qed.

Theorem add_sub_eq_r : forall n m p, m + p == n -> n - p == m.
Proof.
intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l.
Qed.

(* This could be proved by adding m to both sides. Then the proof would
use add_sub_assoc and sub_0_le, which is proven below. *)


Theorem add_sub_eq_nz : forall n m p, p ~= 0 -> n - m == p -> m + p == n.
Proof.
intros n m p H; double_induct n m.
intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H.
intro n; rewrite sub_0_r; now rewrite add_0_l.
intros n m IH H1. rewrite sub_succ in H1. apply IH in H1.
rewrite add_succ_l; now rewrite H1.
Qed.

Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p.
Proof.
intros n m; induct p.
rewrite add_0_r; now rewrite sub_0_r.
intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH.
Qed.

Theorem add_sub_swap : forall n m p, p <= n -> n + m - p == n - p + m.
Proof.
intros n m p H.
rewrite (add_comm n m).
rewrite <- add_sub_assoc by assumption.
now rewrite (add_comm m (n - p)).
Qed.

(** Sub and order *)

Theorem le_sub_l : forall n m, n - m <= n.
Proof.
intro n; induct m.
rewrite sub_0_r; now apply eq_le_incl.
intros m IH. rewrite sub_succ_r.
apply le_trans with (n - m); [apply le_pred_l | assumption].
Qed.

Theorem sub_0_le : forall n m, n - m == 0 <-> n <= m.
Proof.
double_induct n m.
intro m; splitintro; [apply le_0_l | apply sub_0_l].
intro m; rewrite sub_0_r; splitintro H;
[false_hyp H neq_succ_0 | false_hyp H nle_succ_0].
intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ.
Qed.

Theorem sub_add_le : forall n m, n <= n - m + m.
Proof.
intros.
destruct (le_ge_cases n m) as [LE|GE].
rewrite <- sub_0_le in LE. rewrite LE; nzsimpl.
now rewrite <- sub_0_le.
rewrite sub_add by assumption. apply le_refl.
Qed.

Theorem le_sub_le_add_r : forall n m p,
 n - p <= m <-> n <= m + p.
Proof.
intros n m p.
splitintros LE.
rewrite (add_le_mono_r _ _ p) in LE.
apply le_trans with (n-p+p); auto using sub_add_le.
destruct (le_ge_cases n p) as [LE'|GE].
rewrite <- sub_0_le in LE'. rewrite LE'. apply le_0_l.
rewrite (add_le_mono_r _ _ p). now rewrite sub_add.
Qed.

Theorem le_sub_le_add_l : forall n m p, n - m <= p <-> n <= m + p.
Proof.
intros n m p. rewrite add_comm; apply le_sub_le_add_r.
Qed.

Theorem lt_sub_lt_add_r : forall n m p,
 n - p < m -> n < m + p.
Proof.
intros n m p LT.
rewrite (add_lt_mono_r _ _ p) in LT.
apply le_lt_trans with (n-p+p); auto using sub_add_le.
Qed.

(** Unfortunately, we do not have [n < m + p -> n - p < m].
    For instance [1<0+2] but not [1-2<0]. *)


Theorem lt_sub_lt_add_l : forall n m p, n - m < p -> n < m + p.
Proof.
intros n m p. rewrite add_comm; apply lt_sub_lt_add_r.
Qed.

Theorem le_add_le_sub_r : forall n m p, n + p <= m -> n <= m - p.
Proof.
intros n m p LE.
apply (add_le_mono_r _ _ p).
rewrite sub_add. assumption.
apply le_trans with (n+p); trivial.
rewrite <- (add_0_l p) at 1. rewrite <- add_le_mono_r. apply le_0_l.
Qed.

(** Unfortunately, we do not have [n <= m - p -> n + p <= m].
    For instance [0<=1-2] but not [2+0<=1]. *)


Theorem le_add_le_sub_l : forall n m p, n + p <= m -> p <= m - n.
Proof.
intros n m p. rewrite add_comm; apply le_add_le_sub_r.
Qed.

Theorem lt_add_lt_sub_r : forall n m p, n + p < m <-> n < m - p.
Proof.
intros n m p.
destruct (le_ge_cases p m) as [LE|GE].
rewrite <- (sub_add p m) at 1 by assumption.
now rewrite <- add_lt_mono_r.
assert (GE' := GE). rewrite <- sub_0_le in GE'; rewrite GE'.
splitintros LT.
elim (lt_irrefl m). apply le_lt_trans with (n+p); trivial.
 rewrite <- (add_0_l m). apply add_le_mono. apply le_0_l. assumption.
now elim (nlt_0_r n).
Qed.

Theorem lt_add_lt_sub_l : forall n m p, n + p < m <-> p < m - n.
Proof.
intros n m p. rewrite add_comm; apply lt_add_lt_sub_r.
Qed.

Theorem sub_lt : forall n m, m <= n -> 0 < m -> n - m < n.
Proof.
intros n m LE LT.
assert (LE' := le_sub_l n m). rewrite lt_eq_cases in LE'.
destruct LE' as [LT'|EQ]. assumption.
apply add_sub_eq_nz in EQ; [|order].
rewrite (add_lt_mono_r _ _ n), add_0_l in LT. order.
Qed.

Lemma sub_le_mono_r : forall n m p, n <= m -> n-p <= m-p.
Proof.
 introsrewrite le_sub_le_add_r. transitivity m. assumption. apply sub_add_le.
Qed.

Lemma sub_le_mono_l : forall n m p, n <= m -> p-m <= p-n.
Proof.
 introsrewrite le_sub_le_add_r.
 transitivity (p-n+n); [ apply sub_add_le | now apply add_le_mono_l].
Qed.

(** Sub and mul *)

Theorem mul_pred_r : forall n m, n * (P m) == n * m - n.
Proof.
intros n m; cases m.
now rewrite pred_0, mul_0_r, sub_0_l.
intro m; rewrite pred_succ, mul_succ_r, <- add_sub_assoc.
now rewrite sub_diag, add_0_r.
now apply eq_le_incl.
Qed.

Theorem mul_sub_distr_r : forall n m p, (n - m) * p == n * p - m * p.
Proof.
intros n m p; induct n.
now rewrite sub_0_l, mul_0_l, sub_0_l.
intros n IH. destruct (le_gt_cases m n) as [H | H].
rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l.
rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p).
rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r.
now apply add_cancel_l.
assert (H1 : S n <= m); [now apply le_succ_l |].
setoid_replace (S n - m) with 0 by now apply sub_0_le.
setoid_replace ((S n * p) - m * p) with 0 by (apply sub_0_le; now apply mul_le_mono_r).
apply mul_0_l.
Qed.

Theorem mul_sub_distr_l : forall n m p, p * (n - m) == p * n - p * m.
Proof.
intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m).
apply mul_sub_distr_r.
Qed.

(** Alternative definitions of [<=] and [<] based on [+] *)

Definition le_alt n m := exists p, p + n == m.
Definition lt_alt n m := exists p, S p + n == m.

Lemma le_equiv : forall n m, le_alt n m <-> n <= m.
Proof.
split.
intros (p,H). rewrite <- H, add_comm. apply le_add_r.
intro H. exists (m-n). now apply sub_add.
Qed.

Lemma lt_equiv : forall n m, lt_alt n m <-> n < m.
Proof.
split.
intros (p,H). rewrite <- H, add_succ_l, lt_succ_r, add_comm. apply le_add_r.
intro H. exists (m-S n). rewrite add_succ_l, <- add_succ_r.
apply sub_add. now rewrite le_succ_l.
Qed.

Instance le_alt_wd : Proper (eq==>eq==>iff) le_alt.
Proof.
 intros x x' Hx y y' Hy; unfold le_alt.
 setoid_rewrite Hx. setoid_rewrite Hy. auto with *.
Qed.

Instance lt_alt_wd : Proper (eq==>eq==>iff) lt_alt.
Proof.
 intros x x' Hx y y' Hy; unfold lt_alt.
 setoid_rewrite Hx. setoid_rewrite Hy. auto with *.
Qed.

(** With these alternative definition, the dichotomy:

[forall n m, n <= m \/ m <= n]

becomes:

[forall n m, (exists p, p + n == m) \/ (exists p, p + m == n)]

We will need this in the proof of induction principle for integers
constructed as pairs of natural numbers. This formula can be proved
from know properties of [<=]. However, it can also be done directly. *)


Theorem le_alt_dichotomy : forall n m, le_alt n m \/ le_alt m n.
Proof.
intros n m; induct n.
leftexists m; apply add_0_r.
intros n IH.
destruct IH as [[p H] | [p H]].
destruct (zero_or_succ p) as [H1 | [p' H1]]; rewrite H1 in H.
rewrite add_0_l in H. rightexists (S 0); rewrite H, add_succ_l;
 now rewrite add_0_l.
leftexists p'; rewrite add_succ_r; now rewrite add_succ_l in H.
rightexists (S p). rewrite add_succ_l; now rewrite H.
Qed.

Theorem add_dichotomy :
  forall n m, (exists p, p + n == m) \/ (exists p, p + m == n).
Proofexact le_alt_dichotomy. Qed.

End NSubProp.


¤ Dauer der Verarbeitung: 0.2 Sekunden  (vorverarbeitet)  ¤





Kontakt
Drucken
Kontakt
sprechenden Kalenders

Eigene Datei ansehen




schauen Sie vor die Tür

Fenster


Die Firma ist wie angegeben erreichbar.

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik