Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Relations_1_facts.v   Sprache: Coq

Original von: Coq©

(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(****************************************************************************)
(*                                                                          *)
(*                         Naive Set Theory in Coq                          *)
(*                                                                          *)
(*                     INRIA                        INRIA                   *)
(*              Rocquencourt                        Sophia-Antipolis        *)
(*                                                                          *)
(*                                 Coq V6.1                                 *)
(*     *)
(*          Gilles Kahn      *)
(*  Gerard Huet     *)
(*     *)
(*     *)
(*                                                                          *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks  *)
(* to the Newton Institute for providing an exceptional work environment    *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration.  *)
(****************************************************************************)

Require Export Relations_1.

Definition Complement (U:Type) (R:Relation U) : Relation U :=
  fun x y:U => ~ R x y.

Theorem Rsym_imp_notRsym :
 forall (U:Type) (R:Relation U),
   Symmetric U R -> Symmetric U (Complement U R).
Proof.
unfold Symmetric, Complement.
intros U R H' x y H'0; redintro H'1; apply H'0; auto with sets.
Qed.

Theorem Equiv_from_preorder :
 forall (U:Type) (R:Relation U),
   Preorder U R -> Equivalence U (fun x y:U => R x y /\ R y x).
Proof.
intros U R H'; elim H'; intros H'0 H'1.
apply Definition_of_equivalence.
red in H'0; auto 10 with sets.
red in H'1; redauto 10 with sets.
  intros x y z h; elim h; intros H'3 H'4; clear h.
  intro h; elim h; intros H'5 H'6; clear h.
  splitapply H'1 with y; auto 10 with sets.
redintros x y h; elim h; intros H'3 H'4; auto 10 with sets.
Qed.
Hint Resolve Equiv_from_preorder : core.

Theorem Equiv_from_order :
 forall (U:Type) (R:Relation U),
   Order U R -> Equivalence U (fun x y:U => R x y /\ R y x).
Proof.
intros U R H'; elim H'; auto 10 with sets.
Qed.
Hint Resolve Equiv_from_order : core.

Theorem contains_is_preorder :
 forall U:Type, Preorder (Relation U) (contains U).
Proof.
auto 10 with sets.
Qed.
Hint Resolve contains_is_preorder : core.

Theorem same_relation_is_equivalence :
 forall U:Type, Equivalence (Relation U) (same_relation U).
Proof.
unfold same_relation at 1; auto 10 with sets.
Qed.
Hint Resolve same_relation_is_equivalence : core.

Theorem cong_reflexive_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Reflexive U R -> Reflexive U R'.
Proof.
unfold same_relation; intuition.
Qed.

Theorem cong_symmetric_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Symmetric U R -> Symmetric U R'.
Proof.
  computeintroselim H; intros; clear H;
   apply (H3 y x (H0 x y (H2 x y H1))).
(*Intuition.*)
Qed.

Theorem cong_antisymmetric_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Antisymmetric U R -> Antisymmetric U R'.
Proof.
  computeintroselim H; intros; clear H;
   apply (H0 x y (H3 x y H1) (H3 y x H2)).
(*Intuition.*)
Qed.

Theorem cong_transitive_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Transitive U R -> Transitive U R'.
Proof.
intros U R R' H' H'0; red.
elim H'.
intros H'1 H'2 x y z H'3 H'4; apply H'2.
apply H'0 with y; auto with sets.
Qed.

¤ Dauer der Verarbeitung: 0.14 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik